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High Performance Scalable Image Compression
with EBCOT
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Abstract—A new image compression algorithm is proposed, Image
based on independent Embedded Block Coding with Optimized La
Truncation of the embedded bit-streams (EBCOT). The algorithm g
exhibits state-of-the-art compression performance while pro-
ducing a bit-stream with a rich set of features, including resolution
and SNR scalability together with a “random access” property. LL AL
The algorithm has modest complexity and is suitable for applica- : -2
tions involving remote browsing of large compressed images. The e
algorithm lends itself to explicit optimization with respect to MSE 1 I
as well as more realistic psychovisual metrics, capable of modeling LL HL
the spatially varying visual masking phenomenon. ! L

Index Terms—Embedded coding, image compression, JPEG b RH
2000, random access, rate-distortion optimization, scalability, %, .
visual masking. LL HL

. INTRODUCTION @
HIS paper describes a novel image compression algoritt inage
known as EBCOT. The acronym is derived from the de ’ =

scription “embedded block coding with optimized truncation’ | f
(EBCOT) which identifies some of the major contributions T L H :
of the algorithm. The EBCOT algorithm is related in various B - .
degrees to much earlier work on scalable image compressit gt : _ .
Noteworthy among its early predecessors are Shapiro’'s EZ |- "f“- _'-'- k] HL
(embedded zero-tree wavelet compression) algorithm [1< | HL (L F HL

Said and Pearlman’s SPIHT (spatial partitioning of images in L
hierarchical trees) algorithm [13] and Taubman and ZakhorL, J\., :
LZC (layered zero coding) algorithm [16]. Like each of these g

the EBCOT algorithm uses a wavelet transform to generate t | LL HL

subband samples which are to be quantized and coded, wh_._ L

the usual dyadic decomposition structure attributed to Mallat (b)

[5] is typical, but other “packet” decompositions are alsfig 1. (a) Mallat and (b) “Spacl” wavelet decomposition structure for three
supported and occasionally preferable. Fig. 1 illustrates twecomposition levels—five are used in the experiments.

decomposition structures which are considered in this paper.

In each case, the original image is represented in terms o
collection of subbanddyg, b1, -- , which may be organized
into increasing resolution level&, £1,---, L. The lowest
resolution level consists of the single LL subbasd,= {bo}.
Each successive resolution leveél;, contains the additional
subbandsb;, which are required to reconstruct the image witﬁ

twice the horizontal and vertical resolution. contains distinct subset8,, such that)}_, By together repre-

S_calable gompression refers to the generatio_n of a bit-stre Bht the samples from all subbands at some quality (SNR) level,
which contains embedded subsets, each of which representg_a& bit-stream may be both resolution and SNR scalable if it

contains distinct subsets; ,, which hold the relevant quality
Manuscript received May 4, 1999; revised October 13, 1999. This work wasfinement of only those subbands in resolution leSelA key

largely completed while the author was at Hewlett-Packard Research Labor: : - o
ries, Palo Alto, CA. The associate editor coordinating the review of this manaé&rvamage of scalable compression Is that the target bit-rate or

script and approving it for publication was Prof. Touradj Ebrahimi. reconstruction resolution need not be known at the time of com-
The author is with the School of Electrical Engineering, University of Neyyression. A related advantage of practical significance is that the

South Wales, Sydney, Australia. . . . . .
Publisher Item Identifier S 1057-7149(00)05436-1. image need not be compressed multiple times in order to achieve

éfﬂcient compression of the original image at a reduced resolu-
tion or increased distortion. The terms “resolution scalability”
and “SNR scalability” are commonly used in connection with
this idea. We say that a bit-stream is resolution scalable if it
ontains distinct subsets;, representing each successive res-
lution level,£;. We say that a bit-stream is SNR scalable if it
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a target bit-rate, as is common with the existing JPEG compre

sion standard.
In EBCOT, each subband is partitioned into relatively smal . .
blocks of samples, which we catode-blocks EBCOT gen- layer 3 erery [l et Sy L
erates a separate highly scalable éotbeddepbit-stream for
each code-blockB;. The bit-stream associated wifB; may . I .
be independently truncated to any of a collection of differerfa¥er £ B L ) . _ N KL
lengths, R}, where the increase in reconstructed image distol
tion resulting from these truncations is modeled®y. An en-
abling observation leading to the development of the EBCO!¥#r 1
algorithm is that it is possible to independently compress rele.
tive small code-blocks (say 32 32 or 64x 64 samples each) , _ _ ,
Fig. 2. Progressive appearance of embedded code-block bit-streams in quality

with an embedded bit-stream consisting of a large numberlé)?ers. Only nine blocks and three layers shown for simplicity. The shaded

truncation pointsRZ, such that most of these truncation pointgegion identifies the block contributions which are discarded by truncating the
lie on the convex hull of the corresponding rate-distortion curveit-stream between layers 1 and 2.

To achieve this efficient, fine embedding, the EBCOT block

f:oding al_gorithm builds upon th_e fractional bit-plane coding,, corresponding lengthgf? . Such a bit-stream is clearly
ideas which have recently been introduced by Ordenéicl. g0 tion scalable, because the information representing the

[;LO] a!']d by Li and !-Ei [4]..The embedded block coding algQ'rwdividual code-blocks and hence the subbands and resolution
rithm is developed in Section |II. levels is clearly delineated. Also, the bit-stream possesses a

o useful “random access” attribute: given any region of interest
A. Efficient One-Pass Rate Control and a wavelet transform with finite support kernels, as is

Given a target bit-rate, sag™>*, we can truncate each ofcommon, it is possible to identify the region within each
the independent code-block bit-streams in an optimal way §gbband and hence the code-blocks which are required to
as to minimize distortion subject to the bit-rate constraint. Weorrectly reconstruct the region of interest [9]. _
refer to this as post-compression rate-distortion (PCRD) opti-Interestingly, this simple bit-stream organization is not itself
mization, because the rate-distortion algorithm is applied afteNR scalable, despite the fact that it is composed of SNR scal-

all the subband samples have been compressed. The PCRD3fe block bit-streams. This is because only a single truncation
timization algorithm is described in Section 1. point and length are identified within the final bit-stream for

A|though image Compression schemes invo|ving rate_digaCh code-block. The EBCOT algorithm overcomes this dif-

tortion optimization abound in the literature, the advantage 8¢ulty by collecting incremental contributions from the var-
PCRD optimization is its reduced complexity. The image ned@us code-blocks into so-called quality layetd,, such that
only be compressed once, after which the PCRD algorithife code-block contributions represented by lay@rshrough
consumes negligible computational resources in passing o¢&r form a rate-distortion optimal representation of the image,
the embedded block bit-streams. Perhaps even more imp®f-€achqg. This is easily achieved with the aid of the PCRD
tant|y’ there is no need to buffer the entire image or inde@dgorithm described in Section Il. In this way, truncating the
any quantity comparable to the size of the image. The wavelét-stream to any whole number of layers yields a rate-distor-
transform and block coding operations may be implementé@n optimal representation of the image, while truncating to an
incrementa”y using a re|ative|y small amount of memor&ﬂtermEdiate bit-rate yieldsabit-stream which is approximately
which is proportional to one linear dimension of the image (s@ptimal provided the number of quality layers is relatively large.
its width), as explained in [19]. Thus, the only representation 6f9- 2 illustrates the layered bit-stream concept; it also illus-
the image which must be buffered prior to PCRD optimizatiotiates the effect of truncating the bit-stream between the first and
is the embedded block bit-streams, which are generally muggcond layers. Each quality layer must include auxiliary infor-
smaller than the origina| image_ In fact,it is also possib|e t@ation to Identlfy the size of each code-block’s contribution to
perform the PCRD optimization step incrementally so th#f€ layer. When the number of layersis large, only a subset of the
only a fraction of the compressed block bit-streams need gede-blocks will contribute to any given layer, introducing sub-
buffered. Earlier work on PCRD optimization may be foungtantial redundancy in this auxiliary information. To take advan-
in [17]. The key features which distinguish EBCOT from thigage of this, EBCOT introduces a “second tier” coding engine
previous approach are the availability of more finely embeddé&el compress the auxiliary information for each quality layer.
bit-streams and the use of much smaller blocks of subbandEBCOT'’s layered bit-stream organization and two-tiered
samples. coding strategy represent a novel departure from current con-
vention. Image compression algorithms previously described
in the literature generate bit-streams whose organization is tied
concretely to the structure of the embedded quantization and
The simplest incarnation of the concepts mentioned abovesisding algorithm which is used. EBCOT, however, constructs
a bit-stream generated by concatenating the suitably truncagddtract bit-stream layers, whose relationship to the trunca-
representations of each code-blodk;, including sufficient tion points offered by the underlying block coding engine is
auxiliary information to identify the truncation points;, and entirely arbitrary and is itself compressed. Fig. 3 illustrates

