Global [llumination via Density-Estimation

Peter Shirley Bretton Wade Philip M. Hubbard David Zareski Bruce Walter
Donald P. Greenberg

Program of Computer Graphics, Cornell University, Ithaca, NY, USA.

1 Introduction

This paper presentsanew method for the production of view-independent global illumi-
nation sol utionsof complex static environments. A key innovation of thisnew approach
isitsdecomposition of the probleminto aloosaly coupled sequence of simple modules.
This approach decoupl esthe global energy transport computation from the construction
of the displayable shaded representation of the environment. Thisdecoupling eliminates
many constraintsof previousglobal illuminationapproaches, yiel ding accurate solutions
for environments with non-diffuse surfaces and high geometric complexity.

Our agorithm produces a view-independent display mesh that represents theirradi-
ances on surfaces in aform that allows direct display of the shaded surface. Most tra-
ditiona radiosity algorithms also use a computational mesh to represent intermediate
resultsin the light transport calculation (e.g., the piecewise-constant global solution of
Smits et al. [17]). Typicaly, asingle representation is used for both the computational
and display meshes (e.g. the static mesh used by Neumann et al. [11] and the adaptive
mesh used by Teller et al. [18]).

Very few display mesh solutions have been produced for environments with more
than afew thousand initia surfaces. The only implementation we are aware of that has
produced a display mesh for more than 10,000 initial surfaces isthe system by Teller et
al. [18], which was run on amodel with approximately 40,000 initial surfaces. Teller et
al. argue that the reason for these surprisingly small limitsisthe high memory overhead
of the data structures associated with the computational mesh.

To solve this problem, we draw on an observation by Lischinski et al. [10], that the
computational mesh and the display mesh have different purposes and characteristics
and therefore should be decoupl ed. Our method isbased on theideathat oncethe display
mesh and computational mesh are decoupled, the computational mesh can be replaced
with asimpler data structure based on particle tracing. This replacement allows for the
solution of larger models with more general reflectance properties.

Our method is composed of three phases which operate without a computational
mesh. Thefirst phase uses particletracing torecord alist of particle“hit points’ for each
surface. The second phase usestheseliststo generate aview-independent functional rep-
resentation of surface irradiance. This processis called density-estimation because the

representation isan approximation of the underlying density function that generated the
hit point locations. The third phase converts the functional representation into a view-
independent display mesh. A novel aspect of the third phase is its use of a geometric
mesh-decimation algorithm to reduce the size of the display mesh.

In our method all diffuse surfaces will be portrayed accurately regardless of display
method. In addition, the contribution of non-diffuse surfaces to the appearance of dif-
fuse surfaces will be accounted for correctly. Non-diffuse surfaces in this mesh will be
portrayed accurately if displayed in aview-dependent second pass.

2 Background

Previous global illumination techniques have one or more of the following significant
limitations:

— High intermediate complexity (memory overhead). Current radiosity methods
use large datastructuresto accel erate visibility computations. These data structures
areusually thelimitingfactor in performing largeradiosity simulations[18]. Inprac-
tice, an algorithmthat stores more than afew hundred bytes per polygonin physical
memory will not be practical.

— Difficulty with local complexity. In cases wherethe model hasavery high “global
complexity” (largenumbersof surfaces), but alimited“loca complexity” (only small
subsets of surfaces are mutually visible), partitioning can be used to decompose the
model into subsetswhich can be solved separately [18]. But if any subset hasa high
local complexity, then partitioning may not reduce the subproblems to a solvable
size. Thisisaproblemin an environment such as a hotel atrium.

— Quadratictimecomplexity. Any algorithmthat computesinteractions between all
pairsof NV objectswill requireat least O(N?) time. Thislimitstheir utilityindealing
with large models.

— “Ideal” specular effects. Many radiosity agorithmscan only usethe*virtual image
method” [13], which is practical for solving modelswith only alimited number of
ideal, planar, specular objects. Real models have windows, gloss paint, and metal
[uminaire-reflectors, and in general, non-diffuse surfaces.

