
Global Illumination via Density-Estimation

Peter Shirley Bretton Wade Philip M. Hubbard David Zareski Bruce Walter
Donald P. Greenberg

Program of Computer Graphics, Cornell University, Ithaca, NY, USA.

1 Introduction

This paper presents a new method for the production of view-independent global illumi-
nation solutions of complex static environments. A key innovation of this new approach
is its decomposition of the problem into a loosely coupled sequence of simple modules.
This approach decouples the global energy transport computation from the construction
of the displayable shaded representation of the environment. This decoupling eliminates
many constraints of previous global illuminationapproaches, yieldingaccurate solutions
for environments with non-diffuse surfaces and high geometric complexity.

Our algorithm produces a view-independent display mesh that represents the irradi-
ances on surfaces in a form that allows direct display of the shaded surface. Most tra-
ditional radiosity algorithms also use a computational mesh to represent intermediate
results in the light transport calculation (e.g., the piecewise-constant global solution of
Smits et al. [17]). Typically, a single representation is used for both the computational
and display meshes (e.g. the static mesh used by Neumann et al. [11] and the adaptive
mesh used by Teller et al. [18]).

Very few display mesh solutions have been produced for environments with more
than a few thousand initial surfaces. The only implementation we are aware of that has
produced a display mesh for more than 10,000 initial surfaces is the system by Teller et
al. [18], which was run on a model with approximately 40,000 initial surfaces. Teller et
al. argue that the reason for these surprisingly small limits is the high memory overhead
of the data structures associated with the computational mesh.

To solve this problem, we draw on an observation by Lischinski et al. [10], that the
computational mesh and the display mesh have different purposes and characteristics
and therefore should be decoupled. Our method is based on the idea that once the display
mesh and computational mesh are decoupled, the computational mesh can be replaced
with a simpler data structure based on particle tracing. This replacement allows for the
solution of larger models with more general reflectance properties.

Our method is composed of three phases which operate without a computational
mesh. The first phase uses particle tracing to record a list of particle “hit points” for each
surface. The second phase uses these lists to generate a view-independent functional rep-
resentation of surface irradiance. This process is called density-estimation because the



representation is an approximation of the underlying density function that generated the
hit point locations. The third phase converts the functional representation into a view-
independent display mesh. A novel aspect of the third phase is its use of a geometric
mesh-decimation algorithm to reduce the size of the display mesh.

In our method all diffuse surfaces will be portrayed accurately regardless of display
method. In addition, the contribution of non-diffuse surfaces to the appearance of dif-
fuse surfaces will be accounted for correctly. Non-diffuse surfaces in this mesh will be
portrayed accurately if displayed in a view-dependent second pass.

2 Background

Previous global illumination techniques have one or more of the following significant
limitations:

– High intermediate complexity (memory overhead). Current radiosity methods
use large data structures to accelerate visibility computations. These data structures
are usually the limiting factor in performing large radiosity simulations [18]. In prac-
tice, an algorithm that stores more than a few hundred bytes per polygon in physical
memory will not be practical.

– Difficulty with local complexity. In cases where the model has a very high “global
complexity” (large numbers of surfaces), but a limited “local complexity” (only small
subsets of surfaces are mutually visible), partitioning can be used to decompose the
model into subsets which can be solved separately [18]. But if any subset has a high
local complexity, then partitioning may not reduce the subproblems to a solvable
size. This is a problem in an environment such as a hotel atrium.

– Quadratic time complexity. Any algorithm that computes interactions between all
pairs ofN objects will require at leastO(N2) time. This limits their utility in dealing
with large models.

– “Ideal” specular effects. Many radiosityalgorithms can only use the “virtual image
method” [13], which is practical for solving models with only a limited number of
ideal, planar, specular objects. Real models have windows, gloss paint, and metal
luminaire-reflectors, and in general, non-diffuse surfaces.

– Lack of parallelism. Most existing radiosity methods were designed as serial al-
gorithms, and cannot be easily adapted for parallel computation. This limits their
ability to take full advantage of one of today’s typical computing environments: a
local area network of high-speed workstations sharing a common file system.