Emply amply
& B B B B & B B B

-

B. Feature-Rich Bit-Streams
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code-block whose embedded bit-streams may be truncated to r&es,
Pl RATIpne The contribution fromB; to distortion in the reconstructed
Tier 1 image is denoted?, for each truncation point;. We are thus
assuming that the relevant distortion metric is additive, i.e.,
Embedded block coding
aperales on biock samples b= EZ: D @)
Emﬂﬁshl"“h whereD represents overall image distortion anddenotes the
T truncation point selected for code-blogk. In our experimental
Tier 2 work, two different distortion metrics are considered. An addi-
Cading of biock contributions tive distortion metric which approximates Mean Squared Error
fo each quality layer (MSE) is obtained by setting
e Dr=uwi 3 (5706 - k).
compressed keB;
¢ image

Here,s;[k] denotes the two-dimensional (2-D) sequence of sub-
Fig. 3. Two-tiered coding structure of the EBCOT image compressidpand samples in code-bloék, 57 [k] denotes the quantized rep-
algorithm. resentation of these samples associated with truncationspoint

this two-tiered compression paradigm. The layered abstracti@ndws, denotes the L2-norm of the wavelet basis functions for
and associated coding techniques are discussed further in $kee-subbandj;, to which code-blockB; belongs. This approxi-
tion IV. Useful bit-stream organizations range from single-layenation is valid provided the wavelet transform’s basis functions
streams which possess only the resolution scalable and randmaorthogonal or the quantization errors in each of the samples
access attributes, through streams with a few layers targeted uncorrelated. Neither of these requirements is strictly sat-
at specific bit-rates of interest, and ultimately to streams wiilfied; however, the wavelet kernels used in our experimental
a large number of layers, which offer excellent generic SNivestigations in Section V have nearly orthogonal basis func-
scalability, in combination with the resolution scalable angons. A second distortion metric which correlates more suc-
random access attributes. EBCOT is able to achieve all of theg&sfully with perceived visual distortion is investigated in Sec-
features in a single bit-stream while exhibiting state-of-the-ajpn vI.
compression performance, as demonstrated in Section V. Byye now briefly discuss the optimal selection of the truncation
contrast, well known scalable image compression algorithiggints, 5, so as to minimize distortion subject to a constraint,
such as EZW [14] and SPIHT [13] offer only SNR scalab|lltyRmax’ on the available bit-rate, i.e.,
to which the LZC algorithm [16] adds resolution scalability.
The utility of the random access attribute is examined in RMaX > R — Z R, (2)
Section VII. It is worth pointing out that the 1W44 algorithm 2
in AT&T’s DjVu document compression system also achieves , ) .
resolution and SNR scalability in combination with the randorhD® Procedure is not novel [2], but is summarized here for com-
access attribute, using similar techniques to EBCOT; howevB{eteness. _ _ _
the abstract layering and PCRD optimization concepts arelt is €asy to see that any set of truncation poifits} }, which
missing from IW44, which also has a less efficient embeddéginimizes
representation for each code-block. The DjVu specification is
available at http://djvu.research.att.com/djvu/sci/djvuspec.

As a result of this rich set of features, modest implementa-
tion complexity, and excellent compression performance, th§ some)\ is optimal in the sense that the distortion cannot be
EBCOT algorithm was adopted for inclusion in the evolvingeduced without also increasing the overall rate and vice-versa.
JPEG2000 image compression standard at the Los Angefgs, if we can find a value of such that the truncation points
international meeting of ISO/IEC JTC1/SC29/WG1 (JPEGhich minimize (3) yieldR(\) = R™*, then this set of trunca-
working group) in November 1998. Most features of the algion, points must be an optimal solution to our R-D optimization
rithm were initially described in [18] and later in [19] as part 0fopjem, Since we have only a discrete set of truncation points,
this standardization effort, but the work has not previously begn. .| not generally be able to find a value affor which
published in the publi.c arena. Since its original accepta.nce. 2 )) is exactly equal taR™*. Nevertheless, since EBCOT's
JPEG2000, the algorithm has undergone several mOd'f'Cat'ocQ) e-blocks are relatively small and there are many truncation

to f.“”heT reduc_e implementation complexny [6]; these a(r§oints, it is sufficient in practice to find the smallest value)of
outlined in Section VIII for the benefit of readers who ar s
ch thatR(\) < R™»=,

interested in the relationship between EBCOT and JPEGZOO%HThe determination of the optimal truncation points, for

any given\, may be performed very efficiently, based on a small

amount of summary information collected during the genera-
Recall that EBCOT partitions the subbands representing then of each code-block’s embedded bit-stream. It is clear that

image into a collection of relatively small code-blockB;, we have a separate minimization problem for each code-block,

(DO +ARW) = 3 (D + AR} 3)

T

[I. RATE DISTORTION OPTIMIZATION
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B,. A simple algorithm to find the truncation point;*, which

0
i : i Sof 28> |||~
minimizes(D;" + AR;" ), is as follows: =3+ | - 28—

* initialize nf‘ =0; Fig. 4. Deadzone quantizer thresholds.
e forj =1,2,3,--- R R
SEtAR; = Rj — R andAD] = D" — Dj; explicit sub-block significance coding is that significant sam-
i ADj/AR; > Athen update:; = ;. _ ples tend to be clustered so that the opportunity frequently ex-
Since this algorithm must be executed for many differefts (o dispose of a large number of samples by coding a single
values of, we first find the subsetV;, of feasible truncation pinary symbol. This is the same assumption which underlies
points. Letj; < j» < --- be an enumeration of thesey ad-tree and zero-tree coding algorithms as in [14], [13]. In our
feasible truncation points and let the corresponding distQiase, however, we exploit the block-based clustering assump-
tion-rate “slopes” be given byj* = (AD}"/AR;* where on only down to relatively large sub-blocks of size %616,
AR} = R* — Rj*" andAD;* = Dj*~' — D}*. Evidently, rather than individual samples.
the slopes must be strictly decreasing, forSifft* > S7*
then the truncation pointj., could never be selected by thea. Quantization and Significance
above algorithm, regardless of the value Jaf contradicting

the fact thatV; is the set of feasible truncation points. When Following the notation of Section II, It [k] = si[k1, ]?2] de-
rﬁote the 2-D sequence of subband samples belonging to code-

restricted to a set of truncation points whose slopes are stri . :
) . o ck B;. For the LH (vertically high-pass) subband, as well as
decreasing, the above algorithm reduces to the trivial selectﬁ?ﬂe HH and LL subbandg, andk, denote horizontal and ver-

A ,' | QIR H
n; = max{jy € Ni|Si* > A} so that each such point must, ~ position, respectively. For the HL (horizontally high-pass)
be a valid candidate for some value Xflt follows that A; is .
; . . .subband, however, we first transpose the code-block sd:that
the largest set of truncation points for which the correspondin . : o
. . . . . andk, correspond to vertical and horizontal position, respec-
distortion-rate slopes are strictly decreasing. This unique ?Ie

. . : vely, in the original image. This transposition allows us to
may be determined using a conventional convex hull analy3|%.eat subbands with LH and HL orientation in exactly the same
In a typical implementation of the EBCOT algorithi, is

determined immediately after the bit-stream 8y has been way, thereby simplifying the ensuing description. befk]| <

generated. The rate&* and slopesSi*, for eachj, € A%, {1, —1} denote the sign of;[k] and lety; k] denote the quan-

are kept in a compact form along with the embedded bit—streatl'r%ed magnitude, i.e.,

until all code-blocks have been compressed, at which point the Is; | k]|
search for the optimal and=} proceeds in a straightforward vi[k] = {6—J
manner. It is worth emphasizing that only rate and slope values A

must be stored, not the distortion. This requires only a fractigfheres , is the step-size for subbagttands; is the subband to

of the storage for the embedded bit-stream itself. which code-blockB; belongs. Fig. 4 depicts the thresholds for
this so-called “deadzone” quantizer. Evidently the quantizer has
uniformly spaced thresholds, except in the interval containing 0,
which is twice as large.