— Lack of parallelism. Most existing radiosity methods were designed as serial al-
gorithms, and cannot be easily adapted for parallel computation. This limitstheir
ability to take full advantage of one of today’stypical computing environments. a
local area network of high-speed workstations sharing a common file system.

These limitationsneed to be overcomein asingle system if the use of view indepen-
dent global illumination sol utionsare to become widespread. K eeping the memory over-
head low favors a Monte Carlo particle-shooting approach [12], which only requires a
ray-tracing accel eration structure. Handling local complexity in sub-quadratictime sug-
gests either a clustering approach [17] or a Monte Carlo shooting approach'. A Monte

! No global illumination algorithm has been proven to be sub-quadratic, but there is empirical
evidence that both Monte Carlo shooting algorithms [15] and clustering algorithms [17] are
sub-quadratic for reasonably “well-behaved” environments.

Carlo shooting approach aso alowsfor more genera specular transport, and possesses
inherent parallelism, as each shot can be processed i ndependently. Because specul ar trans-
port through glassisimportantin many applications, we have chosen to pursuetheMonte
Carlo approach.

Although Monte Carlo radiosity schemes have been applied with great success us-
ing a priori computational meshes [11], there has been little success generating adap-
tive computational meshes. Appel [1] traced particles from the source to estimate direct
lighting. Arvo [2] extended thisideato includeillumination reflecting from mirrors be-
fore striking surfaces. Heckbert [8] extended Arvo’swork to include adaptive meshing,
and was the first to observe that this was a form of density-estimation. Chen et al. [3]
used a kernel-based density-estimation technique to ded with caustic maps, and our
density-estimationwork can be considered an extension of their caustic map techniques
to account for al illumination effects in a scene. Collins has one of the most sophisti-
cated density-estimation techniques for global illumination [5], but hismethod does not
account for multiple diffuse reflections.

Our strategy is similar to Heckbert’s and Collins', but differsin that the meshing is
delayed until all Monte Carlo particle tracing has been completed. Thisalowsusto use
all theinformation collected while estimating surface irradiancesto generateagood dis-
play mesh. The additional storage dueto stored hit-pointscan be processed sequentially
and therefore need not be simultaneoudly resident in real memory.

3 Description of Density-Estimation Algorithm

The agorithmis composed of three basic phases:

1. Particle-tracing phase: Power carrying particles are emitted from each luminaire
using an appropriate radiant intensity distribution, and are then tracked through the
environment until they are probabilistically absorbed. A list of al particle® hit points’
is generated and saved.

2. Density-estimation phase: The stored hit points are used to construct an approxi-
mate irradiance function H (u, v) for each receiving surface.

3. Meshing phase: The approximate irradiance function H (u, v) is further approxi-
mated to amore compact form H (u, v) that can be used for efficient hardware ren-
dering or ray tracing display. If thedesired outputisaset of Gouraud-shaded polyg-
onal e ementsfor interactive display and walk-through on a conventiona graphics
workstation, then [(u, v) will be piecewise linear.

The agorithm is outlined in figure 1. Note that although the environment is right-left
symmetrical, the solutionis not. This is because of the randomness introduced by the
particle tracing.

3.1 Particle-Tracing Phase

We beginthe particle-tracing phase by totaling the power emitted by all luminaires®. We
then generate approximately n “particles’, each carrying power ¢ = @ /n. We use the

QT e ."rl;;;
TR
[_' -0‘-_

particle %-l’ 5 density

tracing estimation

Fig. 1. Overview of the density estimation algorithm. The surfacesin the room are depicted “ un
folded” in the three figures on the right.

traditional particle approximation where the particles obey geometric optics, and have
an associated color.

For each luminaire ¢; with emitted power ®;, we trace an expected N; = n®,;/®
rays. Since N; isnot necessarily an integer, wetrace at least | N; | rays, and sometimes
trace an additiona ray with probability N; — | N; |. Each of these raysis sent with a
probability density function that is determined by the emission characteristics of thelu-
minaire:

L. (l‘ w) cos f
fX fn (z,w) cos Odwdx

where p isaprobability density functionfor ray generation, z isapoint ontheluminaire,
w isadirection, L. isthe emitted surface radiance, @ is the angle between w and the
surface normal at «, X isthe set of pointson the luminaire, and {2 isthe set of outgoing
directions on the hemisphere oriented with the surface normal.