These limitations need to be overcome in a single system if the use of view indepen-
dent global illuminationsolutionsare to become widespread. Keeping the memory over-
head low favors a Monte Carlo particle-shooting approach [12], which only requires a
ray-tracing acceleration structure. Handling local complexity in sub-quadratic time sug-
gests either a clustering approach [17] or a Monte Carlo shooting approach1. A Monte
1 No global illumination algorithm has been proven to be sub-quadratic, but there is empirical

evidence that both Monte Carlo shooting algorithms [15] and clustering algorithms [17] are
sub-quadratic for reasonably “well-behaved” environments.



Carlo shooting approach also allows for more general specular transport, and possesses
inherent parallelism, as each shot can be processed independently. Because specular trans-
port through glass is important in many applications, we have chosen to pursue the Monte
Carlo approach.

Although Monte Carlo radiosity schemes have been applied with great success us-
ing a priori computational meshes [11], there has been little success generating adap-
tive computational meshes. Appel [1] traced particles from the source to estimate direct
lighting. Arvo [2] extended this idea to include illumination reflecting from mirrors be-
fore striking surfaces. Heckbert [8] extended Arvo’s work to include adaptive meshing,
and was the first to observe that this was a form of density-estimation. Chen et al. [3]
used a kernel-based density-estimation technique to deal with caustic maps, and our
density-estimation work can be considered an extension of their caustic map techniques
to account for all illumination effects in a scene. Collins has one of the most sophisti-
cated density-estimation techniques for global illumination [5], but his method does not
account for multiple diffuse reflections.

Our strategy is similar to Heckbert’s and Collins’, but differs in that the meshing is
delayed until all Monte Carlo particle tracing has been completed. This allows us to use
all the information collected while estimating surface irradiances to generate a good dis-
play mesh. The additional storage due to stored hit-points can be processed sequentially
and therefore need not be simultaneously resident in real memory.

3 Description of Density-Estimation Algorithm

The algorithm is composed of three basic phases:

1. Particle-tracing phase: Power carrying particles are emitted from each luminaire
using an appropriate radiant intensity distribution, and are then tracked through the
environment until they are probabilisticallyabsorbed. A list of all particle “hit points”
is generated and saved.

2. Density-estimation phase: The stored hit points are used to construct an approxi-
mate irradiance functionH(u; v) for each receiving surface.

3. Meshing phase: The approximate irradiance function H(u; v) is further approxi-
mated to a more compact form �H(u; v) that can be used for efficient hardware ren-
dering or ray tracing display. If the desired output is a set of Gouraud-shaded polyg-
onal elements for interactive display and walk-through on a conventional graphics
workstation, then �H(u; v) will be piecewise linear.

The algorithm is outlined in figure 1. Note that although the environment is right-left
symmetrical, the solution is not. This is because of the randomness introduced by the
particle tracing.

3.1 Particle-Tracing Phase

We begin the particle-tracingphase by totaling the power emitted by all luminaires�. We
then generate approximately n “particles”, each carrying power � = �=n. We use the



particle
tracing

density
estimation meshing

Fig. 1. Overview of the density estimation algorithm. The surfaces in the room are depicted “un-
folded” in the three figures on the right.

traditional particle approximation where the particles obey geometric optics, and have
an associated color.

For each luminaire `i with emitted power �i, we trace an expected Ni = n�i=�
rays. Since Ni is not necessarily an integer, we trace at least bNic rays, and sometimes
trace an additional ray with probability Ni � bNic. Each of these rays is sent with a
probability density function that is determined by the emission characteristics of the lu-
minaire:

p(x; !) =
Le(x; !) cos �R

X

R


Le(x; !) cos �d!dx

where p is a probabilitydensity function for ray generation,x is a point on the luminaire,
! is a direction, Le is the emitted surface radiance, � is the angle between ! and the
surface normal at x, X is the set of points on the luminaire, and 
 is the set of outgoing
directions on the hemisphere oriented with the surface normal.

