
TECHNISCHE UNIVERSITEIT EINDHOVEN

Department of Mathematics and Computing Science

MASTER’S THESIS

3D graphics rendering
for multiview displays

ing. J.H. Compen

Supervisors: dr.ir. A.J.F. Kok, dr.ir. B.G.B. Barenbrug

Eindhoven, March 2005

Technical note TN-2004/00920

Issued: 4/2005

3D graphics rendering for multiview
displays
Using programmable shaders on graphics cards

Johan Compen

Philips Research Eindhoven

Company Confidential till 04/2006

c© Koninklijke Philips Electronics N.V. 2005

TN-2004/00920 Company Confidential till 04/2006

Concerns: Master’s thesis

Period of Work: March 2004 - March 2005

Notebooks:

Authors’ addressJ.H. Compen johanc@gmail.com

c© KONINKLIJKE PHILIPS ELECTRONICS N.V. 2005
All rights reserved. Reproduction or dissemination in whole or in part is prohibited
without the prior written consent of the copyright holder.

ii c© Koninklijke Philips Electronics N.V. 2005

Company Confidential till 04/2006 TN-2004/00920

Title: 3D graphics rendering for multiview displays

Author(s): Johan Compen

Reviewer(s): dr. ir. Arjan Kok (a.j.f.kok@tue.nl)
dr. ir. Bart Barenbrug (bart.barenbrug@philips.com)

Technical Note: TN-2004/00920

Additional
Numbers:

Subcategory:

Project:

Customer: Philips Research

Keywords: RGBD rendering, GPU, pixel shaders, 3D, multiview displays, OpenGL

Abstract: Philips Research is developing multiview 3D displays. By presenting differ-
ent views to a viewer’s left and right eye, a 3D impression can be given. One
approach to create these views is to use a 2D image plus its depth-map. This
technique is known as RGBD rendering. The goal of this master project is to
investigate how realtime RGBD rendering can be implemented on a graphics
card itself (for graphical applications on a PC platform such as games). To
accomplish this, the programmable pixel shaders available on modern graph-
ics cards will be used.

Conclusions: High quality realtime RGBD rendering on graphics hardware itself is not fea-
sible. This is caused by the limited programming model of the graphics hard-
ware. It forces us to use a inefficient (inverse) version of the RGBD rendering
algorithm. Either a huge performance increase of the graphics hardware, or
a more general programming model is needed.

There are however two other approaches that enable games to be played
in realtime on the multiview display:

• Low quality RGBD rendering on graphics hardware. This can be done
in realtime on the graphics hardware. However the quality is low (re-
sulting in artifacts, etc.).

• High quality RGBD rendering on a separate RGBD rendering hard-
ware board. In this scenario the graphics card is still used to convert
the information in the z-buffer into a depth-map and to send the 2D im-
age and its depth-map to the hardware board in a special format. This
enables high quality realtime gaming but a separate hardware board is
needed.

c© Koninklijke Philips Electronics N.V. 2005 iii

TN-2004/00920 Company Confidential till 04/2006

iv c© Koninklijke Philips Electronics N.V. 2005

Company Confidential till 04/2006 TN-2004/00920

Contents

1 Introduction 1

2 Background information 3
2.1 Stereoscopic vision . 3
2.2 Depth perception . 3
2.3 3D displays . 4

2.3.1 Screen disparity . 4
2.3.2 Perceived depth .5
2.3.3 Image separation .5

2.4 Philips 3D displays . 6
2.4.1 Multiple views . 7
2.4.2 Sub-pixel display layout . 8
2.4.3 Image preparation for 3D display .9
2.4.4 3D images .10

2.5 3D computer graphics .11
2.5.1 Computer graphics for the 3D display12
2.5.2 Double buffering .12
2.5.3 Programmable shaders .12
2.5.4 Shader programming languages .14

3 Rendering multiple times 15
3.1 OpenGL wrapper .15
3.2 Rendering in tiled format .15
3.3 Interleaving with pixel shader .17
3.4 Advantages and disadvantages .17

4 Assignment 19

5 RGBD rendering 20
5.1 Theory .20

5.1.1 Related work .20
5.1.2 Depth-dependent pixel shifting .20
5.1.3 Occlusions and deocclusions .21

5.2 Implementation .23
5.2.1 Forward RGBD rendering .23

5.3 Advantages and disadvantages .23

c© Koninklijke Philips Electronics N.V. 2005 v

TN-2004/00920 Company Confidential till 04/2006

6 From z-buffer to perceived depth 25
6.1 Z-buffering . 25
6.2 Normalized disparity to perceived depth .25
6.3 Normalized depth to normalized disparity .26
6.4 Z-buffer to normalized depth .27

6.4.1 Z-buffer . 27
6.4.2 Forward calculation .27
6.4.3 Reverse calculation .30
6.4.4 Issues .30

7 RGBD rendering on GPU 33
7.1 Render central view .33
7.2 Framebuffer to textures .35
7.3 Z to D . 35

7.3.1 Intermediate depth texture .35
7.3.2 Pixel shader .37
7.3.3 Detecting the projection matrix .38
7.3.4 Z-buffer errors .39

7.4 RGBD rendering .41
7.4.1 Forward versus inverse RGBD rendering41
7.4.2 Implementation .42
7.4.3 Determine the view numbers .43
7.4.4 RGBD rendering variants .44
7.4.5 Output-depth RGBD rendering .45
7.4.6 Input-depth find-nearest RGBD rendering46
7.4.7 Input-depth RGBD rendering .47

7.5 YUVD output . 48

8 Performance measurements and analysis 52
8.1 Systems .52
8.2 Overall performance .53

8.2.1 Measurements .53
8.2.2 Analysis .53

8.3 Detailed performance .54
8.3.1 Framerate formula .55
8.3.2 Measurements .56
8.3.3 Analysis .59

9 Conclusions & future work 60
9.1 Conclusions .60
9.2 Future work .61
References .63

A Pixel shaders source code 65
A.1 Z to D . 65
A.2 RGBD output-depth .65
A.3 RGBD input-depth find-nearest .66
A.4 RGBD input-depth .67

vi c© Koninklijke Philips Electronics N.V. 2005

Company Confidential till 04/2006 TN-2004/00920

A.5 YUVD output . 69
A.6 YUVD output (morph 3x1) . 70
A.7 YUVD output (morph 5) . 70
A.8 YUVD output (morph 3x3) . 71
A.9 Interleaving .72

B Configuration files 73
B.1 wrapper_rgbd.ini .73

c© Koninklijke Philips Electronics N.V. 2005 vii

Company Confidential till 04/2006 TN-2004/00920

Chapter 1

Introduction

Philips Research is developing multiview 3D displays. These displays require no special glasses
and can be viewed by several people at the same time. What a viewer sees on such a display
depends on the viewing angle. Because both eyes of a viewer have a different viewing angle
they both see a different image on the display. This can be used to create a 3D experience by
showing different views of a scene.

Approaches to create these views are to take photographs of a real scene, or to render a 3D
scene in a computer a number of times. Yet another approach to create these views is to use a
2D image in combination with its depth-map. From the image and the depth-map, new views
can be reconstructed. This technique is known as RGBD rendering. A depth-map contains the
per pixel depth information that is missing in a 2D image itself.

The Philips 3D displays can be used for a wide range of applications. One such application
is showing 3D content in a PC-like environment, for example for playing 3D games. The goal
of this master project is to investigate how realtime RGBD rendering can be implemented on the
graphics card (for graphical applications on a PC platform such as games). To accomplish this,
the programmable pixel shaders available on modern graphics cards will be used.

This thesis is organized as follows: chapter 2 will start with some background information on
3D viewing, 3D displays and 3D computer graphics. In chapter 3, the existing software (render-
ing multiple times) will be discussed, including its disadvantages. This leads to my assignment
(RGBD rendering on GPU) in chapter 4. The theory behind RGBD rendering is discussed in
chapter 5. RGBD rendering uses the information in the z-buffer of a graphics card to create per-
ceived depth on the 3D display. The theory behind this is presented in chapter 6. The changes
and additions required to implement RGBD rendering on the GPU are discussed in chapter 7.
The performance of our software is measured and analyzed in chapter 8. The final chapter con-
tains the conclusions and some ideas for future work. Appendix A contains the source code of
the pixel shaders used and appendix B contains a sample configuration file.

The most important conclusion of this thesis is that high quality realtime RGBD rendering on
the graphics hardware itself is not feasible. This is caused by the limited programming model
of the graphics hardware. It forces us to use an inefficient inverse version of the RGBD render-
ing algorithm. Either a huge performance increase of the graphics hardware, or a more general
programming model is needed. There are however two other approaches that enable games to
be played in realtime on the multiview display:

1. Low quality RGBD rendering on graphics hardware. This can be done in realtime on the

c© Koninklijke Philips Electronics N.V. 2005 1

TN-2004/00920 Company Confidential till 04/2006

graphics hardware itself. However, the quality is low (resulting in artifacts, etc.).

2. High quality RGBD rendering on a separate RGBD rendering hardware board. In this
scenario the graphics card is still used to convert the information in the z-buffer into a
depth-map and to send the 2D image and its depth-map to the hardware board in a spe-
cial format. This enables high quality realtime gaming but a separate hardware board is
needed.

2 c© Koninklijke Philips Electronics N.V. 2005

Company Confidential till 04/2006 TN-2004/00920

Chapter 2

Background information

2.1 Stereoscopic vision

Humans and many animals have two eyes which look (roughly) in the same direction. Each
of our eyes sees the world from a different point of view, and therefore the images received
with both eyes are slightly different. In the brain these two images are combined into a single
three-dimensional image (mental model) (see figure 2.1).

Figure 2.1: Stereoscopic vision [1].

This type of vision system is called binocular (or stereoscopic) vision. In nature it is common
amongst many of the hunting animals, but also amongst primates which need to navigate through
complex three-dimensional environments. It is one of the methods used by humans to perceive
depth and to estimate distances.

Another type of vision system is monocular vision, it is common amongst many of the
hunted animals in nature. Most of them have eyes on both sides of their head to get a wider field
of view. This reduces the chance that a predator can sneak up on them. The image received with
each eye is processed separately in the brain.

2.2 Depth perception

Stereoscopic vision is the major mechanism of depth perception, but it is not the only one. Some
other mechanisms are [3]:

c© Koninklijke Philips Electronics N.V. 2005 3

TN-2004/00920 Company Confidential till 04/2006

Motion parallax: When you move your head from side to side, objects that are close to you
move relatively faster than objects that are further away.

Interposition: An object that is occluding another is in front of that object.

Light and shade: Shadows give information about the three-dimensional form of an object. If
the position of the light source is known the shadow can also provide information about
the position of the object itself.

Relative size: Objects of the same size at different distances are perceived with different sizes
by the eye. This size-distance relation gives information about the distance of objects of
known size. In a flat image this effect can be recreated by using a perspective projection.

Distance fog: Objects far away appear hazier.

All these mechanisms are used together by our brain for depth perception.

2.3 3D displays

When looking at a traditional display both eyes view the same image. Although this flat image
can contain almost all depth cues, it is missing the most important one: the stereoscopic effect.
This effect can be recreated by providing both eyes with a different image. A display that does
this is called astereoscopic display.