At each surface the particle is probabilistically reflected, transmitted, or absorbed
based onp(z,w,w’), thesurface’ sbidirectional reflectance distributionfunction (BRDF).

3.2 Density-Estimation Phase

After compl eting the particle-tracing phase, we have associated with each surface a set of
hit pointswith incoming power ¢. It seemslogical to guess areasonableirradiance from
thelocal denseness or sparseness of these hit points. For example, where the density of
these pointsis high, we expect a high irradiance. As pointed out by Heckbert [8], this
is a classic density estimation problem, where we attempt to guess a plausible density
function given a set of non-uniform random samples’. Before getting to the details of
how we apply density estimation, wefirst establish that theradiometric quantity wewish
to estimate isthe irradiance.

A Lambertian surface has aBRDF that isa constant R/« for al incoming/outgoing
direction pairs, where R is the reflectance (ratio of outgoing to incoming power). This

2 Note that this density estimation problem has a set of samplelocations, but does not have func-
tion valuesat theselocations. Thisis different from the problem of reconstructing a signal from
asampledfunction. It iseasy to get these two problemsconfused. Ironically, the strategy of plac-
ing kernels at the hit pointsis very similar, but in density-estimation the kernels are not scaled.

impliesthat a Lambertian surface will have a constant surface radiance for all incom-
ing/outgoing direction pairs. Ultimately, we wish to approximate this surface radiance
for all Lambertian points.

For a particular parametric Lambertian surface with reflectance R(u, v) and irradi-
ance H (u, v) (incident power per unitarea at (u, v)), theradiant exitance M (u, v) (out-
going power per unit areaat (u, v)) is R(u, v) H (u, v). Because theradiance of aLam-
bertian surface is L(u, v) = M (u, v) /7, the relationship between irradiance H and ra-
diance L can be expressed by the following equation ®: L(u,v) = R(u,v)H (u,v)/n.
This equation impliesthat we can store theirradiance and reflectance at each point and
later reconstruct the radiance. This is convenient because the reflectance may change
quickly, whilethe irradiance may change slowly, alowing theirradianceto be stored in
acoarse mesh. These ideas are based upon the* patch-element” radiosity work of Cohen
eta.[4].

For agivensurface, alist of hit pointlocations (v, v;) isstored. Each of these points
has the same power, ¢. The irradiance function represented by thislist isaset of “delta’
functionswhere a finite amount of power strikesan infinitely small area. In one dimen-
sion, thisis essentialy taking a set of n samples «; and noting that a possible density
function f is:

J@) = =30 (=)

This sum of spikes would be a bad guess if we know f is smooth. Instead we could
replace the § functions with smooth “kernel” functions &, (# — x;), where k1 has unit
volume. Thisgenerates asmoother estimatefor f. An example kernel estimateis shown
inFigure 2.

Using kernel functions on the hit points is analogous to the idea of “splatting” in
volume rendering [20], and is similar to theilluminationray tracing of Collins[5]. Sil-
verman [16] notes that whatever propertiesthe derivatives of &£, have will be shared by
£, sowe can ensure a smooth estimate for f by choosing a smooth %;.

Good choicesfor &, are similar to the choices used for splatting or pixel filtering. As
in those applications the kernels should be centered at the origin, have limited support
(non-zero region), and should be roughly “lump” shaped. If the volume of the function
we are approximating, A, isnot unity (so the function is not a probability density func-
tion), we can compensate by multiplying the sum by A.

2
1.76
1.5
1.26

0.75

0.5
0.25

0 1 2 3 4 5

Fig. 2. Kernel estimate showing individual kernels.