At each surface the particle is probabilistically reflected, transmitted, or absorbed
based on�(x; !; !0), the surface’s bidirectional reflectance distributionfunction (BRDF).

3.2 Density-Estimation Phase

After completing the particle-tracingphase, we have associated with each surface a set of
hit points with incoming power �. It seems logical to guess a reasonable irradiance from
the local denseness or sparseness of these hit points. For example, where the density of
these points is high, we expect a high irradiance. As pointed out by Heckbert [8], this
is a classic density estimation problem, where we attempt to guess a plausible density
function given a set of non-uniform random samples2. Before getting to the details of
how we apply density estimation, we first establish that the radiometric quantity we wish
to estimate is the irradiance.

A Lambertian surface has a BRDF that is a constant R=� for all incoming/outgoing
direction pairs, where R is the reflectance (ratio of outgoing to incoming power). This

2 Note that this density estimation problem has a set of sample locations, but does not have func-
tion values at these locations. This is different from the problem of reconstructing a signal from
a sampled function. It is easy to get these two problems confused. Ironically, the strategy of plac-
ing kernels at the hit points is very similar, but in density-estimation the kernels are not scaled.



implies that a Lambertian surface will have a constant surface radiance for all incom-
ing/outgoing direction pairs. Ultimately, we wish to approximate this surface radiance
for all Lambertian points.

For a particular parametric Lambertian surface with reflectance R(u; v) and irradi-
ance H(u; v) (incident power per unit area at (u; v)), the radiant exitanceM (u; v) (out-
going power per unit area at (u; v)) is R(u; v)H(u; v). Because the radiance of a Lam-
bertian surface is L(u; v) = M (u; v)=�, the relationship between irradiance H and ra-
diance L can be expressed by the following equation 3: L(u; v) = R(u; v)H(u; v)=�.
This equation implies that we can store the irradiance and reflectance at each point and
later reconstruct the radiance. This is convenient because the reflectance may change
quickly, while the irradiance may change slowly, allowing the irradiance to be stored in
a coarse mesh. These ideas are based upon the “patch-element” radiosity work of Cohen
et al.[4].

For a given surface, a list of hit point locations (uj; vj) is stored. Each of these points
has the same power, �. The irradiance function represented by this list is a set of “delta”
functions where a finite amount of power strikes an infinitely small area. In one dimen-
sion, this is essentially taking a set of n samples xi and noting that a possible density
function f is:

f(x) =
1

n

nX
i=1

� (x� xi)

This sum of spikes would be a bad guess if we know f is smooth. Instead we could
replace the � functions with smooth “kernel” functions k1(x � xi), where k1 has unit
volume. This generates a smoother estimate for f . An example kernel estimate is shown
in Figure 2.

Using kernel functions on the hit points is analogous to the idea of “splatting” in
volume rendering [20], and is similar to the illumination ray tracing of Collins [5]. Sil-
verman [16] notes that whatever properties the derivatives of k1 have will be shared by
f , so we can ensure a smooth estimate for f by choosing a smooth k1.

Good choices for k1 are similar to the choices used for splatting or pixel filtering. As
in those applications the kernels should be centered at the origin, have limited support
(non-zero region), and should be roughly “lump” shaped. If the volume of the function
we are approximating,A, is not unity (so the function is not a probability density func-
tion), we can compensate by multiplying the sum by A.

Fig. 2. Kernel estimate showing individual kernels.

3 See the recent texturing work of Gershbein et al. [6] for a more detailed analysis.



In two dimensions, the irradiance function can be estimated as:

Hi(x) =
�

n

niX
j=1

� (x � xj)

Where xj is the position of the jth hit point. We can replace the delta functions with ni
“kernel” functions kj, and note that �=n = �:

Hi(x) = �

niX
j=1

kj (xj) (1)

The kernel functions have the conflicting requirements of being narrow enough to cap-
ture detail, and being wide enough to eliminate the random mottling caused by the irreg-
ular pattern of the hit points. We can use a scaling parameter h to widen or narrow the
filter. Because narrowing the filter will decrease its volume, we also increase the height
of the kernel to keep its volume constant:

Hi(x) =
�

h2

niX
j=1

k

�
x � xj

h

�
(2)

Note that for Equation 2 to represent irradiance, k must have unit volume. On a lo-
cally planar surface with orthogonal length parameters (u; v), this is straightforward to
guarantee. A more complex form would be needed to conserve energy on more complex
surfaces.