2.3.1 Screen disparity

The difference between the two images on the screen is interpreted by the brain as depth (see
figure 2.2 and 2.3).

Screen plane

perceived
point

screen disparity

perceived
depth

Figure 2.2: Depth perception behind the screen [4].

screen plane

perceived
point

screen disparity

perceived
depth

Figure 2.3: Depth perception in front of the screen [4].

The distance between the left and the right corresponding image points is called screen
disparity, and may be measured in millimeters or pixels. It can be classified into three categories:

4 c© Koninklijke Philips Electronics N.V. 2005

Company Confidential till 04/2006 TN-2004/00920

• Positive disparity - objects appear behind the screen (figure 2.2).

• Zero disparity - objects appear on the plane of the screen.

• Negative disparity - objects appear in front of the screen (figure 2.3).

Limiting screen disparity

The disparity used on a stereoscopic display should be restricted to horizontal disparity only.
Vertical disparity causes eyestrain [15].

Using large (positive or negative) disparity values on a 3D display causes viewing discom-
fort. This has to do, amongst other things, with the accomodation/convergence relationship [5].
The brain cannot merge the two images if they are too different from each other. This will not
be discussed further here. We only use the result that states that disparity should be limited to a
certain range which is comfortable to view. The maximum disparity depends on the type of 3D
display.

2.3.2 Perceived depth

The perceived depthP is a function of the viewing distancez, the eye separatione and the
screen disparityd (see figure 2.4).

screen plane

perceived
point

screen disparity, d

perceived
depth, P

viewing distance, v

eye
separation
e

Figure 2.4: The perceived depth is given by the following function: [4]

P =
v

e
d − 1

d 6= 0 (2.1)

The eye separation is 64 millimeters on average for adults [5]. Let’s assume that the viewing
distance is 1 meter. This results in the plot shown in figure 2.5. For values ofd approaching
zero the ratioed will become∞, causingP to become zero. For values ofd approachinge the
perceived depth will go to infinity (which causes viewing discomfort).

2.3.3 Image separation

On a stereoscopic display the two images needed for both eyes are displayed ‘simultaneously’
in some way. All that is needed next is to make sure that each image ends up in the correct eye.
Often this is done by having the viewer wear some sort of glasses that perform the separation of
both images. This can be uncomfortable and it is one of the reasons for the limited success of
stereoscopic displays for consumers [3, 5].

c© Koninklijke Philips Electronics N.V. 2005 5

TN-2004/00920 Company Confidential till 04/2006

Figure 2.5: Perceived depth behind the screen as function of the screen disparity (for a viewing
distance of 1 meter and an eye separation of 64 millimeter).

2.4 Philips 3D displays

Philips Research has developed severalautostereoscopicdisplays [9]. These displays require no
special glasses and can be viewed simultaneously by several viewers. A 3D display is basically
a normal flat panel Liquid Crystal Display (LCD) with a sheet of cylindrical lenses (lenticulars,
see figure 2.6) placed in front of the screen.

Figure 2.6: The sheet with lenticulars (the ellipse is zoomed in) [9].

Each pixel in a LCD consists of three sub-pixels: red, green and blue. In a normal display
without lenses, all sub-pixels emit light in all directions. In a display with lenses the light of
each sub-pixel is is directed into one direction so it can only be seen from a limited angle in
front of the display.

Because of the lenses in front of the display, each eye sees a different set of sub-pixels
on the display. This can be used to show each eye a different image. This in turn enables
stereoscopic viewing by providing each eye with an image of the same scene from a slightly
different viewpoint.

6 c© Koninklijke Philips Electronics N.V. 2005

Company Confidential till 04/2006 TN-2004/00920

2.4.1 Multiple views

The image that is visible from a certain viewing angle in front of the display is called aview.
The minimum number of views that a stereoscopic display has to show is two (one for each eye).
The displays created at Philips typically show more than two views.

The (example) 3D display used in the rest of this report is an 20 inch LCD with a native
resolution of 1600 x 1200 (UXGA). It is a nine view screen, which means it can show nine
different images from different viewing angles. The perceived depth range is about 10 centimeter
in front of the screen and 15 centimeter behind the screen. Using larger screen disparities to
create more perceived depth results in ghosting, but this also depends on the content (brightness,
sharpness, etc.), so these numbers are an indication only. Please note that all technical properties
mentioned here (numbers, etc.) are specific to this type of screen. There are other screens with
different resolutions, number of views, etc.

Having a 3D display with more than two views has several advantages and of course also
some disadvantages, as we will see.

Advantages

First the user has much more viewing freedom. When viewing a display with only two views
(without glasses) the user has to be almost precisely at the correct position in front of the screen,
otherwise the stereoscopic effect will be lost. Head tracking can be used to solve this problem,
but that only works for a single person and is therefore not considered a suitable technology
for the consumer market [3]. Having multiple views makes the 3D effect visible from a wider
viewing angle and thus also enables multiple persons to simultaneously view the screen.

The second advantage of having multiple views is that the user can experience motion par-
allax, e.g. ‘look around’ objects, by moving his head horizontally.

Disadvantages

A great disadvantage of having multiple views is the decreased resolution per view. The native
resolution of the screen is divided up among the views, so a high resolution 2D display is needed
to create a low resolution multiview display.

Another disadvantage of the first generation of 3D displays is that they can only be used
for displaying 3D content. Normal 2D content only looks acceptable at a low resolution. This
problem has been solved by the development of switchable lenses so the display can still be used
as a regular 2D display. By making the lenses switchable per region it would even be possible
to display both 2D and 3D content at the same time.

Viewing zones

Figure 2.7 shows how the 9 views are displayed by the screen. Each view is only visible from
a specific angle (typically 4 degrees) in front of the screen. The 9 views create a ‘fan’ of 36 de-
grees. The ‘primary’ fan is visible from -18 till +18 degrees (0 degrees being perpendicular
to the screen). On the left and the right of that the same ‘fan’ of 9 views is repeated. From a
position in front of the screen only 1/9th of the sub-pixels are visible (for each eye). Because of
the lenses these sub-pixels get magnified and whole screen is filled all the time.

c© Koninklijke Philips Electronics N.V. 2005 7

TN-2004/00920 Company Confidential till 04/2006

Figure 2.7: Multiple views (a 7 view display is shown instead of a 9 view) [9].

Crosstalk and ghosting

Adjacent views are not completely separated: there is quite some overlap between two adjacent
views which is calledcrosstalk. Crosstalk causes each eye to see not exactly one view, but also
somewhat of the adjacent two views. It is caused by the optics of the lenticulars to let the views
go smoothly from one to another. A great disadvantage of the large crosstalk isghosting, which
occurs if two adjacent views differ too much from each other. It makes it harder for the brain to
merge the two images received by the eyes into one.

2.4.2 Sub-pixel display layout

Figure 2.8 shows exactly how the lenses are placed on the screen. A small area of the screen
is magnified and the individual sub-pixels are visible. Three lenses are visible in front of the
screen. The lenses are not aligned exactly vertically but are slanted at a small angle. This has
two major reasons: it causes a better distribution between horizonal and vertical resolution of
each view and it reduces Moiré patterns [7].

Depending on the relative horizontal location of a sub-pixel behind a lens the light of that
sub-pixel is directed into a particular angle. This angle is different for neighboring sub-pixels.

The number in each sub-pixel (as shown in figure 2.8) is the view number. A sub-pixel is
only visible from its associated view. If we look at the screen from a particular angle (with one
eye) we see all the sub-pixels with for example the view number 5. These sub-pixels form a
coarse grid in the total image as shown in figure 2.9.

To show an image in view 5 on the display all the sub-pixels with this number should be
loaded with the image information (the colors). This process is described in the next section.

The 1600·1200·3 sub-pixels on the screen are distributed between the 9 views. Each view
consists of1600·1200·3

9 sub-pixels. This corresponds to an effective resolution of 533x400. Both
the horizonal and the vertical resolution are divided by three. The perceived resolution of the
display is somewhat higher due to the crosstalk between adjacent views and because the viewer
sees two views at the same time (with two eyes).

8 c© Koninklijke Philips Electronics N.V. 2005

Company Confidential till 04/2006 TN-2004/00920

1 3 5 7 9 2 4 6 8

9 2 4 6 8 1 3 5 7

8 1 3 5 7 9 2 4 6

7 9 2 4 6 8 1 3 5

6 8 1 3 5 7 9 2 4

5 7 9 2 4 6 8 1 3

4 6 8 1 3 5 7 9 2

1 3 5 7 9 2 4 6 8

9 2 4 6 8 1 3 5 7

8 1 3 5 7 9 2 4 6

7 9 2 4 6 8 1 3 5

6 8 1 3 5 7 9 2 4

5 7 9 2 4 6 8 1 3

4 6 8 1 3 5 7 9 2

54

Figure 2.8: Each sub-pixel has a view number [9].

Figure 2.9: The visible sub-pixels for view 5 (highlighted) form a grid.

2.4.3 Image preparation for 3D display

The process of taking nine input images (one for each view) and combining them in such a way
that they can be shown on the 3D display is calledinterleaving[7].

The input for the interleaving process are the nine input images, the output is one output im-
age. Since the effective resolution per view is 533x400, the input images should approximately
have this resolution, or even better: a slightly higher resolution. This makes the output image
sharper. The resolution of the output image is always 1600x1200.

c© Koninklijke Philips Electronics N.V. 2005 9

TN-2004/00920 Company Confidential till 04/2006

A very simple interleaving algorithm is the following: walk over the output image and for
each sub-pixel sample the corresponding input image. The process is visualized in figure 2.11
and the pseudocode is shown in figure 2.10. TheSample function in the pseudocode is called
when a color value from an input image is needed. A simple implementation is shown that just
roundsh andv to the nearest integer. This does produces reasonable quality output. A better
version would use resampling and filtering to achieve higher quality output.

Interleave(byte Input[9][wIn][hIn][3], byte Output[wOut][hOut][3])
{

//Input images resolution: wIn x hIn (e.g. 533 x 400)
//Output image resolution: wOut x hOut (e.g. 1600 x 1200)

float ScaleX = wOut / wIn;
float ScaleY = hOut / hIn;
for(y=0; y<hOut; y++) //for each scanline

for(x=0; x<wOut; x++) //for each pixel
for(s=0; s<3; s++) //for each sub-pixel
{

ViewNr = //calculate the viewnumber of this sub-pixel
Output[x][y][s] =

Sample(ViewNr, x/ScaleX, y/ScaleY, s);
}

}

Sample(int ViewNr, float h, float v, int s) {
return Input[ViewNr][round(h)][round(v)][s];

}

Figure 2.10: Pseudocode for interleaving nine input images into one output image.

When the process is complete the output image contains the nine input images in an inter-
leaved format. When this image is shown on a normal 2D display all the views would be visible
at the same time. It looks like a strange hazy image as shown in figure 2.12. When the image is
displayed on the 3D display each eye gets to see one view only.