7 Seethe recent texturing work of Gershbein et al. [6] for amore detailed analysis.

In two dimensions, the irradiance function can be estimated as:
D -
Hi(x) = EZ&(X —x;)
j=1

Where x; isthe position of the jth hit point. We can replace the deltafunctions with »;
“kernel” functions k;, and notethat &/n = ¢:

Hi(x) = ¢2kj (x;) 1)

The kernel functions have the conflicting requirements of being narrow enough to cap-
ture detail, and being wide enough to eliminate the random mottling caused by theirreg-
ular pattern of the hit points. We can use a scaling parameter » to widen or narrow the
filter. Because narrowing thefilter will decrease itsvolume, we also increase the height
of the kernel to keep its volume constant:

Hi(x) = hizzjk (X‘hxf') @

Note that for Equation 2 to represent irradiance, & must have unit volume. On alo-
cally planar surface with orthogonal length parameters (u, v), thisis straightforward to
guarantee. A more complex form would be needed to conserve energy on more complex
surfaces.

3.3 Meshing Phase

At first it seems logical to render the gpproximate 77 (u, v) directly, but the number of
sample pointsislarge enough that any method that attempts to randomly access al the
pointsin the environment will not be practical for large environments. | nstead, we need
to reduce the amount of information needed to specify an approximate irradiance func-
tion.

The most obvious strategy isto sample H (u, v) at afinite set of locations and use
some type of polynomial € ementsto interpol ate between these values. | dedlly, the sam-
ple points should be chosen so that they are dense only where theirradiance function has
many features.

Oncewe have amore compact representation of H (u, v) we can display animage of
theilluminated surfaces using either 3-D graphicshardware or ray tracing. For Gouraud
shading we should approximate 7 (u, v) with piecewise-linear e ements, but for ray trac-
ing we can use higher-order elements.

3.4 Paralld Execution

Each of thethree phases above are idedlly suited to take advantage of parallelism. In the
particle-tracing phase, particle paths can be computed independently, and once theparti-
cle hit pointsfor each surface are grouped together, the density-estimation and meshing
phases can compute the shading of each surface independently.

4 Implementation

We have implemented the algorithm in C++ asthree separate seria programsthat com-
municate using files. The first program reads the input geometry, performs the particle-
tracing phase, and writes out the hit points. The second program reads the hit pointsand
geometry, performs the density-estimation phase, and then performs theinitial pass of
the meshing phase by generating a finely-tessellated display mesh. The third program
reads this display mesh and performs the fina pass of the meshing phase by decimat-
ing the mesh so that it can be displayed more quickly without significant loss of image
quality.

We have ad soimplemented aparallel version of thea gorithmin C++ astwo separate
parallel programs[21]. Thefirstisaparalel version of the seria particle tracer, and the
secondisacombined, paralldl version of theboththe serial density-estimationand mesh-
decimation programs. The second parallel program also performs the hit point sorting.

The three serial programs mentioned above are described in the remainder of this
section. Our goa has been toimplement each component of thedensity-estimationframe-
work as simply and conservatively as possible. This strategy has allowed us to explore
the basic strengths and weaknesses of density-estimation without getting bogged down
with low-level issues. Our implementation should therefore be considered a proof-of -
concept which leaves open many avenues of investigation that will improve on our re-
sults.

4.1 TheParticle-Tracing Program

This program implementsthe particle-tracing phase exactly as described in Section 3.1.
Rays are emitted from random locations on each luminairein a directional -distribution
determined from the emitted surface radiance of the luminaire.

Each time aray hitsadiffuse surface, the surface id (4 bytes) and fixed-point repre-
sentations of the wv coordinates (2 bytes each) are written to afile. This means we can
store approximately 125 million hit pointson a one gigabytedisk. Thiscode isrun once
for each of thered, green, and blue channels.

The only memory overhead in the particle-tracing phase is the uniform-subdivision
ray-tracing efficiency structure (approximately 140 bytes per patch in our implementa:
tion, or about 7 million patches per gigabyte).

An dternative way to store hit pointswould be with surface normal information in
a 3D data structure, as is done by Ward [19] and by Jensen and Christensen [9]. This
would raise memory usage, but would elimiate some problems associated with models
that are hard to parameterize.

4.2 The Density-Estimation and I nitial-M eshing Program

Ideally we would like to make a density-estimation of theirradiance function of the ith
surface H;(x), and then output a piecewise linear approximation with asfew linear ele-
ments as are needed to accurately represent H;(x). However, because generating a con-
Cise, piecewise-linear approximationisahard problem, and because we wanted to deter-
minethe potential accuracy of density-estimati on techniques before attempting to solve

the most difficult problems suggested by the technique, we adopted a strategy of over-
meshing the solution, and then decimating this mesh.