In this section, we describe the actual block coding algo- Let 7 [k] denote thepth bit in the binary representation of
rithm, which generates a separate embedded bit-stream for ek, Wherep = 0 corresponds to the least significant bit. Also,
code-block,B;. The algorithm relies upon the use of classicd¢t p;"** denote the maximum value pf(i.e. the most signif-
context adaptive arithmetic coding to efficiently represent a cdgant bit) such thai//[k] # 0 for at least one sample in the
lection of binary symbols. The coder is essentially a bit-p|ar@de-b|00k. It turns out to be most efficient to encode the value
coder, using similar techniques to those of the LZC algorithRf p;*** in the second tier coding algorithm, as described in Sec-
[16]. The key enhancements are: 1) the use of “fractional bfton IV. The idea behind bit-plane coding is to encode first the
planes,” in which the quantization symbols for any given bimostsignificantbits,}*  [k], for all samples in the code-block,
plane are separated into multiple coding passes; 2) careful theen the next most significant bitg,’ _l[k], and so forth until
duction of the number of model contexts for arithmetic codingill bit-planes have been encoded. If the bit-stream is truncated
and 3) the code-block is further partitioned into “sub-blocksthen some or all of the samples in the block may be missing one
with the significance of each sub-block coded explicitly prioor more least significant bits, which is equivalent to having used
to sample-by-sample coding in the significant sub-blocks. Tlaecoarser dead-zone quantizer for the relevant samples, with step
use of fractional bit-planes is motivated by separate work Isjzeds, 27, wherep is the index of the last available bit-plane for
Ordentlichet al. [10] and by Li and Lei [4]; its purpose is to the relevant sample.
ensure a sufficiently fine embedding. Another variation on the In order to efficiently encode/[k|, it is important to ex-
fractional bit-plane concept was introduced into an early incgploit previously encoded information about the same sample
nation of the JPEG2000 verification model [15]. The introdu@nd neighboring samples. We do this primarily by means of
tion of sub-blocks, with explicit coding of whether or not eacl binary-valued state variable;[k], which is initialized to 0,
sub-block contains at least one significant sample in the relevét transitions to 1 when the relevant sample’s first nonzero
bit-plane, is a useful tool for reducing the model adaptation cdsit-plane,»[k] = 1, is encoded. We refer to the statg[K],
as well as implementation complexity. The assumption behiag the sample’s “significance.” The point at which a sample

I1l. BLOCK CODING
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becomes significant depends intimately upon the sequence in TABLE |
which sample values are encoded, which is the subject of Sec/SSIGNVENT OF THENINE ZgéiﬁgliﬁzBASED ONNEIGHBOURHOOD
tion I1I-D.
LL, LH and HL bands HH band

B. Sub-Block Significance Coding Front-End hi([)k} U"([)k} di([]k] La(? o di([]k] hilld] z]rvi L La(? o

Each block,B;, is partitioned into a 2-D sequence of sub- 0 | 0 1 1 0 1 1
blocks, B;[j], whose size is typically 16« 16. For each bit- 8 (1) >X1 ; ? >01 ;
plane,p;"** > p > 0, we first encode information to identify 0 2 < 4 1 1 4
those sub-blocks which contain one or more significant sam- 1 0 0 5 1 > 1 5
ples; all other sub-blocks are by-passed in the remaining coding 1 0 | >0 6 2 0 6
phases for that bit-plane, which reduces complexity as well as 1 1 >0] x 7 2 >0 7
the cost of adapting probability models to highly skewed statis- 2 X X 8 >2 X 8

tics. Leto?(B;[j]) denote the significance of sub-blodkj],

in bit-planep. That is,o”(B;[j]) = 1if and only if »;[k] > 2 gignt neighbors. In fact, almost all the relevant information ap-
for somek € B;[j]; otherW|se,o—P(Bi[J])‘: 0. There are ava- pears to be captured by the significance of these neighbors,
riety of ways to encode the values)(B;[j]), in each successive yhich we group into the following three categories:

bit-plane, of which one of the most obvious is quad-tree coding. horizontal:we writeh; (K] = ¥.cq1._1y oilki+2, ko] so that
In brief, we introduce a tree structure by identifying) hilk] < 2; ’

the sub-blocks with the leaf nodes, i8] = Bi[l.  vertical: we writev;[k] = Y.eq1,-13 oilk1, k2 + 2] so that
and defining higher levels in the tree according tg « vilk] < 2

. t—1[0s - =
BiJl = Uucponye Bi7'[21+2,0 < ¢t < T. Atthe diagonal:we writed;[k] = ., _,e1,—13 oilki+21, k2+22]

root of the tree, we hav&?[0] = U; B;[j], representing the gq that) < d;[K] < 4.

entire code-block. In any given bit-plane, the significance of Neighbors which lie outside the code-block are interpreted as in-
the quadse®(B;lj]), is identified one level at a time, startingsjgnificant, so as to ensure that the block bit-streams are truly in-
from the root at = 7" and working to the leaves &t= 0. Inour  gependent. No such assumption is imposed on neighbors which

implementation, these binary significance symbols are sent|9 outside the relevant sub-block, however, so that sub-blocks
the arithmetic coding engine as uniformly distributed symbolge py no means independent.

without any adaptive model whatsoever; however redundantty minimize both model adaptation cost and implementa-
symbols are always skipped. A symbet,(B;[j]), is redundant ion complexity, we quantize the 256 possible neighborhood
if any of the following conditions holds: 1) the parent quadgonfigurations to nine distinct coding contexts, with the labels
if any, is insignificant, i.e.o?(B;""[1j1/2], 1j2/2]]) = 0; indicated in Table I. The context assignment for the LH and
2) the quad was significant in the previous bit-plane, i.e4| bands is identical, because the HL (horizontally high-pass)
oP*1(B{[j]) = 1; or 3) this is the last quad visited amongstphand's code-blocks are transposed, as explained in Sec-
those which share the same, significant parent and the othgh 111-A. The LH (vertically high-pass) subband responds

siblings are all insignificant. most strongly to horizontal edges in the original image, so
we expect strong correlation amongst horizontally adjacent
C. Bit-Plane Coding Primitives samples; this explains the emphasis on horizontal neighbors in

The purpose of this section is to describe the four differeHt€ first three rows of the table. o
primitive coding operations which form the foundation of the 2) Run-Length Coding (RLC)The RLC primitive is used

embedded block coding strategy. The primitives are used to céaéeduce the average ”“”.‘ber O.f bmary sympol.s which must be
new information for a single sample in some bit-plamdf the processed b_y t_he arithmetic chlng engne. I.t |s_|nqued in place
sample is not yet significant, i.e; k] = 0, acombination of the of th? ZC primitive when a hpnzont_al run (.)f insignificant sam-
“zero coding” (ZC) and “run-length coding” (RLC) primitives p_les_|§ encountergd whose immediate nelghbors are also all in-
is used to code whether or not the symbol becomes signific significant. Specifically, each of the following conditions must

. . . ) . N d: 1) four consecutive samples must all be insignificant, i.e.,
in the current bit-plane; if so, the “sign coding” (SC) primitive ) fou Uiy P y nsigni !

must also be invoked to identify the sigg,[k]. If the sample is ﬂi@;éﬁrﬁ] n;zig(;)r,ul;c())rrso, IS e ,; [i ::_ i) Iz?]e:sez}rzzllei TI;CS;] Tve
already significant, the “magnitude refinement” (MR) primitive, [k + 2, ks] = 0; 3) the samples must reside within the same
is used to encode the valuedff[k]. In every case, a single bi- 5, plock; and 4) the horizontal index of the first sampig,
nary-valued symbol must be coded using a common arithmefist be even. The last two conditions are enforced only to facil-
coding engine. The probability models used by the arithmetigte efficient implementations of the symbol grouping scheme.
coder evolve within 18 different contexts: nine for the ZC prim- \when a group of four samples satisfies the above conditions,
itive; one for the RLC primitive; five for the ZC primitive; and a single symbol is encoded to identify whether any sample in
three for the MR primitive. the group is significant in the current bit-plane. A separate con-
1) Zero Coding (ZC):The objective here is to codg’[k], text is used to model the distribution of this symbol. If any of
given that;[k] < 2P+!. Empirical evidence suggests that thehe four samples becomes significant, i€k, + z, ko] # 0,
sample statistics are approximately Markov: the significance thfe zero-based index, of the first such sample is sent as a
samples;[k] depends only upon the values of its immediatevo-bit quantity with a nonadaptive, uniform probability model.
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. high—-pass
\ filter response

two-sided vertical spectrum filtered vertical spectrum aliased vertical spectrum
Fig. 5. Typical vertical spectra traced from the image domain to the vertically high-pass subbands.
This is reasonable subject to the assumption that the proba- TABLE I

bility of any sample from the group becoming significant is very ASS'GNS“Z';ENNI;(?:NTTHEE'F‘:I'; ;?ACLD:‘J[E@TSREIACS/ELDNOETGL:EO?{‘SNS OF
small; in this case, the conditional distribution of the run-length,