3.3 Meshing Phase

At first it seems logical to render the approximate H(u; v) directly, but the number of
sample points is large enough that any method that attempts to randomly access all the
points in the environment will not be practical for large environments. Instead, we need
to reduce the amount of information needed to specify an approximate irradiance func-
tion.

The most obvious strategy is to sample H(u; v) at a finite set of locations and use
some type of polynomial elements to interpolate between these values. Ideally, the sam-
ple points should be chosen so that they are dense only where the irradiance function has
many features.

Once we have a more compact representation ofH(u; v) we can display an image of
the illuminated surfaces using either 3-D graphics hardware or ray tracing. For Gouraud
shading we should approximateH(u; v)with piecewise-linear elements, but for ray trac-
ing we can use higher-order elements.

3.4 Parallel Execution

Each of the three phases above are ideally suited to take advantage of parallelism. In the
particle-tracing phase, particle paths can be computed independently, and once the parti-
cle hit points for each surface are grouped together, the density-estimation and meshing
phases can compute the shading of each surface independently.



4 Implementation

We have implemented the algorithm in C++ as three separate serial programs that com-
municate using files. The first program reads the input geometry, performs the particle-
tracing phase, and writes out the hit points. The second program reads the hit points and
geometry, performs the density-estimation phase, and then performs the initial pass of
the meshing phase by generating a finely-tessellated display mesh. The third program
reads this display mesh and performs the final pass of the meshing phase by decimat-
ing the mesh so that it can be displayed more quickly without significant loss of image
quality.

We have also implemented a parallel version of the algorithm in C++ as two separate
parallel programs [21]. The first is a parallel version of the serial particle tracer, and the
second is a combined, parallel version of the both the serial density-estimationand mesh-
decimation programs. The second parallel program also performs the hit point sorting.

The three serial programs mentioned above are described in the remainder of this
section. Our goal has been to implement each component of the density-estimation frame-
work as simply and conservatively as possible. This strategy has allowed us to explore
the basic strengths and weaknesses of density-estimation without getting bogged down
with low-level issues. Our implementation should therefore be considered a proof-of-
concept which leaves open many avenues of investigation that will improve on our re-
sults.

4.1 The Particle-Tracing Program

This program implements the particle-tracing phase exactly as described in Section 3.1.
Rays are emitted from random locations on each luminaire in a directional-distribution
determined from the emitted surface radiance of the luminaire.

Each time a ray hits a diffuse surface, the surface id (4 bytes) and fixed-point repre-
sentations of the uv coordinates (2 bytes each) are written to a file. This means we can
store approximately 125 million hit points on a one gigabyte disk. This code is run once
for each of the red, green, and blue channels.

The only memory overhead in the particle-tracing phase is the uniform-subdivision
ray-tracing efficiency structure (approximately 140 bytes per patch in our implementa-
tion, or about 7 million patches per gigabyte).

An alternative way to store hit points would be with surface normal information in
a 3D data structure, as is done by Ward [19] and by Jensen and Christensen [9]. This
would raise memory usage, but would elimiate some problems associated with models
that are hard to parameterize.

4.2 The Density-Estimation and Initial-Meshing Program

Ideally we would like to make a density-estimation of the irradiance function of the ith
surface Hi(x), and then output a piecewise linear approximation with as few linear ele-
ments as are needed to accurately represent Hi(x). However, because generating a con-
cise, piecewise-linear approximation is a hard problem, and because we wanted to deter-
mine the potential accuracy of density-estimation techniques before attempting to solve



the most difficult problems suggested by the technique, we adopted a strategy of over-
meshing the solution, and then decimating this mesh.