The density-estimation program beginsby sorting al hit pointsby surfaceid in each
of thered, green, and blue channel files produced by the particle-tracing program. Each
surface is then processed in series by examining al its hit points, calculating a density
estimate of itsirradiance function H;(x), and then outputting an “over-meshed” point-
sampled approximationto H;(x).

Thecurrent implementationisrestricted to rectangul ar surfacesonly. It sampleseach
rectangleon an,, by n, lattice, and outputsthisapproximation as atriangular mesh with
2(ny — 1)(n, — 1) ements and n,, n, vertices, with irradiance values at each vertex.
We use triangles as mesh elements instead of rectangles because it simplifiesthe mesh-
decimation agorithm.

We have chosen to use Silverman’s K'; kernel function [16]:

Ka(u,v) = %max (0,(1— ||x—xj||2)2) (3)

Thewidth of thekernel function, ., ischosen to relateit to the average distance between
sample pointson the ith surface. Thisis approximated by C+/A; /n, where A; isthe
areaof surface ¢, n isthe number of sample points, and C; isapositive constant that con-
trolsthe width of the kernel. The desired spacing between adjacent grid pointsischosen
as Cyy/A; /n, where C5 istypicaly less than ;. Since each polygon can be meshed
independent of other polygons, we only need keep thisgrid in memory for one polygon
at atime, and paging has not been a problem on any of our runs. Near the boundary we
use the reflection method [16] to avoid darkening near the edge of polygons.

The trade-off between noise and blurring as controlled by ' is shown in Figure 3.
In thisfigure C has been set to 8, which is small enough to not affect the images. We
have found useful values of C; range from 10 to 40, and useful values of ' to range
fromC1/10to Cy /2. Itisimportant to notethat surfacesthat receive fewer particleswill
get wider kernels and coarser meshes. This avoids the under-sampling problems of tra-
ditiona illumination ray tracing [2] in a manner similar to Collins[5]. Unlike Collins,
we do not require any coherence between adjacent particle paths, so we can choose ap-
propriate kernel sizes for datathat includes diffuse interreflection.

Fig. 3. Different noise/blur effectsfor C; = 10, 30, 100.

4.3 Irradiance-M esh-Decimation Program

Thefina program decimates the triangulated mesh produced by the density-estimation
program. Its goal isto eliminate as many mesh elements as possible without compro-
mising mesh accuracy.

In order to take advantage of the rich literature in geometric mesh decimation, we
transform our 2-D surface mesh, which we call an illumination mesh, into a 3-D mesh.
The X and Y axes correspond to the surface’s parametric space, and the 7 axis corre-
sponds to “brightness.” This mesh is a height field because there are no “ledges’ that
overhang other parts of the mesh.

To this3-D mesh we apply geometric decimation techniques. Aslong astheresultis
still aheight field, it converts to a decimated illumination mesh by simply ignoring the
Z coordinate. To decimate the 3-D mesh, we use the algorithm of Schroeder et al.[14].
It uses two heuristics to approximate curvature at a mesh vertex. If curvature is low
enough, it removes the vertex and re-triangulatesthe resulting “hol€’ in the mesh.

This decimation a gorithm does not necessarily produce a height field, so we added
asimple enhancement. When re-triangulating a hol e, the enhanced algorithm checksfor
triangleson “overhanging ledges’; if it finds any, it does not remove the vertex.

Another disadvantage of Schroeder’sagorithmisthat it does not consider the deci-
meation to be an optimization task. It uses afixed threshold on curvature, decimating all
vertices which cause curvature changes below the threshold. We turned the agorithm
into an optimization task by using a priority queue. The queue holdsall vertices ranked
by the changein curvature their decimation would cause. The new agorithm decimates
verticesin the order they come off the queue, thus minimizing the change in curvature
with each decimation. Maintaining the queue is efficient, since each access takes only
O(logn) timefor amesh of n vertices.