= € {0,1,2, 3}, given the significance of at least one sample in hilk] | mi[K] || %[k] | Label
the group, is approximately uniform. Empirically, we observe 1 1 1 4
that the introduction of the RLC primitive tends to slightly im- 1 0 1 3
prove compression efficiency; its main role, however, is to sub- [ 1 2
stantially reduce the number of symbols which must be coded 8 (1) _11 é
and hence implementation complexity. 0 1 1 1
3) Sign Coding (SC):The SC primitive is used at most once 1 1 1 9
for each sample, immediately after a previously insignificant -1 0 -1 3
sample is first found to be significant during a ZC or RLC opera- -1 | -1 || -1 4

tion. It turns out that the sign bits; [k], from adjacent samples,
exhibit substantial statistical dependencies which can be effec- . ) o
b e further reduce this to five contexts by not distinguishing the

tively exploited to improve coding efficiency. To understan . . ; . S .
this, consider the LH (vertically high-pass) subbands. We claiff>¢ " which opposite neighbors are both significant with the

that horizontally adjacent samples from LH subbands tend ygme sian. Let; k] equal_ 0 .'f. both h_onzgntal ne|ghbors are
have the same sign, whereas vertically adjacent samples ten :Pbgnlflcant or both are S|gn|f|c_:ant W'th. dn‘ferg_nt signs, lifat
have opposite signs. Equivalently, the LH subband samples h st one of the hor_lzontal ne_|ghbors_|s positive artl !f at
predominantly low-pass horizontal power spectra and high-p gast one of the horizontal nglghbo_rs IS negative. Deﬁﬂk]. .
vertical power spectra. In the horizontal direction, this is entire S|m|Iar fgshlon for th.e. vertical neighbors. Table II |Elent|f|es
reasonable, since images typically have low-pass spectra wh fi five unique probability contexts formed hy[k] andv;[k],

are preserved by the horizontal low-pass filtering and decinfa®"9 with the sign predictiorg; [1?]' which s used to exploit the
tion operations used to generate the LH subbands. second type of symmetry mentioned above. The binary valued

In the vertical direction, the aliasing introduced by théymbOLWhiCh is_coded with respec_t _to the relevant context is
high-pass filtering and decimation operations leads to the op j[k] - %i[k]. In view of the transposition of code-blocks from

site conclusion. Fig. 5 illustrates the effect of these operatio dl;ﬁsu%l%an((jjs,. ':che same s_trateg}f[ _maytbe(?pg)he_ito tthe I(‘jH
on the vertical spectrum of a typical image. Again, imag subbands, for convenience, iL1s extended without mod-

; ] X g ation to the less important LL and HH subbands as well.
typically have low-pass spectra; even sharp horizontal eddé%f) Magnitude Refinement (MR)The objective here is to

yield spectra whose amplitude decreases in inverse proportion . i
to the vertical frequency. After high-pass filtering, then, thg°de the value of;[K], given thati;[k] > 2. Experience
vertical spectrum typically exhibits more energy at the Ioweg10WS that the condltlon_al d|sjgl3111t|on of [k] is only weakly

end of the pass band. Finally, the aliasing associated with v ?_pgndent on the magmtuq@, vi[K]], represented by the
tical decimation reverses this trend, so that the actual subbfrﬁﬁv'ousIy enpoded blt-planes. and also only weak]y dependent
samples are primarily high-pass in the vertical direction, whicl! the magnitude of neigbouring samplgs. For th|s reason, we
substantiates our claim. use only three model contexts for magnitude refinement. It is

To exploit this redundancy in the sign information, we use fiygonvenient to introduce a second state .V"%f.'abl.@*]x Wh'Ch.
model contexts for coding:[k], according to the available in- transitions from 0 to 1 after the the MR primitive is first applied

formation concerning the signs of the immediate horizontal all}.b;i[k]' The magnitude refinement context depends upon

vertical neighbors. Since there are four such neighbors, eac _value ofc; k] z_;md als_o on Whether_or not any |mm_e_d|ate
which may be insignificant, positive or negative, there would a _onzqntal or ver't|cal nelghbqrs are significant. Specifically,
4_ - : , : 1/ (k] is coded with context 0 if;[k] = h;[k] = v;[k] = 0,
pear to be3* = 81 unique neighborhood configurations. How- . o )
ever, two inherent symmetry properties dramatically reduce gyyith context 1 ifoi[k] = 0 andh;[k] + vi[k] # 0, and with
number: there is no reason not to expect horizontal and vertiggptext 2 ifoi[k] = 1.
symmetry amongst the neighborhoods; and the conditional dis- . . .
tribution of x;[k] given any particular neighborhood should bdeﬂzi Fractional Bit-Planes and Scanning Order
identical to the conditional distribution efy;[k], giventhe dual ~ For each bit-plane, the coding proceeds in a number of dis-
neighborhood with the signs of all neighbors reversed. Takitigct passes, which we identify as “fractional bit-planes.” In this
these symmetries into account, it is not difficult to show thatork we consider a total of four such passgs, P, P; and

the number of unique conditional distributions is at most 13} and we identify the truncation available points with these
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A end of each coding pass of a conventional bit-plane coder. These
D * points lie on the dashed rate-distortion curve because discarding
the lastp bit-planes from the bit-stream is equivalent to multi-

\ ~_convex interpolation plying the quantization step size 12¥; neither the distortion

~ of bitplane R-D points nor the information content and hence entropy are affected by
whether we discard bit-planes or scale the step size. The solid
lines in Fig. 6(a) illustrate the rate-distortion curve which one
could expect to obtain by truncating the bit-stream produced
by a conventional bit-plane coder to an arbitrary bit-rate. Sup-

. ~ i\“&r\r\r
quantizer =

e P pose(R;,D;) and (Ry, D,) are the rate-distortion pairs cor-
modulated R-D curve - responding to two adjacent bit-planes, and p». If we trun-
rate cate to some arbitrary bit-ratd}; < R < Rs, so that a
(@) fraction, ¢, of the samples is refined to bit-plape and the re-

i mainder are available only at bit-plape, then we expect to

find R = Ry + t(RQ — Rl) andD = D + t(DQ — Dl),
because there is no reason to suppose that the initial samples
coded in each bit-plane pass exhibit different statistics to later
samples. Consequently, the solid lines in Fig. 6(a) are simply the
convex interpolation of the R-D points corresponding to whole
bit-planes. This is necessarily sub-optimal with respect to the
convex dashed rate-distortion curve.