The density-estimation program begins by sorting all hit points by surface id in each
of the red, green, and blue channel files produced by the particle-tracing program. Each
surface is then processed in series by examining all its hit points, calculating a density
estimate of its irradiance function Hi(x), and then outputting an “over-meshed” point-
sampled approximation to Hi(x).

The current implementation is restricted to rectangular surfaces only. It samples each
rectangle on anu by nv lattice, and outputs this approximation as a triangular mesh with
2(nu � 1)(nv � 1) elements and nunv vertices, with irradiance values at each vertex.
We use triangles as mesh elements instead of rectangles because it simplifies the mesh-
decimation algorithm.

We have chosen to use Silverman’s K2 kernel function [16]:

K2(u; v) =
3

�
max

�
0; (1� jjx� xjjj

2)2
�

(3)

The width of the kernel function,h, is chosen to relate it to the average distance between
sample points on the ith surface. This is approximated by C1

p
Ai=n, where Ai is the

area of surface i, n is the number of sample points, andC1 is a positive constant that con-
trols the width of the kernel. The desired spacing between adjacent grid points is chosen
as C2

p
Ai=n, where C2 is typically less than C1. Since each polygon can be meshed

independent of other polygons, we only need keep this grid in memory for one polygon
at a time, and paging has not been a problem on any of our runs. Near the boundary we
use the reflection method [16] to avoid darkening near the edge of polygons.

The trade-off between noise and blurring as controlled by C1 is shown in Figure 3.
In this figure C2 has been set to 8, which is small enough to not affect the images. We
have found useful values of C1 range from 10 to 40, and useful values of C2 to range
fromC1=10 toC1=2. It is important to note that surfaces that receive fewer particles will
get wider kernels and coarser meshes. This avoids the under-sampling problems of tra-
ditional illumination ray tracing [2] in a manner similar to Collins [5]. Unlike Collins,
we do not require any coherence between adjacent particle paths, so we can choose ap-
propriate kernel sizes for data that includes diffuse interreflection.

Fig. 3. Different noise/blur effects for C1 = 10; 30; 100.



4.3 Irradiance-Mesh-Decimation Program

The final program decimates the triangulated mesh produced by the density-estimation
program. Its goal is to eliminate as many mesh elements as possible without compro-
mising mesh accuracy.

In order to take advantage of the rich literature in geometric mesh decimation, we
transform our 2-D surface mesh, which we call an illumination mesh, into a 3-D mesh.
The X and Y axes correspond to the surface’s parametric space, and the Z axis corre-
sponds to “brightness.” This mesh is a height field because there are no “ledges” that
overhang other parts of the mesh.

To this 3-D mesh we apply geometric decimation techniques. As long as the result is
still a height field, it converts to a decimated illumination mesh by simply ignoring the
Z coordinate. To decimate the 3-D mesh, we use the algorithm of Schroeder et al.[14].
It uses two heuristics to approximate curvature at a mesh vertex. If curvature is low
enough, it removes the vertex and re-triangulates the resulting “hole” in the mesh.

This decimation algorithm does not necessarily produce a height field, so we added
a simple enhancement. When re-triangulatinga hole, the enhanced algorithm checks for
triangles on “overhanging ledges”; if it finds any, it does not remove the vertex.

Another disadvantage of Schroeder’s algorithm is that it does not consider the deci-
mation to be an optimization task. It uses a fixed threshold on curvature, decimating all
vertices which cause curvature changes below the threshold. We turned the algorithm
into an optimization task by using a priority queue. The queue holds all vertices ranked
by the change in curvature their decimation would cause. The new algorithm decimates
vertices in the order they come off the queue, thus minimizing the change in curvature
with each decimation. Maintaining the queue is efficient, since each access takes only
O(logn) time for a mesh of n vertices.