2.4.4 3D images

To show a 3D image on the screen first nine images have to be made from a scene from different
camera positions. Then these nine individual images have to be combined (interleaved) into one
image that is sent to the display.

The image that is displayed in each view should be an image of the scene made from a
certain camera position. The views are numbered from 1 through 9. View 1 should contain the
rightmost camera position and view 9 the leftmost. The camera positions should be displaced
horizontally to simulate the displacement between the human eyes.

When a user looks at the screen his left eye could, for example, see view 3 and his right eye
could see view 4. This pair of views is a correctstereo-pair. A problem occurs if the user is on
the border between two ‘fans’. For example when his left eye sees view 9 and his right eye sees
view 1. This creates an incorrect 3D effect which can be uncomfortable to view. Users can learn
to move away from such a viewing position.

10 c© Koninklijke Philips Electronics N.V. 2005

Company Confidential till 04/2006 TN-2004/00920

Output image

y

x(0,0)

(x, y)

1200

1600

5 7 2

View 7

y/3

x/3(0,0)

(x/3, y/3)

400

533

From view 2
(only blue)

From view 5
(only red)

(Only green)

One pixel

Figure 2.11: The color information for one pixel in the output image comes from three input
images (three views).

Figure 2.12: Example of an interleaved output image. (A fish is shown in front of a background).

2.5 3D computer graphics

In 3D computer graphics a three-dimensional model of a scene is stored in a computer for the
purposes of performing calculations and rendering images. In this three-dimensional model a
camera can be positioned and a virtual photo can be made. This creates a 2D image of the 3D
scene. To create an animation or movie several images (called frames) are made and displayed
in succession.

A number of software libraries are available to help developers create a computer graphics
application. Such a library basically consists of functions that perform graphics tasks. Typical

c© Koninklijke Philips Electronics N.V. 2005 11

TN-2004/00920 Company Confidential till 04/2006

functions include specifying scene components (points, lines, polygons), applying transforma-
tions and selecting views from a scene. The definition of all the functions in the library is called
the Application Programming Interface (API).

OpenGL1 and Direct3D2 are two popular computer graphics APIs. Most graphics cards
provide hardware acceleration for these APIs, which enables realtime rendering of complex 3D
scenes. The implementation of the graphics libraries is partly done in software and (possibly,
not required) partly in hardware. The whole system is called therendering pipeline. It consist of
different stages that perform operations on data. It begins with the primitives generated by the
application and ends with the pixels drawn on the screen.

2.5.1 Computer graphics for the 3D display

‘Normal’ 3D applications (or games) create only a single view for each frame in a sequence.
To use such an application on the 3D display not one but nine views need to be created and
combined into a single image that is suited for the 3D display. A solution would be to implement
the support for the 3D display in each application itself. This would require changing each
individual application, which is of course not desirable or even feasible.

An alternative approach is to implement the support in the graphics API. This would enable
all existing programs to use the functionality of the 3D display. This approach has been chosen.
Currently only OpenGL applications are supported by the means of a so called OpenGL wrapper.

Before we can explain this approach some knowledge is required of two other subjects:
double buffering and procedural shaders. These are explained in the next two sections. In the
next chapter the OpenGL wrapper is discussed.

2.5.2 Double buffering

The memory on a graphics card that contains the pixels that are currently displayed on the screen
is called the framebuffer. The framebuffer is actually a collection of buffers: the (front and back)
color buffer, the z-buffer, the stencil buffer, etc.

Most interactive graphics applications use a technique called double buffering. This is a
method of using two (color) framebuffers: a visible front color buffer and an invisible back
color buffer. While the front buffer is being displayed the next frame is being rendered in the
back buffer. When the new frame is finished the buffers are swapped. Using double buffering
ensures that the viewer sees a perfect image all the time. Graphics APIs, including OpenGL,
have support for double buffering. When an application has rendered a complete frame it has to
call the function that swaps the buffers. We will call this functionSwapBuffers in the rest of
this report.

2.5.3 Programmable shaders

Historically graphics hardware used to have a fixed-function rendering pipeline. This has changed
recently with the appearance of programmable Graphics Processing Units3 (GPU). These allow
certain stages of the rendering pipeline to be programmed. A program that runs on the GPU is

1http://www.opengl.org/about/overview.html
2http://www.microsoft.com/windows/directx/default.aspx
3Very limited support for shaders appeared in ‘DirectX 8 class hardware’. ‘DirectX 9 class hardware’ and beyond

has more powerful support for shaders. Two examples are the Nvidia Geforce FX and the ATI Radeon 9500. They
both support the OpenGL extension ARB_fragment_program.

12 c© Koninklijke Philips Electronics N.V. 2005

Company Confidential till 04/2006 TN-2004/00920

called a shader. All sorts of nice effects can be rendered with shaders and recent games4 make
extensive use of them.

A graphics application must enable a shader program when it wants to use it (and disable
it afterwards). While a shader program is active it replaces a part of the functionality of the
fixed-function pipeline.

There are two kinds of shaders: vertex and pixel shaders. Their name corresponds to their
place in the rendering pipeline (and thus type of data they operate on). Pixel shaders are some-
times called fragment shaders as well. We will only use the name pixel shader in the rest of this
document. Figure 2.13 shows a model of the rendering pipeline and the place of both types of
shaders. The arrows represent data flows.

Figure 2.13: Vertex and pixel shaders in the rendering pipeline [8].

The programmable (vertex and pixel) processors inside a GPU work on a stream of data.
Each processor reads one element of the input data stream, executes the shader program that
operates on this data, and writes one element to the output data stream. A shader program
is executed once for each element in the data stream. There is no knowledge of preceding or
following elements. This ensures that shaders can easily be executed in parallel on the hardware.
Vertex shaders can customize the geometry transformation pipeline. Pixel shaders work later in
the pipeline, and can control how the final pixel color is determined.

Vertex shader

The vertices sent by the application are processed by the vertex shader. Each vertex has a
coordinate (x,y,z,w) and some attributes. Examples of vertex attributes are color, normal vector
and texture coordinates. A vertex shader can only modify the position and attributes of a vertex,
it cannot create or delete vertices.

Rasterizer

The output of the vertex shader goes to primitive assembly and then to the rasterizer. These parts
of the pipeline are not programmable. Primitive assembly builds triangles out of vertices. The

4examples: FarCry, Doom 3.

c© Koninklijke Philips Electronics N.V. 2005 13

TN-2004/00920 Company Confidential till 04/2006

rasterizer splits these triangles into pixels. While doing this it also (linearly) interpolates the
per-vertex-attributes.

Pixel shader

The output of the rasterizer (pixels with associated interpolated attributes) forms the input for
the pixel shader. The pixel shader can use these inputs to determine the color of the pixel. The
output of the pixel shader (color) is then passed to framebuffer-test unit to (possibly) update a
real pixel in the framebuffer.

2.5.4 Shader programming languages

A shader program can be written in an assembly language specifically for a particular type of
GPU and graphics API or in a general high-level language. These high-level languages in-
clude Nvidia’s C for graphics (Cg), Microsoft’s High-Level Shading Language (HLSL) and the
OpenGL Shading Language (GLSL). Using a high-level language has the usual advantages of
portability, increased programmer productivity, easier code reuse, etc. In our software Cg is used
and therefore it is discussed in more detail below.

Cg

Cg is developed by Nvidia, but it is not specific for their GPUs. It is a hardware focused general-
purpose language. Cg code looks almost exactly like C code, with the same syntax for declara-
tions, function calls, and most data types. A Cg program is portable across hardware generations,
operating systems, and graphics API’s [11].

Because the capabilities of GPUs grow rapidly there are major differences between different
generations of graphics hardware. Cg exposes these hardware differences vialanguage profiles.
A profile specifies the subset of the full Cg language that is supported on a specific processor.
There are different profiles for vertex and pixel processors, for DirectX 8 and 9 class hardware,
etc.

Cg has support for scalar data types (such as float) and for vector and matrix types (such as
float3, float4x4). Textures are represented with the specialsamplertype.

Limitations

Shader programs have some limitations that are caused by the hardware on which they run.
Their length (number of instructions) is limited. Pointers are not supported. There are more
limitations, but these depend on the shader profile used.

Input types

A Cg shader program can have two kinds of inputs:varyinganduniform. The first kind of input
varies with each execution of the shader. Examples are position, normal vector and texture coor-
dinates. The second kind of input stays the same for many executions of the shader. This value
is set by the application and stays the same until the application sets another value. Examples
are reflectivity and light color.

14 c© Koninklijke Philips Electronics N.V. 2005

Company Confidential till 04/2006 TN-2004/00920

Chapter 3

Rendering multiple times

To use a graphics application on the 3D display nine views of each frame are needed (instead of
one). This is currently (at the start of this project) done by using an OpenGL wrapper to render
each frame nine times and then using a pixel shader to do the interleaving.

The current system is described in this chapter. Some of its disadvantages lead to my assign-
ment, which is described in the next chapter.

3.1 OpenGL wrapper

OpenGL is a library of functions that can be used by an application to perform graphics tasks.
On the Windows platform the code of all these functions resides inside a Dynamic Link Library
(DLL). A possible way to extend the functionality of OpenGL is to create a wrapper DLL. An
OpenGL DLL wrapper has been developed at Philips Research [6].

This wrapper process works as follows: the original opengl32.dll is renamed to wopengl32.dll.
A new opengl32.dll (the ‘wrapper’ DLL) is made which exports the same OpenGL interface.
Applications that normally use the original opengl32.dll now automatically use the wrapper
DLL, because it has the same filename.

The basic behavior of the wrapper DLL is to forward function calls to the original DLL. But
it is also possible to do all kinds of tasks before or after the call to the original function. This
enables us to extend the functionality of OpenGL without the application being aware of it. In
figure 3.1 on the left an application calls OpenGL functions in the normal opengl32.dll. On the
right an application calls OpenGL functions in or ‘through’ the wrapper.

On other platforms (e.g. Linux) or other graphics API’s (e.g. Direct3D) a similar wrapper
library approach is possible.

3.2 Rendering in tiled format

The wrapper offers functionality that enables normal OpenGL applications to use the 3D display.
This works as follows:

The wrapper intercepts all OpenGL functions that draw to the screen. Then instead of call-
ing the original drawing function once, it is called nine times. Before each call the camera is
repositioned in the scene. Also a viewport is set before each call.

A viewport causes OpenGL to render only to a specific part of the screen, instead of the
whole screen. The viewports are set as shown in figure 3.2. The numbers indicate the view
numbers. Number 1 is the leftmost and number 9 the rightmost view.

c© Koninklijke Philips Electronics N.V. 2005 15

TN-2004/00920 Company Confidential till 04/2006

OpenGL application

wOpenGL32.dll
(original dll)

Render
scene

‘Render
scene 9
times’

OpenGL32.dll

Render
scene

OpenGL application

driver

graphics card

OpenGL32.dll
(wrapper dll)

driver

graphics card

Figure 3.1: The OpenGL DLL wrapper is a layer between the application and OpenGL itself.
(The ‘render scene’ arrow represents all the OpenGL function calls needed to render a complete
frame of a scene.)

1
leftmost

8 9
rightmost

7

65
center

3

4

2

Figure 3.2: 9 views in a tiled format.