On the other hand, if we separate the code-block samples into

\ _ convex interpolation
of bitplane R-D points

fractional \\"\f:«_;r:?\ - smaller subsets with different statistics, then it is possible to im-
bitplane R-D points*ﬁ\"’k@\** o prove upon this behavior by coding the next bit-plane one subset
> at a time, starting with the subsets which are expected to offer
rate the largest reduction in distortion for each extra bit in the code
() length. This de-interleaving of the samples into subsets with dis-
100%: tinct statistics is the goal of fractional bit-plane coding. In the
present work, there are four subsets corresponding to the four
posL coding passes and the end of the fourth coding passmarks
] the point at which all samples have been updated to bit-plane
B% Thus, the solid dots in Fig. 6(a) and (b) may be associated with
this coding pass. Since the initial coding passes generally have
e steeper rate-distortion slopes, the end points of each coding pass
! lie below the convex interpolation of the bit-plane termination
points, as indicated in the figure.
2% The rate-distortion points corresponding to the various
fractional bit-plane coding passes can even lie below the dashed

Pass1 Pass? Pass® Passd line in Fig. 6(a). Eig. 6(c) provides empirical evid_ence f(_)r this.
© Recall from Section Il that the candidate truncation points for
a given embedded bit-stream are those which lie on the convex

Fig. 6. Rate-distortion properties of (a) regular bit-plane coding and ( A ; ; ;
fractional bit-plane coding. (c) shows the percentage of code-block bit-planlpig" of the rate-distortion curve described by all available

in which each of the four EBCOT coding passes yields a point on the conviiincation points. Fig. 6(c) clearly shows that each of the four
hull of the rate-distortion curve. Data are obtained by averaging results at 1 ppding passes frequently generates a point on this convex hull;
from“the thre? most popular images in the JPEG2000 test set: “bike,” ncaferr’ioreover, the rate-distortion points corresponding to fully
and “woman,” each of which measures 256(®2048. ; .

coded bit-planes at the end of coding p@5 do not always

lie on the convex hull, so that other passes occasionally yield
coding passes, so th&l' is the number of leading bytes fromsuperior rate-distortion performance to that which is achievable
the arithmetic code word, which are required to uniquely decod¢ coding all samples with a fixed quantization step size.
the symbols in the first fractional bit-plane coding passes. The Fig. 7 provides a helpful illustration of the appearance of in-
reason for introducing multiple coding passes is to ensure th@tmation within the embedded bit-stream generated for each
each code-block has a finely embedded bit-stream. code-block. HeresS? denotes the quad-tree code which iden-

Fig. 6 is helpful in understanding the goals and benefits tfies which sub-blocks are significant in bit-plame Notice

fractional bit-plane coding. The dashed line in Fig. 6(a) identihat S? appears immediately before the final coding pa&5,
fies the rate-distortion curve described by modulating the quamst the initial coding passP?, for the bit-plane. This means
tization step size and decoding all bit-planes. It is important tbat sub-blocks which become significant for the first time in
note that this curve is almost invariably convex. The solid dokst-planep, are ignored until pasg’. We now define the roles
in Fig. 6(a) identify the rate and distortion associated with th@ayed by each coding pass.
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Fig. 7. Appearance of coding passes and quad-tree codes in each block’'s embedded bit-stream.

1) “Forward Significance Propagation Pass,P[: In this .R?TI > 0, from code-blockB;. As illustrated in Fig. 2, some
pass, we visit the sub-block samples in scan-line order, skigsde-blocks might contribute no bytes at all to some layers.
ping over all samples which are either insignificant or do n@{jong with these incremental contributions, the length of the
have a so-called “preferred neighborhood.” For the LH and Hiegment,L?, and the number of new coding pass@g =
subbands, sample[k] is said to have a preferred neighbors,? _ ;,7-1 in the segment must be explicitly identified. Finally,
hood if at least one of its horizontal neighbors is significanfs B, makes its first nonempty contribution to quality layey

i.e.,o[ky 1, ko] = 1. Recall that HL subband code-blocks argnen the most significant bit-plangi»®=, must also be identi-

transposed so that both LH and HL subbands tend to contgify as mentioned in Section IlI-A.

horizontal line segments. The LL subband is treated in the same&ye focus our description on the two quantities which exhibit
way for convenience, while the HH subbands’ samples are sajghstantial inter-block redundancy and show how this redun-
to have a preferred neighborhood if one or more of the four diancy is exploited within the second tier coding engine; full de-
agonal neighbors is significant, i.efk; + 1,k £ 1] = 1. To  tajls may be found in [19], [1]. These two quantities ape™=
each such sample, we apply the ZC and RLC primitives, as afq the indexg;, of the quality layer to whick; first makes a
propriate, to identify whether or not the sample first becomegnempty contribution. The latter quantity, is encoded using
significant in bit-planep; if so, we invoke the SC primitive t0 5 separate embedded quad-tree code within each subband as
code its sign. We call this the “forward significance propagatiogows. Let B! denote the sequence of quads at leviel the
pass” because samples which have been found to be significgd-tree, withB? = B; denoting the leaves anb? the root
typically serve as seeds for waves of new significance deterrgi-the tree, representing the entire subband.¢f.éte the index
nation steps which propagate in the direction of the scan.  gf the first layer in which any code-block in quagf makes a
2) “Reverse Significance Propagation PassPf: This nonempty contribution, i.e; = min{g;|B; C Bt}. In each
coding pass is identical t@, except that the samples areyality layer,Q,, a binary quad-tree code is used to identify
visited in the reverse order and the notion of a preferrgghether or noy; > ¢. Thatis, a single bit is used to identify
neighborhood is expanded to encompass samples for whickfkther or notyt > ¢ for each quad at each level, in the
least one of the eight inmediate neighbors has already begsk, skipping over quads for which the value of this bit may be
found to be significant. Of course, we skip over samples f@iferred by the decoder, for one of the following two reasons:
which information was coded in the previous pass. 1) ¢! < ¢ — 1, in which case the value af has already been
3) “Magnitude Refinement PassPy: During this pass we jgentified in a previous quality layer; or 3}“ > gwhereB!
skip over all samples except those which are already significagg|ongs to the parent quag*!, in which case we must have
i.e.0;[k] = 1, and for which no information has been coded in: -, ', 1 see how this code exploits inter-block redundancy,
the previous two passes. These samples are processed With-Hider an initial set of lowest quality layers which correspond
MR primitive. _tovery low bit-rates; in this case, it is reasonable to suppose that
~4) “Normalization Pass,"Py: Here we code the least sig-none of the code-blocks from the highest frequency subbands
nificant bit, 277[k], of all samples not considered in the previougaye sufficiently steep distortion-rate slopes to make any contri-
three coding passes, using the SC and RLC primitives as apffion to these layers. The quad-tree code for each such subband
priate; if a sample is found to be significant in this process, ifgnsists of a single 0 bit for each of these empty layers. More
sign is coded immediately using the SC primitive. generally, the distortion-rate slopes for individual code-blocks
depend upon local image statistics; if these statistics vary slowly
over the image then neighboring code-blocks should have sim-
IV. LAYER FORMATION AND REPRESENTATION ilar or identicalg; values.

. . . _ . ) The other quantity which exhibits substantial inter-block
In this section we consider the second tier coding engine t%fdundancy igmax One might consider using a similar em-
max,

Fig. 3, which is responsible for efficiently identifying the conyqy4eq quad-tree code to represent this quantity. However, the
tribution of each code-block to each bit-stream layer, along wiffy| ;o of p@ is irrelevant until the quality laye®,. in which
K3 4

other summary information for the code-blocks. Recall that tlgﬁe code-block first makes a contribution to the bit-stream

final bit-stream is composed of a collection of quality Ia}/ersémd the code-blocks in any given subband do not generally
Q,. Together, layer; through Q, contain the initialR;" |l make their first contribution in the same quality layer. The
bytes of each code-blocks;. Here, we writen; for the trun-  embedding principle suggests that we should avoid sending
cation point selected for thgth quality layer, with some abuseany unnecessary information concernipg™ until layer

of the notation established in Section Il wherg denotes the o EBCOT achieves this, while still exploiting inter-block

R-D optimal truncation point corresponding to athr(ishold of redundancy in coding thg* values, by means of a mod-
on the distortion-rate slope. Thus; is short-hand for; with  ified embedded quad-tree, which is driven from the leaves
A4 denoting the distortion-rate threshold selected for la@gr rather than the root of the tree. Specifically, IBf denote