Themain challengein using the Schroeder et al. agorithmis picking the exact map-
ping from the illumination mesh to a purely geometric, 3-D mesh. The geometric mesh
has one set of units (spatia, e.g., meters) but the illumination mesh has two: spatial for
the surface’s two parametric dimensions (X and '), and “brightness’ for the third ().
The mapping must balance the two sets of units, since the decimation a gorithm cannot
di stinguish between them.

We map the two sets of unitsto a common scale, and choose a single maximum-
allowableerror, ¢, inthisscale. We scal e the spatial dimensions so that the smallest im-
portant feature has width . We scale the “brightness’ dimension by using

= (R(l‘, y)H (=, y)/ﬂ) 1/3’

Wy

where R(z, y) isphotometricreflectance, H (x, y) isilluminance, w, isthewhite-point,
and the exponent is due to Stevens Law [7]. We clamp = to 1.0, and choose w, so that
z = ¢ correspondsto the largest allowable “brightness’ error. In practice, determining
the scaling parameters requires some trial and error. Fortunately, in our experience we
found useful parameter values after only two or three attempts.

Decimation workswell in practice. Figure 4 showsan examplein which decimation
removed 90% of thetrianglesproduced by the density-estimati on program. We achieved
similar decimation ratesin our other tests.

Fig. 4. Left: undecimated mesh. Right: 90% decimated mesh.

4.4 Sampleresults

Figure 5 shows a ray-traced image of a view-independent density-estimation solution.
The environment depi cted has sixteen light sources forming a compact lattice to the left
of theimage. Thisimageillustrateshow we correctly handletransport chainsthat include
glass and specular reflection from metals.

Notice how light passes through the glass and then through the fence, reflects from
thestedl, and castsagreen stresk on thefloor. Theshadowingisstoredintheillumination
mesh, so only the colors of the metal and glass need to be calculated during ray tracing.

One characteristic of the error in our solutionsisthat the red, green, and blue chan-
nels of our images have uncorrel ated oscill ations, which causes avisible col ored texture
if the kernels are too narrow. Eliminating this colored texture increases the blurring of
desired features such as shadow boundaries.

Figure 6 (Ieft) shows a hardware-rendered decimated version of a model with ap-
proximately 10,000 initial surfaces. The decimated mesh has approximately 12% of the
trianglesin the origina mesh.

Figure 6 (right) shows the solution of a model with approximately 150,000 original
polygonal surfaces. This solution is roughly four times larger than the largest previous
solution produced by radiosity methods which compute adisplay mesh a posteriori. The
undecimated display mesh contained about 4.2 milliontrianglesand thedecimated mesh
had approximately 400,000 triangles. In all, the solution took approximately 37 hoursto
compute on an HP model 755 100MHz PA-Risc 7100 workstation. A total of 96 million
particleswere traced (32 millionin each of the red, green, and blue channels).

Preliminary investigationsindicate time can be reduced by more than one order of
magnitude by using our parallel workstation cluster [21].

The proportion of time spent in each of the three programs was. particle-tracing:
49%; density-estimation and initial-meshing: 29%; mesh-deci mation: 22%.

5 Conclusion

We have presented a new global illumination method based on density estimation. The
method is straightforward to implement, can attack much larger problems than previous
techniques, accounts for specul ar transport, and isdesigned to use parallelism efficiently
in each of its sequentia phases. In addition to these new capabilities, this method also

Fig. 6. Left: Room with 10,000 initial polygons. Right: Room with 150,000 initial polygons.

retainsmany of the historical advantages of radiosity methods, including view indepen-
dence of diffuse components, physical accuracy, and capability for progressive refine-
ment. Futurework shouldincludeinvestigatingother methodsfor density estimationthat
do a better job of reconstructing shadows and other detailsin the illumination function,
and better methods of decimation or mesh optimization.

Acknowledgments

Thanksto Jim Arvo for his many helpful suggestions. Special thanksto Gene Greger who created
all of the models depicted in the paper. This work was supported by the NSF/ARPA Science and
Technology Center for Computer Graphics and Scientific Visualization (ASC-8920219) and by
NSF CCR-9401961 and performed on workstations generously provided by the Hewlett-Packard
Corporation.