When the application has finished rendering one frame it calls theSwapBuffers function.
At that moment the back buffer contains the nine rendered views in a tiled format. Each view
has a low (1/9th) resolution. These tiles are only an intermediate step and are not displayed
(because of the double buffering). TheSwapBuffers function in the wrapper DLL is extended
with functionality to combine the nine tiled views into one interleaved image suitable for the
3D display. It uses a pixel shader for this task. When the interleaving is finished the original
SwapBuffers function is called so the interleaved image is displayed on the screen.

16 c© Koninklijke Philips Electronics N.V. 2005

Company Confidential till 04/2006 TN-2004/00920

3.3 Interleaving with pixel shader

After the nine views have been rendered in a tiled format it is the task of the pixel shader to
interleave them.

A pixel shader gets executed once for each pixel (x,y) in the output image and its task is to
calculate the color. A pixel consists of three sub-pixels and the color of each sub-pixel should
come from a different view (see figure 2.11).

Beforehand a table is constructed that contains for each (x,y) position in the output image
the required three positions in the tiled input image. This table has a size of 22 MB1. The table
table is stored as six textures on the graphics card. All the six textures have to be completely
read once of each frame. This requires a memory bandwidth of 22MB per frame.

The shader does six texture fetches and this results in six values. These six values represent
three (x,y) positions. Then the image of the nine tiled views is sampled at these three positions
and the three resulting colors are combined to form the output color of the pixel. The Cg code
for the pixel shader is in appendix A.9.

Interleaving has to be done on the graphics card itself: transferring the rendered image to the
main memory and performing the interleaving on the CPU is too slow because of the asymmet-
ric bandwidth2 of the Accelerated Graphics Port (AGP). Receiving data from it is much slower
than sending data to it. (This problem will be reduced when graphics cards with a PCI Express
interface become common3.) The bandwidth problem is not the only reason for using the graph-
ics hardware, it also allows the use of the hardware texture filters for the resampling. Doing the
resampling on the CPU would be more expensive. Perhaps the biggest advantage of using the
graphics hardware is its parallelism: the CPU cannot compete with that.

The following steps are performed to get the pixel shader running:

1. Save the current OpenGL state.

2. Copy the content of the back buffer to a texture. This is necessary because the pixel shader
needs read access to the image in the back buffer, which is normally not possible.

3. Set up an orthographic projection.

4. Enable (bind) the pixel shader.

5. Draw a rectangle that completely fills the screen. Because of the orthographic projection
the pixel shader gets executed once for each pixel in the rectangle, which is once for each
pixel on the screen.

6. Disable (unbind) the pixel shader and restore the OpenGL state.

3.4 Advantages and disadvantages

A great advantage of rendering multiple times is the quality of the output. There are no artifacts
resulting from deoclusions or transparencies, this will become clear in section 5.3.

1Calculation:1600 · 1200 · 3 sub-pixels·2 values/sub-pixel·2 bytes/value= 22 MB.
2APG 8X has a bandwidth of 2.1 GB/s downstream and 266 MB/s upstream, half-duplex.
3PCI Express x16 has a bandwidth of 4 GB/s in both directions, full-duplex.

c© Koninklijke Philips Electronics N.V. 2005 17

TN-2004/00920 Company Confidential till 04/2006

Perhaps the biggest disadvantage of rendering multiple times is that the depth effect is not
easily adjustable. The amount of perceived depth can be controlled by varying the distance
between the nine virtual camera’s. But this gives no control over how the depth range in the
scene produces perceived depth on the display. This really is a big problem: it is, for example,
not possible to get a good depth effect for both objects very close to the camera and (at the same
time) also for objects further away. Currently only objects a little further away from the camera
get a good depth effect. Objects very close to the camera (for example a gun in a first person
shooter) get a screen disparity that is too large which causes viewing discomfort. Currently this
is ‘solved’ by disabling the rendering of the gun in the game.

Another big disadvantage is the performance overhead. Rendering everything 9 times is a
certain factor slower than rendering only one view. The time taken scales linearly with the num-
ber of polygons (and with the number of views). Rendering multiple times increases the load on
the first stages of the rendering pipeline (where vertices are processed). It also increases the load
on the CPU. Recent games use increasingly more polygons and future multiview displays might
have more views. These developments are a bad prospect for rendering multiple times. Also
the pixel shader that does the interleaving is slow: it has to read a large texture for each frame.
Another implementation could use less bandwidth per frame at the cost of more computations.

The quality of the current implementation is limited by the resolution of the tiled intermedi-
ate image. The resolution per view is 1/9th but a slightly higher resolution would be better. This
can be done in the future, but it requires a major change4.

The current implementation is not perfect: not all OpenGL functions have been extended to
support 9x rendering. There is also another currently unsolved problem: an application can read
back pixels from the framebuffer. Some application do this, for example to create a texture from
an image that’s rendered in the framebuffer. This is a problem because the framebuffer contains
the 9 small tiled views, and the application expects just one normal view. This problem could be
solved in the future, by changing the behavior of certain OpenGL functions in the wrapper (see
table 7.1).

4Rendering to texture, see 9.2.

18 c© Koninklijke Philips Electronics N.V. 2005

Company Confidential till 04/2006 TN-2004/00920

Chapter 4

Assignment

Rendering each frame nine times is getting more and more expensive over time since new games
use increasingly more polygons. A better performance can perhaps be achieved by only render-
ing the central view and then use the depth map to generate the other views out of that. This
approach is known as ‘RGBD rendering’. RGBD stands for Red Green Blue + Depth.

Philips Research has already developed a RGBD rendering algorithm. It is implemented as
an offline (non-realtime) program. It works (per frame) on two input files: a file containing the
RGB colors and a file containing the depth. It produces (per frame) one output file that contains
an interleaved 3D image. It is far from realtime (less than one frame per second on a normal
PC).

Philips is interested in RGBD rendering in general and wants to investigate the possibilities
of implementing the RGBD rendering algorithm on a graphics card (by using the programmable
shaders). This is my assignment. It should result in a new OpenGL wrapper, which in turn
should make it possible to play recent games with an acceptable performance on the 3D display.
The idea is to use the z-buffer of the graphics card as the required depth-map for the RGBD
rendering.

c© Koninklijke Philips Electronics N.V. 2005 19

TN-2004/00920 Company Confidential till 04/2006

Chapter 5

RGBD rendering

RGBD rendering takes an image plus its depth-map and produces one or more new images for
new viewpoints. RGBD rendering is based on the horizontally shifting of pixels, in which the
amount of shift depends on the depth of a pixel.

In this chapter the theory behind RGBD rendering is explained and the existing algorithm
is briefly discussed. The changes and additions necessary to implement RGBD rendering on a
graphics card will be discussed in the next chapters.

5.1 Theory

5.1.1 Related work

Some work that is related to our problem comes from the field of image based rendering (IBR).
The general idea of IBR is to use one or more existing images as input for the rendering of a new
image. It is a complete other approach to rendering than the usual geometry based rendering.

The basic idea of using a 2D image and its depth map to generate a virtual view is described
in [15]. This approach is used in the existing offline algorithm and it is described in this chapter.
The same approach will also be used in our RGBD rendering algorithm that will run on the GPU.

5.1.2 Depth-dependent pixel shifting

Starting point is an image and its depth-map. The depth-map holds for each pixel information
about the distance from the camera to the object visible in that pixel. This distance information
is normalized so that 0 means farthest away from the camera and 1 means closest to the camera.
This allows us to model the image as a set of samples projected onto a terrain. Figure 5.1a shows
one horizontal line of the image modelled as a terrain. The lengths of the arrows correspond to
the depth information of the samples.

Generating another view can be done by repositioning the camera and then projecting the
samples in the terrain back onto the image plane (see figure 5.1b). This way each pixel on the
horizontal line of the input image is mapped to a new position in the output image (on the same
line). The amount each pixel is shifted horizontally is a function of its disparity and the amount
of camera movement, see equation 5.1:

horizontal shift = viewnr× (disparity - offset)× gain (5.1)

The view numbers used in this equation are in the range [-4..+4], where 0 is the central view.
Disparity is normalized ([0..1]). Disparity is not the same as depth, but for the moment we can

20 c© Koninklijke Philips Electronics N.V. 2005

Company Confidential till 04/2006 TN-2004/00920

Ñ½½´«¼»¼
Minication Magnication

ø¿÷ ø¾÷½¿³»®¿ ª·»©°±·²¬

·³¿¹» °´¿²»

¬»®®¿·²

Figure 5.1: (a) Horizontal line of the image modelled as a terrain with depth. (b) Samples
projected back onto the image plane for a different camera position.

ignore the difference. Disparity can be calculated from depth, this will be explained in the next
chapter. Offset is a parameter that controls the type of screen disparity in the resulting output
image: it can be used for example so that the output image only uses depth in front of the screen,
or for example 40% in front of the screen and 60% behind the screen, etc. Gain is a parameter
that controls the amount of screen disparity and thus the amount of perceived depth. A gain of
zero means no depth and the higher the gain the more depth. This can be visualized in figure 5.1
by thinking of gain as the amount of camera translation. Both offset and gain are normally tuned
so that the resulting 3D image looks ‘good’.

5.1.3 Occlusions and deocclusions

Input pixels shift to a new position in the output image. The density of the resulting samples
in the output image is not uniform. Therefore a resampling procedure is required. During the
shifting some pixels get reduced or enlarged and some even get occluded by other ones. This
is visualized in figure 5.2. A house is shown with a tree in front of it. The lower half of the
figure shows the ‘top view’ of the depth channel of the scanline. The left side of the figure
shows the original image, the right half shows the image as seen from the transformed camera
position. As the camera is moved to the right both the house and the tree appear to ‘move’ to
the left. However, because the tree is closer to the camera than the house the tree moves more
than the house. The tree appears to move to the left with respect to the house (motion parallax).
Occlusions occur where the tree occludes a part of the house that was visible from the original
camera position. Deocclusions occur where a part of the house that was not visible from the
original camera position becomes visible.

Handling occlusions

Occlusions can be detected by walking through the input image scanline in a specific order based
on the camera translation, see figure 5.3. A camera translation to the right dictates a right to left

c© Koninklijke Philips Electronics N.V. 2005 21

TN-2004/00920 Company Confidential till 04/2006

­½¿²´·²»

¼»°¬¸ ½¸¿²²»´ ±º ¬¸» ­½¿²´·²»

±®·¹·²¿´ ª·»©°±·²¬ ¬®¿²­º±®³»¼ ª·»©°±·²¬

¼»±½½´«­·±²

±½½´«­·±²

Figure 5.2: Occlusions and deocclusions.

traversal of the input pixels. A camera translation to the left dictates a left to right traversal of the
input pixels. In this figure the camera is translated to the right. This means that the input pixels

Figure 5.3: Detecting occlusions by maintaining the extent in the output domain. Pixel c is
occluded in the output image, since it does not lengthen the extent.

are processed in the order a,b,c. Each pixel is shifted to its new position based on its depth. A
variable extent is introduced that maintains the minimum (or maximum) x-value of the projected

22 c© Koninklijke Philips Electronics N.V. 2005

Company Confidential till 04/2006 TN-2004/00920

pixels in the output image. When a shifted pixel does not decrease (or increase) the extent, it
must be occluded by any of the previous shifted pixels. So this pixel should not be visible in
the output image. In the figure this is the case with pixel c: it does not lengthen the extent and
therefore it is occluded (in this case by pixel b).