q
Layer Q, contains the incremental contributioh! = R;" — the elements of the quad-tree structure built on top of the
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code-blocks B;, from any given subband, exactly as described TABLE Il
above; deflnq);na.x,t _ max{p;pax|Bj C th} Also, let Bft PSNR ResuLTS, MEASURED INdB, FOR VARIOUS IMAGES AND BIT-RATES
denote the ancestry of quads from whiéh is descended, Lenna (512 x 512)
sothat{B;} = B} C B{ C --- C B{, = Bj.LetP be Bit Rate || Spiht | 1 layer | 5 layer | Generic | Spacl
a value which is guaranteed to be larger thgii* for any 0.0625 | 2838 | 28.30 | 2830 | 2810 | 28.27
code-block,B;, in the relevant subband. When code-bldgk 0.125 31107 31.221 31.20 | 31.05 | 31.22
first contributes to the bit-stream in quality lay€y,, we code 8'?5 g‘;;i g‘;'ig g‘;'i’ g‘;';g g‘;'jg
the value ofp* = p**° using the following algorithm. 1.0 4041 | 40061 | 4057 | 4048 | 40.49
e Forp=P-1,P—-2,---.0 Barbara (512 x 512)
Send binary digits to identify whether or ngt™* < ?igﬁlgste gglgg 121§YZ; 521§y:; Ge;;lgz gga;;
pnfii t = T, 1,0, skipping all redundant bits. If 0.125 24.86 | 2555 | 2552 | 2537 | 25.95
pi*** = p then stop. 025 27.58 | 2855 | 2851 | 28.40 | 29.03
The redundant bits mentioned above are those corresponding g5 3139 | 3248 | 3243 | 3229 | 33.06
to conditionSp;?aX’t < p which can be inferred either from 1.0 36.41 | 37.37 | 37.32| 37.11| 37.87
previously coded conditions in the same partial quad-tree scan, Bike (2560 x 2048)
i.e. if p™ 1t < or from the partial quad-tree code which Bit Rate || Spiht | 1 layer | 5 layer | Generic | Spacl
was uszgal to identify™2* for a different code-blockB,; 0.0625 23.44 23.89 23.88 23.78 | 24.05
: J o . s . 0.125 25.80 | 26.49 | 2647 | 26.37 | 26.71
_ In trlllngyay, we delgy ;endlng information for any condi- 0.95 29.12 | 2076 | 29.73 29.60 | 2991
tion, p;**" < p, which is not relevant to the code-blocks 0.5 33.01 | 3368 | 3364 3346 | 3365
which are contributing for the first time to the quality layer at 1.0 37.70 | 3829 | 38.25 38.09 | 38.02
hand. As one might expect, efficient implementation strategies Cafe (2560 x 2048)

exist for this leaf-driven embedded quad-tree coding algorithm, ~ Bit Rate || Spiht | 1 layer | 5 layer | Generic | Spacl
At first glance, our policy of exploiting inter-block redundancy 0.0625 18.95 1 19.101 19.10 19.06 1 19.13

X . X ) 0.125 20.67 | 20.88 | 20.87 | 20.82 | 20.99
through a second tier coding engine would appear to interfere  '5x 2303 | 2329 | 23.96 2390 | 23.47
with the random access property mentioned in Section |, since g5 26.49 | 27.00 | 26.97 26.87 | 27.10
code-blocks are no longer strictly independent. However, the 1.0 31.74 | 3227 | 32.24 32.03 | 32.06
second tier coding engine operates only on summary informa- Woman (2560 x 2048)

tion for whole code-blocks, rather than individual samples, so ~ Bit Rate || Spiht | 1 layer | 5 layer | Generic | Spacl
that the second tier decoding process is best viewed as a some- 0.0625 25431 25.67 ) 25.67 25.63 1 25.70

. . 0.125 27.33 | 2746 | 27.45| 27.39 | 27.53

what elaborated parser for recovering pointers to code-block o5 2995 | 3015 | 3013 | 30.04 | 30.23
segments in the bit-stream. 0.5 33.59 | 33.81| 33.78 | 33.70 | 33.86
1.0 38.28 | 38.67 | 3863 | 38.49 | 38.54

V. NUMERICAL RESULTS

Table Il provides numerical results to illustrate the perforthe target bit-rates in the table; this may be sufficient for some
mance of the proposed EBCOT algorithm under a variety 8pplications. The fourth column corresponds to the extreme case
conditions. Results are presented for the well-known USC it Which 50 separate layers are included in the bit-stream span-
ages, “Lenna” and “Barbara,” as well as the three most poping bit-rates ranging from approximately 0.05 bpp to 2.0 bpp;
ular test images from the JPEG2000 test suite, “bike,” “cafeln this case, the layer bit-rates are spaced approximately loga-
and “woman,” which are substantially more complex and legghmically through this range by selecting an appropriate set of
blurred than the USC images. The first column of PSNR rélistortion-rate slope parametekg, but no rate-control iteration
sults corresponds to the well known SPIHT [13] algorithm wit Performed to adjust the, values for specific target bit-rates.
arithmetic coding. The remaining columns are obtained with the As might be expected, performance decreases as more layers
EBCOT algorithm, running within the framework of JPEG200@re added to the bit-stream, because the overhead associated
Verification Model VM3A [20]. In all cases, we use the populawith identifying the contributions of each code-block to each
Daubechies 9/7 bi-orthogonal wavelet filters with a five levdayer grows. Nevertheless, performance continues to be com-
transform. For EBCOT we use code-blocks of size@4 with  petitive with respect to state-of-the-art compression algorithms,
sub-blocks of size 1& 16. significantly outperforming the common reference, SPIHT. All

Recall that the EBCOT bit-stream is composed of a collecesults for the EBCOT algorithm are obtained using a single
tion of quality layers and that SNR scalability is obtained bguantization step size, regardless of the image or bit-rate, with
discarding unwanted layers. The second column in the table cate control implemented exclusively through truncation of the
responds to a bit-stream with only one layer, so that the overathbedded block bit-streams. For the smaller images, at very low
bit-stream is not SNR scalable. Results in this case are obtaiégrates the EBCOT results are slightly penalized by the 59 byte
by generating a separate compressed bit-stream for each oftthader included by the JPEG2000 VM3A software [20]. Some
relevant bit-rates. Each of the remaining columns are obtainefthe results appear to be counter-intuitive. Specifically, at 0.25
by truncating a single bit-stream to the relevant bit-rates. Thep, the performance for “Lenna” with five layers appears to be
third column corresponds to a limited form of SNR scalabilitynarginally higher than that with only one layer, even though the
in which there are only five quality layers, optimized for each afverhead associated with signaling five layers is undoubtedly
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higher. Similar behavior is observed with the “Barbara” image. The proposed visual masking strength operatdk], has the
The explanation for this lies with the observation in Section form
thatitis not generally possible to find a distortion-rate threshold,

)\, which satisfies the rate constraint exactly. As a result, the por- > sk
tion of the bit-stream which is actually decoded in SNR progres- VK] = k’c®; [K] )
sive tests sometimes includes part of the next quality layer after ’ ||®; k]|

that which was optimized for the target bit-rate, as in Fig. 2. .
Whereas the first four columns of PSNR results in Table Iff/€r€®:[k| denotes a neighborhood of samples abgii] and

are obtained using a five-level Mallat decomposition of the forms Kl[| denotes the size of this neighborhood. The nonlinear
shown in Fig. 1(a), the fifth column corresponds to a five-lev@Peration is to be'understood within the context of'normahzed
decomposition of the form shown in Fig. 1(b), using five tar'"a9¢ samples with a range of 0 to landa norma_llzgd wavelet
geted bit-stream layers as for the second column. This has bH@ﬁ'Sfo_rm whose low-pass a_nd high-pass analy&_s filters have
coined the “Spacl” decomposition within the JPEG2000 conffNit gain at DC and the Nyquist frequency, respectively, >0 that
munity. Evidently, this decomposition structure typically lead$ < Vilk] < 1. For our experiments, the exponerit set tos,

to lower MSE distortion (higher PSNR) at all but the highe"d the neighborhoods; [k], are obtained by partitioning the
bit-rates. We point out that tree-based coders such as SPIEPfie-PIock into 8< 8 cells, using the same masking strength

cannot readily be adapted to non-Mallat decomposition Sm}@'U? for all samples In any given Ce_"' This _reduces the com-
plexity of computing the visual distortion metric to a small frac-