The main challenge in using the Schroeder et al. algorithm is picking the exact map-
ping from the illumination mesh to a purely geometric, 3-D mesh. The geometric mesh
has one set of units (spatial, e.g., meters) but the illumination mesh has two: spatial for
the surface’s two parametric dimensions (X and Y ), and “brightness” for the third (Z).
The mapping must balance the two sets of units, since the decimation algorithm cannot
distinguish between them.

We map the two sets of units to a common scale, and choose a single maximum-
allowable error, �, in this scale. We scale the spatial dimensions so that the smallest im-
portant feature has width �. We scale the “brightness” dimension by using

z =

�
R(x; y)H(x; y)=�

w0

�1=3
;

whereR(x; y) is photometric reflectance, H(x; y) is illuminance,w0 is the white-point,
and the exponent is due to Stevens Law [7]. We clamp z to 1.0, and choose w0 so that
z = � corresponds to the largest allowable “brightness” error. In practice, determining
the scaling parameters requires some trial and error. Fortunately, in our experience we
found useful parameter values after only two or three attempts.

Decimation works well in practice. Figure 4 shows an example in which decimation
removed 90% of the triangles produced by the density-estimationprogram. We achieved
similar decimation rates in our other tests.



Fig. 4. Left: undecimated mesh. Right: 90% decimated mesh.

4.4 Sample results

Figure 5 shows a ray-traced image of a view-independent density-estimation solution.
The environment depicted has sixteen light sources forming a compact lattice to the left
of the image. This image illustrateshow we correctly handle transport chains that include
glass and specular reflection from metals.

Notice how light passes through the glass and then through the fence, reflects from
the steel, and casts a green streak on the floor. The shadowing is stored in the illumination
mesh, so only the colors of the metal and glass need to be calculated during ray tracing.

One characteristic of the error in our solutions is that the red, green, and blue chan-
nels of our images have uncorrelated oscillations, which causes a visible colored texture
if the kernels are too narrow. Eliminating this colored texture increases the blurring of
desired features such as shadow boundaries.

Figure 6 (left) shows a hardware-rendered decimated version of a model with ap-
proximately 10,000 initial surfaces. The decimated mesh has approximately 12% of the
triangles in the original mesh.

Figure 6 (right) shows the solution of a model with approximately 150,000 original
polygonal surfaces. This solution is roughly four times larger than the largest previous
solution produced by radiosity methods which compute a display mesh a posteriori. The
undecimated display mesh contained about 4.2 million triangles and the decimated mesh
had approximately 400,000 triangles. In all, the solution took approximately 37 hours to
compute on an HP model 755 100MHz PA-Risc 7100 workstation. A total of 96 million
particles were traced (32 million in each of the red, green, and blue channels).

Preliminary investigations indicate time can be reduced by more than one order of
magnitude by using our parallel workstation cluster [21].

The proportion of time spent in each of the three programs was: particle-tracing:
49%; density-estimation and initial-meshing: 29%; mesh-decimation: 22%.

5 Conclusion

We have presented a new global illumination method based on density estimation. The
method is straightforward to implement, can attack much larger problems than previous
techniques, accounts for specular transport, and is designed to use parallelism efficiently
in each of its sequential phases. In addition to these new capabilities, this method also



Fig. 5. Fence with green glass filter and polished metal reflector (ray-traced).

Fig. 6. Left: Room with 10,000 initial polygons. Right: Room with 150,000 initial polygons.

retains many of the historical advantages of radiosity methods, including view indepen-
dence of diffuse components, physical accuracy, and capability for progressive refine-
ment. Future work should include investigatingother methods for density estimation that
do a better job of reconstructing shadows and other details in the illumination function,
and better methods of decimation or mesh optimization.

Acknowledgments

Thanks to Jim Arvo for his many helpful suggestions.Special thanks to Gene Greger who created
all of the models depicted in the paper. This work was supported by the NSF/ARPA Science and
Technology Center for Computer Graphics and Scientific Visualization (ASC-8920219) and by
NSF CCR-9401961 and performed on workstations generously provided by the Hewlett-Packard
Corporation.



References

1. A. Appel. Some techniques for shading machine renderings of solids. In AFIPS 1968
Spring Joint Computing Conference, pages 37–49, 1968.