Handling deocclusions

Deocclusions can be detected by measuring the distance between two pixels in the output do-
main. The greater this distance, the more of an object is visible that was not visible in the
original input image. It should be noticed however that it is not exactly possible to detect the
difference between a normal enlargement on an object and a real deocclusion. In figure 5.2 a
deocclusion occurs at the large gap between two pixels in the output image. Deocclusions can
be handled by repeating the background. The ‘background’ is the pixel with the largest depth
value. Repeating the background gives better results than repeating the foreground because in
the real world, looking around an objects reveals more of the background behind the object.

5.2 Implementation

5.2.1 Forward RGBD rendering

A RGBD rendering algorithm has already been developed by Philips. It uses two images per
frame as input: a color and a depth image. The output is an interleaved image ready for the
multiview display. The algorithm immediately builds up the interleaved output image without
the intermediate step of the nine tiled images.

It is a so called ’forward’ algorithm: it walks (repeatedly) over the input image and for each
input pixel zero or more output (sub)pixels are updated, see figure 5.4. The outer loop of the
algorithm is somewhat confusing since that does walk over the output image. But this doesn’t
change the forward nature of the algorithm.

for each line in the output image:
for each view [-4..+4]:

if view < 0
for each input pixel on one line (from right to left)

calculate the new position in the output image
if pixel is not occluded

update the corresponding sub-pixel(s) in the output image
else

for each input pixel on one line (from left to right)
calculate the new position in the output image
if pixel is not occluded

update the corresponding sub-pixel(s) in the output image

Figure 5.4: Pseudo code for forward RGBD rendering.

The algorithm produces high quality output, but is not realtime.

5.3 Advantages and disadvantages

RGBD rendering has some advantages and disadvantages compared to rendering multiple times.
Most of these differences are fundamental. We will shortly discuss the most important ones.

c© Koninklijke Philips Electronics N.V. 2005 23

TN-2004/00920 Company Confidential till 04/2006

Advantages of RGBD rendering compared to rendering multiple times:

• Better control over the amount of depth.
When rendering multiple times the only way to control the amount of depth in the output
image is by changing the amount of camera translation (and this gives no control over
the depth distribution in the scene). RGBD rendering makes this totally controllable by
processing the depth-map (see section 6.4.4).

• Performance.
When there are no restrictions on the implementation, RGBD rendering is expected to be
faster than rendering multiple times. The time taken by RGBD rendering is (almost com-
pletely) scene-independent whereas the time taken by rendering is considerably scene-
dependent.

• RGBD rendering has much more advantages (for Philips in general), but these are not
really relevant for us.
For example rendering multiple times is only possible when a 3D model of a scene is
available. Most of the time this is not the case, for example with 2D video. The only
option then is create depth-maps and do RGBD rendering. Depth-maps can be estimated
out of 2D video by special algorithms.

Also the output of rendering multiple times (the interleaved image) is display dependent.
The intermediate output (the tiled image) is also display dependent: fixed number of
views, fixed amount of camera translation. The RGBD format, on the other hand, is
not display dependent. This makes it a highly suitable format for 3D content.

A depth-map can be stored along with a 2D image at little cost: using video compression
it approximately takes 20% of the size of the 2D image. Special compression algorithms
can reduce this even further.

The RGBD format is backwards compatible with 2D displays (simply ignore the depth). It
should be noticed however that a tiled 9 view image is also backwards compatible: simply
ignore all but the central view.

Disadvantages of RGBD rendering compared to rendering multiple times:

• Deocclusions are filled in with a ‘guessed’ background, instead of what’s really visible.

• Transparency effects can cause problems.
The problem with transparency is that color of a pixel is a combination of the color of the
background and the color of the transparent object itself. So the pixel should in fact have
two depth values, which is not the case. Only one of them is available in the depth-map.
Based on this the pixel is remapped to a new location. This is not correct: ideally the
color of the background and the color of the transparent object should be mapped to two
different new locations. The same story holds for atmospheric effects like fog.

• View dependent effects can cause problems.
An assumption made by the RGBD rendering is that a surface looks the same independent
of the viewing angle. This is not always the case. Specular lighting depends on the view-
ing angle. This will not be rendered correctly in the virtual views with RGBD rendering,
which will degrade the quality.

24 c© Koninklijke Philips Electronics N.V. 2005

Company Confidential till 04/2006 TN-2004/00920

Chapter 6

From z-buffer to perceived depth

We want to implement RGBD rendering on a graphics card and use the information in the z-
buffer as the required ‘depth information’ for the rendering. In this chapter we will discuss the
theory of all the steps required to go from the information in a z-buffer to the perceived depth on
the display (see figure 6.1). The implementation of these steps is discussed in the next chapter
(in section 7.3).

z-buffer→ . . .→ perceived depth.

Figure 6.1: From z-buffer to perceived depth.

6.1 Z-buffering

Z-buffering is a commonly used hidden surface removal method. It uses a 2D buffer that stores
the ‘depth’ of the visible object at each pixel. When the rendering of a frame starts the complete
z-buffer is initialized to infinity. During the rendering of an object the color of a pixel is only
updated if the depth of the object is less than the depth stored in the z-buffer. This means that an
object is only visible if is closer to the camera than an already rendered object, just like in the
real world.

Z-buffering is practically used by all 3D games.

6.2 Normalized disparity to perceived depth

Perceived depth is the depth that a viewer experiences when looking at the display. It is caused
by the screen disparity as explained in section 2.3.2 (see figure 6.2).

z-buffer→ . . .→ screen disparity→ perceived depth.

Figure 6.2: Screen disparity causes perceived depth.

The relation between screen disparity and perceived depth was plotted in figure 2.5. As can
be seen this function is non-linear for the domain that is plotted. In section 2.3.1 we discussed
that the maximum (positive and negative) screen disparity should be limited (see section 2.3.1).

c© Koninklijke Philips Electronics N.V. 2005 25

TN-2004/00920 Company Confidential till 04/2006

For the screen disparity range used on our displays it turns out that the relation between screen
disparity and perceived depth is remarkably linear, as can be seen in figure 6.3. This is the same
function as plotted in figure 2.5, only the domain is smaller. Screen disparity values outside this
small range are not used normally on our display (because they cause viewing discomfort).

Figure 6.3: Perceived depth behind the screen as function of the screen disparity (for a viewing
distance of 1 meter and an eye separation of 64 millimeter).

In section 5.1.2 we discussed the formula used with RGBD rendering to calculated the
amount of horizontal shift of a pixel. This formula needs normalized disparity as input. The
definition of disparity is given in [2]. The exact size of disparity is not important since the
screen disparity range is limited. Disparity can therefore be normalized. The shift formula turns
the normalized disparity into screen disparity by using the view number, the gain and the offset
(see figure 6.4). This screen disparity in turn causes perceived depth on the display.

z-buffer→ . . .→ normalized disparity-map→ (RGBD rendering with
gain and offset)→ screen disparity→ perceived depth.

Figure 6.4: Screen disparity is the result of the RGBD rendering with as input a normalized
disparity-map.

6.3 Normalized depth to normalized disparity

The normalized disparity needed for the RGBD rendering can be calculated from depth. Depth
is defined as the distance from the camera plane to an object in a scene. The exact size of depth
is not important since the depth range of the scene has to be scaled to fit in the perceived depth
range of the display anyway. This means that the depth-map can contain normalized depths so
that 0 maps to the smallest depth and that 1 maps to the largest depth (for example).

Normalized disparity can be calculated from normalized depth by using the inverse of the
plot shown in figure 6.3. The plot should be normalized (and inverted) for this purpose. For the
(screen) disparity range used on our displays the function plotted in this figure is almost linear.
This means that we can use the normalized depth-map (without conversion) as a normalized

26 c© Koninklijke Philips Electronics N.V. 2005

Company Confidential till 04/2006 TN-2004/00920

disparity-map for the RGBD rendering (see figure 6.5). The depths in the depth-map are mapped
(almost) linearly to perceived depths on the display, which is what we want. Note however that
for displays with a larger screen disparity range the conversion step from normalized depth to
normalized disparity can no longer be skipped.

z-buffer→ . . .→ normalized depth-map→ (RGBD rendering with gain
and offset)→ screen disparity→ perceived depth.

Figure 6.5: A normalized depth-map can be used without conversion as a normalized disparity-
map because the relation between depth and disparity is almost linear for our display.

6.4 Z-buffer to normalized depth

6.4.1 Z-buffer

When a frame has been rendered completely the image is available in the color framebuffer (see
figure 6.6 for an example of the game Quake). A by-product of the rendering is the ‘z-map’ that
is available in the z-buffer. It contains the z-value of the visible object at each pixel. The values
stored in the z-buffer of a graphics card are the result of a series of calculations in the graphics
pipeline (see figure 6.9).

The z-buffer contains the window space z-values from the end of the transformation se-
quence. We are interested in the eye space z-values. In eye space the camera is located in the
origin and looks down the negative z axis. In this space the z-coordinate is the distance from a
point to the camera plane (zeye = 0). Thesezeye coordinates can be used as a depth-map (since
they represent distance from the camera plane).

The z-buffer usually has a precision of 16 or 24 bits per pixel. Figure 6.7 shows the eight
most significant bits of the z-map as a grayscale image. If this z-map would be used directly as
the depth-map for the RGBD rendering it would result in a 3D image where only objects very
close to the viewer would get a good depth effect and all the other objects would end up in the
back. In our example the gun would use a large part of the available perceived depth range and
all the other objects that are a little further away would be in last part of the perceived depth
range. Therefore the z-map cannot be used directly as a depth-map. A conversion step is needed
to transform the z-map into a depth-map (as shown in figure 6.8).

6.4.2 Forward calculation

We should reverse the calculations done in the transformation sequence to go from window space
z-coordinates back to eye space z-coordinates. But let’s first look at the forward calculations
(that occur in the rendering pipeline):

Projection matrix

Eye coordinates(xeye, yeye, zeye, weye) are multiplied by the projection matrix to get clip coor-
dinates(xc, yc, zc, wc).

The projection matrix can be anything, but for games and a lot of other applications it is al-
most always a perspective projection matrix. When an OpenGL application specifies a perspec-
tive projection it must specify (amongst others) the values of the near and far planes (n andf).

c© Koninklijke Philips Electronics N.V. 2005 27

TN-2004/00920 Company Confidential till 04/2006

Figure 6.6: Color framebuffer.

Figure 6.7: Z-buffer (8 most significant bits as grayscale image).