tion of that for the entire encoder. Our formulation is closely re-
lated to the models used in [22] and [3] in whigh= 0.7 and
_ _ _ _ p = 0.6, respectively; in our experimenis— % appears to give
The numerical results in Table IIl are obtained with MSE aguperior visual performance. We use a single small visibility
the distortion metric for the PCRD optimization algorithm ofjoor, +,, of 10~2 for all subbands, so that the distortion metric
Section Il. It is well known that MSE is a poor model for thes rendered independent of any assumptions on the viewing dis-
visual significance of distortion. Various authors (e.g., [7], [Bance, which is highly desirable for uncontrolled viewing con-
have considered the relatively straightforward extension to frgitions.
quency weighted MSE, in which the overall image distortion is Not surprisingly, this visual masking metric has a greater
taken to be a weighted sum of the MSE contributions from eagffect on image quality when the code-blocks are small; we find
subband, with the Weights derived from studies of the contragk pest performance over a wide range of images when using
sensitivity function (CSF). These approaches have two notaBlg x 32 code-blocks. Fig. 8 provides a comparison of SPIHT
drawbacks: the weights depend strongly upon the angle sgp3] with arithmetic coding against EBCOT, operating in the
tended by each reconstructed pixel at an assumed viewing @igntext of JPEG2000 VM3A with this visual distortion metric.
tance; and the model fails to account for the substantial impaghen optimizing for MSE alone, the visual quality of EBCOT
of visual masking effects. In fact, the CSF accounts primarily f@ompressed images is very similar to that of SPIHT. Although
the modulation transfer function (MTF) of the physical propelbmy small segments from the 2560 2048 image “woman”
ties of the optics and aperture of the cones in the human eye; #3@ be reproduced here, we note that quality is uniformly
MTF of the relevant display device is often also incorporatedimproved over the entire image. The EBCOT images exhibit
More generally, we may consider spatially varying distortiogubstantially less ringing around edges and superior rendition
metrics which attempt to exploit the masking phenomenogt texture; some details preserved in the EBCOT images are
Watson’s work [22] on visual optimization of JPEG comcompletely lost by the SPIHT algorithm. In fact, for this image
pressed images is noteworthy in this regard, as is the workygé find that the image quality obtained using EBCOT at 0.2
Hontsch and Karam [3]. In these and other previous workpp is comparable to that obtained using SPIHT at 0.4 bpp.
visual masking effects must be taken into account by expliciti§imilar results are observed with other large images having
modifying the quantization parameters; scalable compressioémparable content, although the method is less effective with
not considered; and rate-control must be performed iterativelome image types. Although we make no assumptions here
The EBCOT algorithm provides an excellent context withigoncerning viewing distance, other studies [8] have shown that
which masking phenomena can be exploited without substaRe visual masking metric outlined here can be successfully
tially increasing computational complexity or sacrificing othegombined with an appropriate global compensation for known

properties such as random access or scalability. In our studieSF characteristics, yielding complementary improvements in
the following distortion metric has been found to yield signifiguality.

cantly superior visual image quality than the MSE metric
§7[K] — 54[k])2 VIl. UTILITY OF THE RANDOM ACCESSATTRIBUTE

I 2 ( [
D = wi, Z of + (Vilj, k])? “) Since EBCOT partitions each subband into relatively small
K ' code-blocks and codes each of them independently, it would
Herew,, s;[k] and §7[k] are all as in Section IIV;[k] is the appear to be suited to applications requiring some degree of
“visual masking strength” at sampiglk] ando, is a “visibility ~ “random access” into the image. At one extreme we may con-
floor” term which establishes the visual significance of distosider applications which intend to decompress the entire image,
tion in the absence of masking. but in a different order to that in which it was compressed,

VI. VISUAL DISTORTION METRICS AND PERFORMANCE
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Fig. 8. Comparison between SPIHT (left) and EBCOT using the visual masking metric (right). Shows B00 regions from the 2568 2048 test image
“woman,” at 0.15 bpp.

e.g., from bottom to top or left to right. Since the code-blocka server, which may or may not ultimately constitute the entire
can be decoded in any order and the wavelet transform mayage. The efficient realization of such applications depends
be incrementally implemented in any direction, it is clear thaipon careful caching of code-blocks which will often belong
EBCOT is well suited to such applications. At the opposite exe multiple regions.

treme we consider applications which require only a small, ar- For the purposes of this investigation, we assume that a square
bitrarily located region in the original image. In general, thgnage region withR x R pixels must be decompressed from
number of subband samples represented by the code-blocksaffEBCOT bit-stream representing an original image with very
quired to synthesize the requested image region will be largauch larger dimensions so that we can ignore boundary condi-
than the region itself. In this section we attempt to quantify thifons. Fig. 9 contains a log-log plot & vs. R, whereR x R x
inherent inefficiency. Remote browsing applications lie betweésthe number of bits required to reconstruct the requested region
these two extremes: a client interactively requests regions framd: is the compressed bit-rate of the original image. Thus, the



TAUBMAN: HIGH PERFORMANCE SCALABLE IMAGE COMPRESSION WITH EBCOT 1169

|092ﬁ include here a brief summary of these changes. Most of the
12 changes are described in [6].
" F64 (-0.0dB)
10 F32(-0.2dB) A. Changes to Enhance Compression Efficiency
10 H64 (-0.3dB) In this paper, the 18 probability models used by the condi-
9 H32(Z0.8gB) tional arithmetic coder are initialized to the usual equi-probable
o state. By contrast, in JPEG2000 some of the contexts are started
g in an assumed highly skewed state to reduce the model adapta-
8 tion cost in typical images.
7 B. Changes to Reduce Complexity

6 7 8 9 10 11 log,R

A low complexity arithmetic coder, known as the MQ coder
Fig. 9. Random access efficiency for various regions of size &4 through [21], has replaced the more classical arithmetic coder used in
to 2048 x 2048. this paper. The MQ coder avoids multiplications and divisions
in a similar manner to the more widely known QM coder. The
JPEG2000 entropy coder does not transpose the HL subband’s
ode-blocks, as described in Section IlI-A; instead, the corre-
ponding entries in the ZC context assignment map are trans-
pzsed. The JPEG2000 standard uses only three coding passes
r bit-plane instead of four; the forward and reverse signifi-

fice propagation passes have been merged into a single for-

code—lblokcks alre c;ohmﬁ)uted alsl\l/ln I[Ig], dassumlng_I_DaubTehchles drd significance propagation pass, whose preferred neighbor-
wavelet erne_s;wt t PTUS(;J% akfat (_ecomposmon.h € 'aNg50d is identical to that of the reverse pass. This ensures that
rr_nssmn_cost IS determined Dy taking into a_ccount the averaﬁﬁcoding passes have a consistent scan direction, at a small ex-
bit-rate in each of the subbands, as determined from the Staﬂéhse in compression efficiency.

tics of the three Iarge images in Table Iil. ) Each sub-block is scanned column-by-column, rather than
The four curves in Fig. 9 correspond to four different blockow—by-row and sub-blocks have been reduced to size 4

Size ((::ionﬂgu:jatl%Ts:lzhe C_L:]rve?_ IaZeI(_ad F?é@lgzd Fd3§2corrqfom the optimal size of 16& 16 considered in this paper. With

spond to code-blocks with a fixed size 0 an X these very small sub-blocks and highly skewed initialization of

?2 inhevs:fry sublgand(;jThe %urves Iabzeled “H64 an? "H32" ;t he probability models, we found that explicit coding of sub-
ize the “frames” mode in the JPEG2000 VM3A software [20}, .\ significance, as in Section I1I-B, is no longer justified. The

to obtain code-blocks whose size depends upon the resolu er behaves as though all sub-blocks are significant from the

!evEI. Ihr) tﬂe "H64" lcqse, cot()j;-b:jockshc_)lf sl;zle ﬁk464f are u;z?d outset so that the corresponding bit-stream entfiésin Fig. 7
in the highest resolution subbands, while blocks of size are all empty. With this modification, the coder is now more

ar_ehuss; d i:r; Zthe Qexéllovler_ reiolgl'[_ing’l’evel anlg S(;]fofl’ﬂ;]. Wwe St@ﬁsily understood as operating on stripes of four rows each. Nev-
with 32 x 32 code-blocks In the case. Each of the CUVeg aless, it appears that the most efficient software implemen-
in Fig. 9 is also labeled with the average loss in compressiglions sych as that in JPEG2000 VMS, are those which exploit

performance relative to that r'eported. in Tz;ble . It WO[_"Id a oroperties of the MQ coder to realize the sub-block paradigm at
pear that the two most attractive configurations for applicatio S implementation level

requiring this type of random access are those corresponqu-he cumulative effect of these modifications is an increase

to a2 and_ “H64'.” .BOth exhibit_onl_y_ relative_ly _small Iossesof about 40% in software execution speed for the entropy
in compression efficiency for a significant gain in random a@

cost of recovering the requestédx R region is equivalent to
the cost of recovering aR x R image, separately compresse
to the same bit-rate. In our cage= 1 bpp. The curves in Fig. 9
are averages, assuming a uniform distribution for the location
the requested region. The relevant subband samples and h