2. James Arvo. Backward ray tracing. Developments in Ray Tracing, pages 259–263, 1986.
ACM Siggraph ’86 Course Notes.

3. Shenchang Eric Chen, Holly Rushmeier, Gavin Miller, and Douglass Turner. A progressive
multi-pass method for global illumination. Computer Graphics, 25(4):165–174, July 1991.
ACM Siggraph ’91 Conference Proceedings.

4. Micheal F. Cohen, Donald P. Greenberg, David S. Immel, and Philip J. Brock. An efficient
radiosity approach for realistic image synthesis. IEEE Computer Graphics & Applications,
6(2):26–35, 1986.

5. Steven Collins. Adaptive splatting for specular to diffuse light transport. In Proceedings of
the Fifth Eurographics Workshop on Rendering, pages 119–135, June 1994.

6. Reid Gershbein, Peter Schröder, and Pat Hanrahan. Textures and radiosity: Controlling
emission and reflection with texture maps. Computer Graphics, pages 51–58, July 1994.
ACM Siggraph ’94 Conference Proceedings.

7. E. Bruce Goldstein. Sensation and Perception. Wadsworth Publishing Co., Belmont, Cali-
fornia, 1980.

8. Paul S. Heckbert. Adaptive radiosity textures for bidirectional ray tracing. Computer
Graphics, 24(3):145–154, August 1990. ACM Siggraph ’90 Conference Proceedings.

9. Henrik Wann Jensen and Niels Jorgen Christensen. Bidirectional monte carlo ray tracing
of complex objects using photon maps. Computers & Graphics, 19(2), 1995.

10. Dani Lischinski, Filippo Tampieri, and Donald P. Greenberg. Combining hierarchical ra-
diosity and discontinuity meshing. Computer Graphics, pages 199–208, August 1993.
ACM Siggraph ’93 Conference Proceedings.

11. László Neumann, Martin Feda, Manfred Kopp, and Werner Purgathofer. A new stochas-
tic radiosity method for highly complex scenes. In Proceedings of the Fifth Eurographics
Workshop on Rendering, pages 195–206, June 1994.

12. S. N. Pattanaik. Computational Methods for Global Illumination and Visualization of Com-
plex 3D Environments. PhD thesis, Birla Institute of Technology & Science, February 1993.

13. Holly E. Rushmeier. Realistic Image Synthesis for Scenes with Radiatively Participating
Media. PhD thesis, Cornell University, May 1988.

14. William J. Schroeder, Jonathan A. Zarge, and William E. Lorensen. Decimation of triangle
meshes. In Edwin E. Catmull, editor, Computer Graphics (SIGGRAPH ’92 Proceedings),
volume 26, pages 65–70, July 1992.

15. Peter Shirley. Time complexity of monte carlo radiosity. In Eurographics ’91, pages 459–
466, September 1991.

16. B. W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman and Hall,
London, 1985.

17. Brian E. Smits, James R. Arvo, and Donald P. Greenberg. A clustering algorithm for ra-
diosity in complex environments. Computer Graphics, 28(3):435–442, July 1994. ACM
Siggraph ’94 Conference Proceedings.

18. Seth Teller, Celeste Fowler, Thomas Funkhouser, and Pat Hanrahan. Partitioning and or-
dering large radiosity calculations. Computer Graphics, 28(3):443–450, July 1994. ACM
Siggraph ’94 Conference Proceedings.

19. Gregory J. Ward. The radiance lighting simulation and rendering system. Computer Graph-
ics, 28(2):459–472, July 1994. ACM Siggraph ’94 Conference Proceedings.

20. Lee Westover. Footprint evaluation for volume randering. Computer Graphics, 24(4):367–
376, August 1990. ACM Siggraph ’90 Conference Proceedings.

21. David Zareski, Bretton Wade, Philip Hubbard, and Peter Shirley. Efficient parallel global
illumination using density estimation. In Proceedings of the 1995 Parallel Rendering Sym-
posium, 1995.