The part of the scene that is (potentially) visible is betweenzeye = −n ·we andzeye = −f ·we.
The resulting values ofzc andwc are then defined by the equations [14]:

zc = zeye
−(f + n)
f − n

+ weye
−2fn
f − n

(6.1)

wc = −zeye (6.2)

Perspective divide

The clip coordinates(xc, yc, zc) values are divided by the clip coordinatewc value, which results
in normalized device coordinates. This step is known as the perspective divide. The clip coordi-
natewc value represents the distance from the camera plane. As this distance increases the value
1/wc approaches 0. Thereforexc/wc andyc/wc also approach0, causing rendered primitives to
become smaller on the screen. This is how the graphics pipeline simulates a perspective view.

The clip coordinatezc value is also divided bywc, just like xc andyc. This has the same
results as it has onxc andyc: the greaterzc (the further away from the camera) the morezndc

28 c© Koninklijke Philips Electronics N.V. 2005

Company Confidential till 04/2006 TN-2004/00920

Figure 6.8: Depth-map (calculated from z-buffer values using the Z to D function and stored as
an 8-bit grayscale image).

Ñ¾¶»½¬

Ý±±®¼·²¿¬»­ Ý±±®¼·²¿¬»­

Û§»

Ý±±®¼·²¿¬»­

É·²¼±©

Ý±±®¼·²¿¬»­

Ò±®³¿´·¦»¼

Ü»ª·½»Ó±¼»´óÊ·»©

Ó¿¬®·¨

Ð»®­°»½¬·ª»

Ü·ª·­·±²

Ê·»©°±®¬

Ì®¿²­º±®³¿¬·±²

Ý±±®¼·²¿¬»­

Ý´·°Ð®±¶»½¬·±²

Ó¿¬®·¨

Figure 6.9: Vertex transformation sequence [14].

shrinks. It causes more z precision around the near plane and less precision around the far plane
(this effect is clearly visible in figure 6.7).

The resulting value ofzndc is:

zndc = zc/wc (6.3)

=
f + n

f − n
+
weye
zeye

· 2fn
f − n

(6.4)

Normalized device coordinates are within the range [-1..+1].zndc = −1 corresponds to the
near plane andzndc = 1 corresponds to the far plane.

Viewport transformation

The viewport transformation adjusts the range of the normalized device coordinates to [0..1],
which results in window coordinates:

zwin =
zndc

2
+ 0.5 (6.5)

c© Koninklijke Philips Electronics N.V. 2005 29

TN-2004/00920 Company Confidential till 04/2006

The window spacezwin coordinates are stored in the z-buffer.zwin = 0 corresponds to the
near plane andzwin = 1 corresponds to the far plane. (The graphics hardware actually stores 16
or 24-bits unsigned integers, but OpenGL abstracts from this. So for us a value from the z-buffer
is just a real number in the range [0..1].)

6.4.3 Reverse calculation

The previous section showed how the rendering pipeline transformszeye (depth from camera
plane) intozwin (the values stored in the z-buffer). What we need is a formula that does the
reverse: transformzwin into zeye. This formula can then be used in our software to create a
depth-map for the RGBD rendering out of the information in the z-buffer.

The calculations shown in the previous section can be reversed. That results in the following
equation:

zeye =
fn
f−n

zwin − f+n
2(f−n) −

1
2

(6.6)

This equation assumes a defaultglDepthRange of [0..1], which is normally the case. If
not, a slightly more extensive formula is needed1. TheglDepthRange function affects the
mapping fromzndc to zwin, but it is almost never used. Since we are not interested in the exact
zeye values the result can be normalized between0 (camera plane) andf (far):

normalizedzeye =
a

zwin − b
· −1
f

(6.7)

With a andb constants based on the values ofn andf :

a =
fn

f − n
(6.8)

b =
f + n

2(f − n)
+

1
2

(6.9)

This results in the plots shown in figure 6.10. The relation betweenzwin and normalizedzeye
is shown for two example ratios of near to far. Games commonly use a near to far ratio between
these two.

The normalizedzeye values represent a linear distance from the camera plane to a visible
object and therefore we will simply call themdepth. Equation 6.7 is from now on known as
the ‘Z to D function’. It is the function that transforms z-buffer values into depth values. When
the window space z-values from the z-buffer are processed with this function it results in the
depth-map shown in figure 6.8.

6.4.4 Issues

In this section some other issues about the Z to D conversion will be discussed.

Orthographic projection

When the graphics application uses an orthographic projection instead of an perspective projec-
tion the whole story about Z to D conversion is unnecessary. The z-buffer can then directly be
used as the depth-map since the relation betweenzwin andzeye is linear.

1http://www.opengl.org/resources/tutorials/advanced/advanced98/notes/node308.html

30 c© Koninklijke Philips Electronics N.V. 2005

Company Confidential till 04/2006 TN-2004/00920

Figure 6.10: Z to D function for plotted for two ratios of near to far (1:100 upper plot and 1:1000
lower plot).

W-buffering

When the graphics application uses w-buffering instead of z-buffering the whole story about Z
to D conversion is unnecessary. W-buffering provides a linear representation of distance in the
depth buffer2. The w-buffer can thus be used directly as depth-map since the relation between
zwin andzeye is linear.

Mapping scene depth to perceived depth

Games usually draw a very large 3D scene and this large scene has to be compressed into the
relatively small perceived depth range of the display. Without the mappings discussed in this
section the whole depth range of the scene is linearly mapped onto the perceived depth range of
the display. This is the most correct approach, but it may not always produce the best results.

An advantage of RGBD rendering is that we can exactly control how the depth of the scene
is mapped to the perceived depth on the display. This can be done as an extra processing step
of the depth-map before doing the RGBD rendering. Since the values in the depth-map are
normalized a functionf : [0..1]→ [0..1] can be used to preprocess the depth-map.

z-buffer→ (Z to D)→ normalized depth-map→ (mapping)→ normalized depth-map→ . . .

Figure 6.11: From z-buffer to perceived depth.

A simple and useful example is the square root function, shown in figure 6.12. It has the
effect that objects near the camera use more perceived depth than objects far away from the
camera (in the resulting 3D image on the display). This is visualized in figure 6.13 and 6.14.

2http://developer.nvidia.com/object/WBuffering_in_Direct3D.html

c© Koninklijke Philips Electronics N.V. 2005 31

TN-2004/00920 Company Confidential till 04/2006

Figure 6.12: Square root fuction.

near plane far plane

Figure 6.13: Scene depth.

minimum depth screen plane maximum depth

Figure 6.14: Perceived depth.

Another useful example is the functiony = 1.3 · x clipped to the range [0..1]. This function
is shown in figure 6.15. It has the effect that objects further away than a specific depth all get
the same maximum perceived depth. All the other objects that are less far away get an increased
depth effect. Another useful scenario for this function is when the application sets the far plane
to far away, thus not using a part of the z-buffer effectively.

Figure 6.15: Example function.

It should be noticed that via the normalization the depth range of the scene is always mapped
to the depth range of the display, whether or not any of example functions shown in this section
are used. The depth range of the scene is always compressed or expanded to fit in the depth
range of the display (except for the rare case that they match exactly).

We will not get into more detail about this since it is not specific to RGBD rendering on the
GPU, but applies to all sorts of RGBD rendering in general. Controlling how the scene depth is
mapped to the perceived depth on the display is further discussed in [16, 17].

32 c© Koninklijke Philips Electronics N.V. 2005

Company Confidential till 04/2006 TN-2004/00920

Chapter 7

RGBD rendering on GPU

Our RGBD rendering approach is implemented on the GPU by using an OpenGL wrapper just
like the old method described in chapter 3. The OpenGL wrapper should perform a number of
tasks:

1. Let the application (the game) render a single frame.
First the wrapper should let the application render a frame just like it would do normally
without the wrapper, with the only difference that the frame should be rendered at a normal
resolution while the display is in a high resolution mode. This is needed because the input
for the RGBD rendering should be an image with a normal resolution and because the
3D display only works when it is in the high resolution mode (the native resolution, see
section 2.4.1).

2. Copy the contents of the framebuffer to textures.
When the application has finished rendering the frame it calls theSwapBuffers func-
tion. That’s the sign for the wrapper to copy the framebuffer (both color and Z) to two
textures.

3. Perform the Z to D calculation.
The contents of the z-buffer cannot be directly used as the depth-map for the RGBD
rendering and therefore a conversion step is needed (as explained in the previous chapter).

4. Perform the RGBD rendering.
And the final step is to perform the actual RGBD rendering (on the GPU), with as input
the depth-map created in the previous step and the color texture from the second step.

These four tasks will be discussed in more detail the next four sections.

7.1 Render central view

For the RGBD rendering it is needed that the application renders the central view at a normal
resolution (e.g. 800x600), while the display itself is in a high resolution mode (e.g. 1600x1200).
There are two ways to accomplish this:

1. With viewport scaling:
Let the game run in the high resolution and adjust the viewport in the wrapper so that the
game renders at the normal resolution. We call this viewport scaling.

c© Koninklijke Philips Electronics N.V. 2005 33

TN-2004/00920 Company Confidential till 04/2006

(a) The game starts and switches the display to 1600x1200.

(b) The game automatically also tries to render at 1600x1200.

(c) The wrapper adjusts the viewport so that the game renders at 800x600 (thus effec-
tively only using the lower left corner of the screen).

(d) End result: display in 1600x1200 and game renders at 800x600.

2. Without viewport scaling:
Let the game run in the normal resolution and switch back the display to the high resolu-
tion in the wrapper.

(a) The game starts and switches the display to 800x600.

(b) The wrapper immediately switches back the display to 1600x1200. The display stays
in this resolution.

(c) The game doesn’t notice this and keeps rendering at 800x600 automatically (thus
effectively only using the lower left corner of the screen).

(d) End result: display in 1600x1200 and game renders at 800x600.

Although both approaches accomplish the same, the first one has a big disadvantage: its
not completely transparent to the application. The contents of the framebuffer are not what the
application expects. For example the application expects the framebuffer to contain an image
with a resolution of 1600x1200, but because of the viewport changes in the wrapper the image
is only 800x600. This is a problem because some games render an image in the framebuffer and
then use it as a texture. Another problem occurs when an application directly reads from/writes
to the framebuffer. These problems can be solved by changing the behavior of the involved
OpenGL functions (that read from or write to the framebuffer directly, see table 7.1), or by using
the second approach.

There is yet another problem with the first approach that cannot be solved in the wrapper: the
‘font-size problem’. An example of this can be seen in the game Quake 3: the text console in the
game is drawn so that each character occupies a fixed size (in pixels) on the screen. This means
that when the game is played in a high resolution mode more characters fit on a line. This causes
trouble with viewport scaling: the game thinks it is running in 1600x1200 and thus it draws
many characters on a line. But because of the viewport scaling the characters are shrinked: they
become smaller and are therefore more difficult to read. This cannot be solved (like the other
problems) by changing the behavior of OpenGL functions in the wrapper: it is the game that
decides how many characters it draws on a single line. The problem is not restricted to the font-
size example given: everything the application draws with a fixed size (in pixels on the screen)
suffers from this problem.

The second approach does not suffer from the problems above, but it has another problem:
switching the display resolution while the game is running is not well supported. Our experience
is that it works fine on the Nvidia cards but that it causes problems on the ATI cards we tried.