- ) : ding part of the system, with an average loss of about 0.15
cess efficiency. While “H64” offers superior random access € gp 4 g

e i . . “ , relative to the results reported in Section V. Since the
ficiency, we note thatit degenerates into the less desirable “H fiware implementation of the entropy decoder in VM5.1
case if the image is browsed at half the original resolution. '

. o . 1] has been heavily optimized (short of actually resorting to
Evidently, random access granularity is relatively coarse: sembly code), the timing results reported in Table IV help

the *H64" case, a regi_on of size 256 256 requires the SaME+4 establish the complexity of the EBCOT coder. With small
number of bits as an image of size 480400 compressed to %néiges (e.g., 51% 512), the JPEG2000 VMS.1 entropy coder

the same bit-rate. Nevertheless, the capability is attractive Yol"comparable execution speed to the official public domain
interactive browsing of very large images, where the reques lementation of SPIHT [13] without arithmetic coding:

regions might represent a significant portion of the client's digqis ~oder suffers about 0.5 dB loss relative to that reported
play. in Table IIl for SPIHT with arithmetic coding. For the larger
images of Table IV, SPIHT suffers from inherently nonlocal

VIIl. RELATIONSHIP TOJPEG2000 memory accesses, and runs 6 to 30 times more slowly than

Since EBCOT was first adopted as the basis for the JPEGZOJ(POEGZOOO VM5.1, depending the bit-rate.
image compression standard, some modifications have been in- . :
troduced to the entropy coding part of the algorithm describ Options in JPEG2000
in Section Ill. Since many readers are likely to have an interestJPEG2000 has an optional mode to enable parallel implemen-
in JPEG2000 and PART-I of the standard is now stable [1], wation of the coding passes within any code-block. Although the
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TABLE IV [3] I. Hontsch and L. Karam, “APIC: Adaptive perceptual image coding
CPU DeCODING TIMES OBTAINED USING JPEG2000 VM5.WITH A 400 based on subband decomposition with locally adaptive perceptual
MHz PENTIUM Il PROCESSOR CPU TIMES EXPRESSED INSECONDS PER weighting,” in Proc. IEEE Int. Conf. Image Processingol. 1, 1997,
MILLION IMAGE PIXELS pp. 37-40.
[4] J.LiandS. Lei, “Rate-distortion optimized embedding,Proc. Picture
Bit Rate || “Bike” | “Cafe” | “Woman” Coding Symp.Berlin, Germany, Sept. 10-12, 1997, pp. 201-206.
0.0625 0.022 0.019 0.018 [5] S. Mallat, “A theory for multiresolution signal decomposition: The
0.125 0.043 0.040 0.039 wavelet representation/EEE Trans. Pattern Anal. Machine Intell.

vol. 11, pp. 674-693, July 1989.

0.25 0.086 0.084 0.074 : :

6] Reduced C lexity Entl Cod O/IEC JTC1/SC29/WG1
0.5 0.165 | 0.150 0.157 Lo e e Taog 1y Entropy. CodingS
1.0 0.307 | 0.301 0.294 [7] A.Mazzarriand R. Leonardi, “Perceptual embedded image coding using

wavelet transforms,” ifProc. IEEE Int. Conf. Image Processingl. 1,
1995, pp. 586-589.

. . L . . 8] Quality Improvement Using Contrast Sensitivity Filterin®O/IEC
independent coding principle in EBCOT ensures that multlple[ ] ?TCl,éCZS,Wm N1306, J?me 1999, y ¢

code-blocks may be processed in parallel, microscopic paral{9] D. Nister and C. Christopoulos, “Lossless region of interest with a natu-

: T ; ; rally progressive still image coding algorithm,” Rroc. IEEE Int. Conf.
lelism at the_le_vel of |nd|V|dqu coding passes can be explmtgd Image Processingdct. 1998, pp. 856-860.
for more efficient hardware implementations. To enable thig10] E. Ordentlich, M. Weinberger, and G. Seroussi, “A low-complexity
behavior, the arithmetic codeword generation process can be modeling approach for embeddded coding of wavelet coefficients,” in
. . Proc. IEEE Data Compression ConfSnowbird, UT, Mar. 1998, pp.
reset at the commencement of each coding pass and the various 405417,

coding contexts reset to their skewed initial states. The context1] E. Ordentlich, D. Taubman, M. Weinberger, G. Seroussi, and M. Mar-

At ; ; o cellin, “Memory efficient scalable line-based image coding,'Piroc.
guantization process for the various coding primitives may also IEEE Data Compression ConBnowbird, UT, Mar. 1999, pp. 218-227.

be constrained to beertically stripe causalmeaning that sam- [12] Line-Based Coding—On Merging VMA and VMBSO/IEC
ples from future stripes may be considered insignificant Wheﬁn} JTC1/SC29/WG1 N1201, Mar. 1999.

.. . . . A. Said and W. Pearlman, “A new, fast and efficient image codec based
determining the coding contexts. These options typically resu on set partitioning in hierarchical treedFEE Trans. Circuits Syst.

in an additional loss of about 0.15 dB with 6464 code-blocks Video Technol.vol. 6, pp. 243-250, June 1996.

; _ i [14] J. M. Shapiro, “An embedded hierarchical image coder using zerotrees
and about 0.35 dB with 32 32 code-blocks at modest bit-rates. of wavelet coefficients,” ifEEE Data Compression ConfSnowbird,

Most of the ideas behind these parallel processing options are  uT, 1993, pp. 214-223.

explained in [11], [12]. [15] F. Sheng, A. Bilgin, P. Sementilli, and M. Marcellin, “Lossy and loss-
A lled| di ti h | b introd d less image compression using reversible integer wavelet transforms,” in
So-calledlazy codingoption has also been Introduced, Proc. IEEE Int. Conf. Image Processin@ct. 1998.

in which the arithmetic coding procedure is completely by-[16] D. Taubman and A. Zakhor, “Multi-rate 3-D subband coding of video,”

SN ; ; IEEE Trans. Image Processingol. 3, pp. 572-588, Sept. 1994.
passed for most of the significance propagation and magnitu ?7] D. Taubman, “Directionality and scalability in image and video com-

refinement coding passes. This mode substantially reduces  pression,” Ph.D. dissertation, Univ. Calif., Berkeley, 1994.
complexity at high bit-rates, with the loss of less than 0.1 dB in18] Embedded, Independent Block-Based Coding of Subband, Data
. ‘ ISO/IEC JTC1/SC29/WG1 N871R, July 1998.
compression performance. [19] EBCOT: Embedded Block Coding with Optimized TruncatiS®/IEC
JTC1/SC29/WG1 N1020R, Oct. 1998.

IX. C [20] JPEG2000 \Verification Model VM3AISO/IEC JTC1/SC29/WG1
- ONCLUSIONS N1143, Feb. 1999.

. . . [21] Proposal of the Arithmetic Coder for JPEG2Q00SO/IEC
The EBCOT image compression algorithm offers JTCL/SC29/WG1 N762, Mar. 1998.

state-of-the-art compression performance together with ap2] A. B. watson, “DCT quantization matrices visually optimized for indi-
unprecedented set of bit-stream features, including resolution  vidualimages,Proc. SPIE vol. 1913, pp. 202-216, 1993.
scalability, SNR scalability and a “random access” capability.
All features can coexist-exist within a single bit-stream without
substantial sacrifices in compression efficiency.

The ability to produce independent, finely embedde
bit-streams, for relatively small blocks of subband sampls
enables the effective use of post-compression rate-distort
optimization. In turn, this enables the successful exploitatic
of visual masking, which has been hampered by causal
constraints in more conventional compression framework
The EBCOT algorithm also introduces the concept of abstre University of New South Wales, Sydney, in 1998

; ; ; as a Senior Lecturer in the School of Electrical
quality layers which are not directly related to the StrUCtur%Ingineering. Since 1998, he has been heavily involved in the working group

p_roperties Of_ the underlying entropy C(_)der- This endows th€o/Ec JTC1/SC29/WG1, developing the JPEG2000 image compression
bit-stream with tremendous flexibility, since the encoder mayandard; he is the author of the Verification Model (VM3A) software and
decide to construct any number of |ayers from any combinati@gcompanying documentation upon which the standard is based. His research

. interests include highly scalable image and video compression technology,
of code-block contributions whatsoever. inverse problems in imaging, perceptual modeling and optimization, and
network distribution of compressed multimedia content.
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