References

10.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. A. Appel. Some techniques for shading machine renderings of solids. In AFIPS 1968
Spring Joint Computing Conference, pages 3749, 1968.

. James Arvo. Backward ray tracing. Developmentsin Ray Tracing, pages 259-263, 1986.
ACM Siggraph’86 Course Notes.

. Shenchang Eric Chen, Holly Rushmeier, Gavin Miller, and Douglass Turner. A progressive
multi-pass method for global illumination. Computer Graphics, 25(4):165-174, July 1991.
ACM Siggraph’91 Conference Proceedings.

. Micheal F. Cohen, Donald P. Greenberg, David S. Immel, and Philip J. Brock. An efficient
radiosity approach for realistic image synthesis. IEEE Computer Graphics& Applications,
6(2):26-35, 1986.

. Steven Collins. Adaptive splatting for specular to diffuse light transport. In Proceedingsof
the Fifth EurographicsWorkshop on Rendering, pages 119-135, June 1994.

. Reid Gershbein, Peter Schroder, and Pat Hanrahan. Textures and radiosity: Controlling
emission and reflection with texture maps. Computer Graphics, pages 51-58, July 1994.
ACM Siggraph’ 94 Conference Proceedings.

. E. Bruce Goldstein. Sensation and Perception. Wadsworth Publishing Co., Belmont, Cali-
fornia, 1980.

. Paul S. Heckbert. Adaptive radiosity textures for bidirectional ray tracing. Computer
Graphics, 24(3):145-154, August 1990. ACM Siggraph ' 90 Conference Proceedings.

. Henrik Wann Jensen and Niels Jorgen Christensen. Bidirectional monte carlo ray tracing

of complex objects using photon maps. Computers& Graphics, 19(2), 1995.

Dani Lischinski, Filippo Tampieri, and Donald P. Greenberg. Combining hierarchical ra-

diosity and discontinuity meshing. Computer Graphics, pages 199-208, August 1993.

ACM Siggraph’93 Conference Proceedings.

LaszI6 Neumann, Martin Feda, Manfred Kopp, and Werner Purgathofer. A new stochas-

tic radiosity method for highly complex scenes. In Proceedings of the Fifth Eurographics

Workshop on Rendering, pages 195-206, June 1994.

S. N. Pattanaik. Computational Methodsfor Global Illumination and Visualization of Com-

plex 3D Environments. PhD thesis, Birla Institute of Technology & Science, February 1993.

Holly E. Rushmeier. Realistic Image Synthesis for Scenes with Radiatively Participating

Media. PhD thesis, Cornell University, May 1988.

William J. Schroeder, Jonathan A. Zarge, and William E. Lorensen. Decimation of triangle

meshes. In Edwin E. Catmull, editor, Computer Graphics (S GGRAPH '92 Proceedings),

volume 26, pages 65-70, July 1992.

Peter Shirley. Time complexity of monte carlo radiosity. In Eurographics’91, pages 459—

466, September 1991.

B. W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman and Hall,

London, 1985.

Brian E. Smits, James R. Arvo, and Donald P. Greenberg. A clustering algorithm for ra-

diosity in complex environments. Computer Graphics, 28(3):435-442, July 1994. ACM

Siggraph ' 94 Conference Proceedings.

Seth Teller, Celeste Fowler, Thomas Funkhouser, and Pat Hanrahan. Partitioning and or-

dering large radiosity calculations. Computer Graphics, 28(3):443-450, July 1994. ACM

Siggraph ' 94 Conference Proceedings.

Gregory J. Ward. Theradiancelighting simulation and rendering system. Computer Graph-

ics, 28(2):459-472, July 1994. ACM Siggraph ' 94 Conference Proceedings.

L ee Westover. Footprint evaluation for volume randering. Computer Graphics, 24(4):367—

376, August 1990. ACM Siggraph '90 Conference Proceedings.

David Zareski, Bretton Wade, Philip Hubbard, and Peter Shirley. Efficient parallel global

illumination using density estimation. In Proceedingsof the 1995 Parallel Rendering Sym-

posium, 1995.