Both options have been implemented. The OpenGL functions that can cause problems with
the first approach have been identified (see table 7.1). All these functions log a warning message
when they are called while using the viewport scaling. Both solutions have their disadvantages
and it depends on the exact situation (game, graphics card, etc.) what solution to use. There is
no difference in performance between the two options.

34 c© Koninklijke Philips Electronics N.V. 2005

Company Confidential till 04/2006 TN-2004/00920

Function Description
glBitmap draws a bitmap
glCopyPixels copies pixels in the framebuffer
glCopyTexImage1D, 2D and 3D copies pixels from the framebuffer into a n-

dimensional texture image
glCopyTexSubImage1D, 2D and 3Dcopies a sub-image of a n-dimensional texture image

from the framebuffer
glDrawPixels writes a block of pixels to the framebuffer
glReadPixels reads a block of pixels from the framebuffer

Table 7.1: OpenGL functions that can cause problems with viewport scaling.

7.2 Framebuffer to textures

Our pixel shader needs read access to the contents of the framebuffer, since it contains the input
for the RGBD rendering. This is not directly possible. However, a pixel shader does have read
access to textures. So by copying the contents of the framebuffer to textures the pixel shader can
access it.

Copying from the framebuffer to the texture should occur on the graphics card itself (and
not via the system memory). TheglCopyTexSubImage2D does this, it copies data from the
framebuffer to a texture. Normally only the color contents of the framebuffer can be used as
source, but the OpenGL extension ARB_depth_texture allows the z-buffer to be used as source
as well.

7.3 Z to D

In section 6.4 we discussed the theory behind the Z to D conversion step. In this section the
implementation will be discussed.

7.3.1 Intermediate depth texture

The Z to D conversion should be done on the graphics card using a pixel shader (just like the
RGBD rendering itself). Basically we have two options to implement this:

1. With depth texture
The Z to D conversion is done in a separate pixel shader pass before the RGBD rendering.
The output of the Z to D pixel shader pass is a depth texture. The RGBD rendering pixel
shader uses this depth texture as input. When a depth-value is needed it can be directly
fetched from the depth texture. This option is shown in the bottom half of figure 7.1.

2. Without depth texture
The Z to D conversion is integrated into the RGBD rendering pixel shader. This means
that only a single pixel shader pass is done. The RGBD rendering pixel shader uses the
z-buffer texture as input. When a depth value is needed a z-value it is fetched from the
z-buffer texture and than converted. This option is shown in the top half of figure 7.1.

The two options accomplish the same but one of them uses the depth texture as an interme-
diate step while the other does not. Using this intermediate depth texture is a good idea for two
reasons:

c© Koninklijke Philips Electronics N.V. 2005 35

TN-2004/00920 Company Confidential till 04/2006

Color
texture

Z-buffer
texture

RGBD
rendering

Color
texture

Z-buffer
texture

Depth
texture

Interleaved
output
image

Z to D

RGBD
rendering

Z to D
function
texture

Z to D
function
texture

graphics card

3D
display

graphics card

Interleaved
output
image

3D
display

Figure 7.1: Two options: with or without an intermediate depth texture.

1. The resolution of the interleaved output image is higher than the resolution on the input
z-buffer texture.

2. The RGBD rendering pixel shader needs multiple depth values per output pixel.

Let’s explain this with an example: suppose the game renders at a resolution of 800x600 and
the output resolution (of the interleaved output) is 1600x1200. And let’s further suppose we use
a RGBD rendering pixel shader that needs to read 10 depth values (for each output pixel). Now
we look at the required memory bandwidth per frame for the texture reads, with and without an
intermediate depth texture:

1. With intermediate depth texture:
In the first pass the depth texture is created.800 × 600 Z’s (24 bits) are read, converted
(with an 8 bits Z to D function texture) to D and then written to the depth-texture (8 bits).
This requires800 × 600 × (3 + 2 + 1) = 2.8 · 106 bytes of bandwidth per frame. In
the second pass the RGBD rendering is done and 10 D values (8 bits) are read for every
output pixel. This requires1600× 1200× 10 = 19.2 · 106 bytes of bandwidth per frame.
The total required memory bandwidth is22 · 106 bytes per frame1.

2. Without intermediate depth texture:
In a single pass both the Z to D conversion and the RGBD rendering are done. For each
output pixel 10 Z-values (24 bits) are read and converted (with an 8 bits Z to D function

1The current implementation is less efficient: the depth-texture is not rendered directly but it is copied from the
framebuffer.

36 c© Koninklijke Philips Electronics N.V. 2005

Company Confidential till 04/2006 TN-2004/00920

texture) to D. This requires1600 × 1200 × 10 × (3 + 2) = 96 · 106 bytes of bandwidth
per frame.

In this example using an intermediate depth texture saves a factor4.4 in memory bandwidth
per frame (from 96MB to 22MB). This performance gain is the most important reason why we
use an intermediate depth texture.

7.3.2 Pixel shader

To execute the pixel shader that is going to perform the Z to D conversion a rectangle in drawn
that has the size of the resulting depth-map. When this rectangle is rasterized it results in the
pixel shader being executed for each pixel in the rectangle (which will become the resulting
depth-map). The pixel shader’s task is to read a z-value from the z-buffer texture, convert it into
a depth value, and return that as the (color) output value. The pseudocode for all this is shown
in figure 7.2.

for each pixel in the depth-map:
read the z-value from the z-buffer texture;
convert the z-value to a depth-value;
output color = depth-value; //writes to framebuffer

Figure 7.2: Pseudocode for the Z to D conversion.

The for-loop in the pseudocode can be seen as the repeated execution of a pixel shader. The
code inside the loop is equivalent to a pixel shader. The most interesting part of the pixel shader
is how it performs the Z to D conversion, this will be discussed in the next section.

When the Z to D conversion is done the resulting depth-map is in the (color) framebuffer.
This is because the result of a pixel shader is a color that (normally) goes into the framebuffer. An
OpenGL function is called afterwards to copy the contents of the framebuffer to a grayscale tex-
ture (the depth-map texture). A faster solution would be to render directly to a texture (without
going through the framebuffer). The extension can ARB_render_texture provide this function-
ality. This remains future work.

Function texture

The ‘Z to D’ function (see equation 6.7) converts z-values into depth values. Our pixel shader
should use this function. It is computationally (too) expensive to evaluate the Z to D function
in a pixel shader. Therefore the function is evaluated on the CPU for a fixed number of inputs
and the results are stored in a 1D texture (an array). The texture has a width of for example
256 texels and each texel can store an 8-bits value. The pixel shader that performs the Z to D
calculation uses the z-value (read from the z-buffer texture) as the texture fetch address for the
function texture. Because of the bilinear texture filtering done by the graphics card the result
fetched from the texture is linearly interpolated between the two nearest values. This way the Z
to D function is fairly accurately approximated by the values stored in the texture.

The Cg pixel shader code is shown in appendix A.1. When compiled with the fp30 profile2

the Cg program is 3 instructions long (of which 2 are texture fetches). The performance will be
discussed in chapter 8.

2Cg Toolkit User’s Manual, page 225: OpenGL NV_fragment_program Profile (fp30)

c© Koninklijke Philips Electronics N.V. 2005 37

TN-2004/00920 Company Confidential till 04/2006

Precision issues

The Z input for the Z to D function should be have a precision of more than 8 bits. An 8 bits
z-buffer texture has not enough precision to use it as input for the Z to D function. When this is
done anyway it results in banding artifacts as shown in figure 7.3. The z-buffer texture should
have a precision of more than 8 bits, on a graphics card that usually means 16 or 24 bits.

Figure 7.3: Depth-map (calculated from 8 bits z-buffer values) with banding artifacts.

The result of the Z to D function, the depth-map, can be stored with a precision of 8 bits.
This is enough for our example 3D display since 256 ‘depth-levels’ is enough for the perceived
depth range.

Scaling down the depth-map

During the conversion from Z to D the resolution (in pixels) of the resulting depth-map can be
smaller than the resolution (in pixels) of the z-buffer. This can be done by varying the size of the
rectangle that is drawn to execute the pixel shader. This increases performance and decreases
quality. Scaling down the depth-map results in less Z to D conversions, faster framebuffer to
texture copy and less memory bandwidth during the RGBD rendering pass. Scaling down the
depth-map is an option of our software that can be enabled in the configuration file (see ap-
pendix B.1).

7.3.3 Detecting the projection matrix

To build the Z to D function texture on the CPU the values for the near and far planes are needed.
These two values determine the precise shape of the function (see figure 6.10). The wrapper
should detect these two values when the application sets a perspective projection matrix. This is
not as simple as it seems.

The easiest solution is to use a fixed function, independent of the actual near and far planes
used by the application. For example: we could just assume that the ratio near:far is 1:500 and
use that to calculate the Z to D function. This works always, although the results are not exactly
correct (since that is only possible when the exact ratio near:far is known).

The correct solution is to detect the actual near and far plane values used by the application.
A simple approach might be to wait for for theSwapBuffers call and then read out the current

38 c© Koninklijke Philips Electronics N.V. 2005

Company Confidential till 04/2006 TN-2004/00920

projection matrix. This however doesn’t work in a lot of cases: by the time the application calls
theSwapBuffers function the projection matrix can be different from the projection matrix
used to render the scene. Games usually draw some 2D overlays over the rendered scene using
an orthographic projection. When the orthographic projection is set it overwrites the perspective
projection matrix. When theSwapBuffers function is called there is no way anymore to find
out what the old projection matrix was. So a better solution is needed.

Everything the OpenGL application does goes via the wrapper, also the modification of the
projection matrix. This enables us to detect changes to the projection matrix at the moment they
occur. A list of OpenGL functions that can (possibly) change the projection matrix is shown in
table 7.2. These functions are extended with functionality in the wrapper that enables them to
see when a perspective projection matrix is set or modified. Then the values of near and far can
be determined from this projection matrix and the exact the Z to D function can be constructed.
There are some complications however: the projection matrix can change for each rendered
frame, so it has to be detected each frame again. But it gets worse: it can even change while
the application renders a frame. An application can for example render a part of the scene (with
a perspective projection), change the perspective projection, and render a different part of the
scene. This means there is not necessary a single Z to D function that is correct for the whole
scene. This however is more a theoretical problem than a practical one: the current wrapper only
detects the first perspective projection matrix used for each new frame, and that one is used to
calculate the Z to D function for that frame. This seems to work fine for the moment.

Function Description
glFrustum multiplies the current matrix by a perspective matrix
glLoadIdentity replaces the current matrix with the identity matrix
glLoadMatrix replaces the current matrix with an arbitrary matrix
glMultMatrix multiplies the current matrix by an arbitrary matrix
glPopMatrix push the current matrix stack
glPushMatrix pop the current matrix stack

Table 7.2: OpenGL functions that can change the projection matrix.

7.3.4 Z-buffer errors

If we look at the 2D image in figure 6.6 and its depth-map in figure 6.8 two things can be noticed:

1. Color but no matching depth.
At some places an object is visible in the color image, but not in the depth-map. For
example the numbers at the bottom of the screen appear in the image but not in the depth-
map. The depth value in the depth-map is from the background behind the object.

2. Depth but no matching color.
At some other places there is a depth value in the depth-map that doesn’t correspond to
an object in the color image. This happens for example at the small head in the bottom of
the screen. The rectangle surrounding the head appears in the depth-map, but not in the
image.

These two problems are easy visible in the depth-map, but the real problem is already present
in the z-buffer (since the depth-map is just the result of a calculation performed on the z-buffer).
An incorrect z-value in the z-buffer will result in an incorrect depth in the depth-map.

c© Koninklijke Philips Electronics N.V. 2005 39

TN-2004/00920 Company Confidential till 04/2006

The first problem is the result of the application disabling z-buffer writing (and z-buffer
testing) when rendering a 2D overlay. This happens mostly for performance reasons (since it
saves framebuffer bandwidth). It causes the 2D overlay (mostly text) to have the Z-value of the
object behind it. In the resulting 3D image it looks like the text is glued onto the background,
which is an unwanted strange effect.

When the OpenGL application tries to disable z-buffer writing the wrapper can prevent this
and keep it enabled. This fixes one part of the problem: a z-value does get written into the
z-buffer. But the exact value depends on the arbitrary z-value at which the application renders
the 2D overlay. We need a specific z-value because we want the 2D overlays in the resulting 3D
image to get screen disparity zero. Screen disparity zero means that the 3D image is perceived
as laying on the screen plane (see section 2.3.1). At this depth the screen is the sharpest which
makes text more easy to read. So the 2D overlay needs to be rendered with a z-value that (when
converted into depth) creates a 3D image with zero screen disparity.

Recall from equation 5.1 that a depth with the same value as the offset parameter causes
a screen disparity of zero (for all view numbers). Suppose the offset parameter for the RGBD
rendering is 0.5, then the depth needed is also 0.5. Using the inverse of the Z to D function we
can calculate the z-value needed in the z-buffer that makes the 2D overlays in the resulting 3D
image appear with zero disparity. Let’s suppose this z-value is 0.98. The wrapper then needs to
make sure that 2D overlays always end up in the z-buffer with a value of 0.98, independent of
the z-value used by the application. Currently this is done by the use of theglDepthRange
function. This function affects the mapping of z-values from normalized device coordinates to
window coordinates. It is called when the application sets an orthographic projection, since 2D
overlays are usually drawn with this projection type.

When the wrapper changes the z-values of rendered objects another problem arises: the z-
test can now prevent the rendering of a pixel because its z-value is greater than the z-value of the
already drawn pixel. Therefore the z-test should be disabled.

Figure 7.4: Depth-map with some of the z-buffer errors solved.

The result of all this is shown in figure 7.4. The text has a depth which causes it get zero
screen disparity after the RGBD rendering. The text is however drawn using a semi-transparent
texture mapped quad and the entire quad gets a depth, not only the visible characters on it. So
now we have transformed our problem from type 1 to type 2. The second problem however, is
not easy solvable. That remains future work.

40 c© Koninklijke Philips Electronics N.V. 2005

Company Confidential till 04/2006 TN-2004/00920

There is a new problem that can be noticed in figure 7.4: the cross hair (in the center of the
image) is also drawn using an orthogonal projection. Because of our work it also gets a depth in
the depth-map. This however is not wanted: it causes a strange effect in the resulting 3D image.
The wrapper cannot (in general) solve this problem. It can’t know which objects should have
the depth of the background and which objects should appear at screen depth. The only solution
is that the game delivers a z-buffer that is as good as possible. Some techniques that can be used
by game developers to help 3D applications can be found in [18].

Another problem that results in incorrect depth-maps is the use of transparency effects. Re-
cent games use more and more of these effects (water, fog, etc.). An example can be seen in
figure 7.5. It is obvious that this depth-map will give a strange 3D effect when used for the
RGBD rendering.

Yet another problem is the use of semi-transparent textures. For example: a branch of a tree
can be drawn with a large square texture. The texture is an image of the leafs in the branch. It
is transparent at the places where no leafs are. When a game wants to draw a branch it only
needs to render a single quad with the texture on it. This technique (semi-transparent textures)
is commonly used. However, it results in incorrect depth-maps: the entire quad ends up in the
z-buffer, but only the leafs are visible in the color buffer. This could be solved in the future by
making the z-buffer writes dependent on the alpha-value of a fragment.

In general we can expect that the z-buffer is becoming a less reliable source for depth infor-
mation due to all kinds of ‘rendering tricks’.

Figure 7.5: The information in the z-buffer is not always useful as a depth-map: the water is
visible but the bottom below the water appears in the depth-map. Also the mountain in the back
is missing in the depth-map.

7.4 RGBD rendering

The fourth and final task of the wrapper is to perform the actual RGBD rendering. The inputs
for the RGBD rendering are the color-buffer texture from section 7.2 and and the depth texture
from section 7.3.

7.4.1 Forward versus inverse RGBD rendering

The algorithm should run on the graphics card itself because copying the rendered image to
the main memory is too slow (as explained in section 3.3) and because the CPU is too slow to

c© Koninklijke Philips Electronics N.V. 2005 41

TN-2004/00920 Company Confidential till 04/2006

perform the RGBD rendering realtime.
This has a big impact on our algorithm: the properties of the hardware can pose some serious

constraints. Perhaps the biggest impact is caused by the fact that pixel shaders are output driven
instead of input driven. It dictates aninversealgorithm instead of a perhaps more logicalforward
one.

For each pixel in the interleaved output image:
For the three sub-pixels:

Find the pixels in the input image that contribute to
the color of this sub-pixel

Figure 7.6: Pseudocode for inverse RGBD rendering.

Compare the pseudocode for forward RGBD rendering (in figure 5.4) with the pseudocode
for inverse RGBD rendering (in figure 7.6). The input driven versus the output driven difference
is very important. Forward RGBD rendering basically walks 9 times over the input image. For
each pixel in the input image zero or more sub-pixels in the output image are updated.

Inverse RGBD rendering is totally different: it walks once over the output image. For each
output pixel the color should be calculated. An output pixel consists of three sub-pixels. The
color for a sub-pixel can come from any input pixel(s) in a horizontal range around the output
pixel. This horizontal range is limited because the maximum screen disparity is limited. We
call this range in the input image the search range. All the input pixels in the search range are
possible candidates: they can possibly contribute to the color of the current output sub-pixel.
Whether they really contribute depends on their depth (and on their visibility, they shouldn’t
be occluded). Therefore we should shift each possible candidate input pixel and see whether it
contributes. An input pixel contributes if it shifts close enough to the output position and if it’s
not occluded by other input pixels.

The distance between the output position and the new position of the input pixel determines
its weight. This is a simplification but for the moment it is good enough. The total weight always
sums to one. The color of the output sub-pixel is updated based on the weight and the color of
the input pixel.

The outer loop in figure 7.6 is basically the repeated execution of a pixel shader. If we leave
the loop out the new pseudocode is shown in figure 7.7.

For the three sub-pixels:
For each input pixel in the search range:

If input pixel is not occluded:
calculate weight
sub-pixel color += weight * input color;

Figure 7.7: Pixel shader pseudocode for inverse RGBD rendering.

7.4.2 Implementation

Screen sized rectangle

To execute a pixel shader for each pixel in the output image a rectangle should be rendered that
completely fills the screen, the so-called screen sized rectangle. When this rectangle is raster-
ized it should result in all the pixels of the screen being covered by the rectangle. Also texture

42 c© Koninklijke Philips Electronics N.V. 2005

Company Confidential till 04/2006 TN-2004/00920

coordinates should be specified at the vertices of the rectangle. When texture coordinates are
interpolated by the rasterizer it results in texture coordinates at each pixel. These texture coordi-
nates have to be exactly correct (since the pixel shader uses them to calculate the viewnumbers
for example). How this can be accomplished is discussed in3.

Texture addresses

Our RGBD rendering pixel shader has three texture addresses as input:

1. Output: position in the output image.

2. Input RGB: corresponding position in the color input image.

3. Input D: corresponding position in the depth input image.

The first texture coordinate is used by the pixel shader to determine the position of the
pixel in the output image for which it should calculate the color. The second texture coordinate
specifies the corresponding position in the color input image. For example, when the position in
the output image isoutput(x, y) = (100, 200) then the corresponding position in the input color
image isinputRGB(x, y) = (50, 100), given that the resolution of the color input is half that
of the output. The same holds for the input D texture coordinate: it specifies the corresponding
position in the depth input image. This position can be different from the color input position
since the depth-map can be scaled down during the Z to D conversion (see page 38).

7.4.3 Determine the view numbers

The first step of our RGBD rendering pixel shader is to determine the three view numbers of
its output pixel. The view numbers can be inferred from the pattern shown in figure 2.8 (for
our example display). Basically there are two options to determine the view numbers: calculate
them or look them up in a texture (or a combination of the two). A possible calculation is shown
in figure 7.8.

array V = {1,3,5,7,9,2,4,6,8}
i = (3x+ 4y) mod 9
VR = V [i]
VG = V [(i+ 1) mod 9]
VB = V [(i+ 2) mod 9]

(7.1)

Figure 7.8: Calculation of the three view numbers (with a small array lookup.)

The calculation uses the output pixel position on screen(x, y) to calculate the three view
numbers:VR, VG andVB. Pixel position(0, 0) is the top left pixel on the screen. The calculation
uses an array that contains the first nine view numbers in the upper left corner of the screen.
The array is so small that it would fit in the code of a pixel shader. It can however not be
implemented in a pixel shader: array indexing (or pointers) are not supported in the current
pixel shader profiles. We could use a texture to store the array values but this would cost three
texture lookups which is not desirable. Or we could adapt the calculation so that the the array
is no longer needed (calculated in place), but this would increase the number of computations

3OpenGL pixel and texel placement:http://www.bpeers.com/articles/glpixel/

c© Koninklijke Philips Electronics N.V. 2005 43

http://www.bpeers.com/articles/glpixel/

TN-2004/00920 Company Confidential till 04/2006

which is also not desirable. A better approach is to get rid off the computations and only use a
texture lookup.

It is possible to create a large texture (with the same resolution as the output resolution)
that contains for each output pixel the view numbers as a RGB color value. In the pixel shader
only a single texture fetch is needed then, which is cheap. This single texture fetch returns the
three view numbers as a RGB color value. No calculations are needed then, but more memory
bandwidth is used.

We can considerably decrease the size of the texture by making use of the repeating pattern
in the numbers. The repeating square is 3x9 pixels, which means that after three pixels in the
horizontal direction the numbers start to repeat. The same holds for nine pixels in the vertical
direction.

Textures in OpenGL are required to have a width and height that are both powers of two.
Since the size of the view number texture is not a power of two this is troublesome. Two OpenGL
extensions exist that can remove this limitation:

• ARB_texture_rectangle

– dimension-dependent (non-normalized) texture coordinates: [0..w]x[0..h] range.

– REPEAT wrap mode not supported.

• ARB_texture_non_power_of_two

– dimension-independent (normalized) texture coordinates: [0..1]x[0..1] range.

– REPEAT wrap mode supported.

The ARB_texture_rectangle extension has been used because it is supported on more graph-
ics cards. Since the repeat wrap mode is not supported the modulo division of the texture coor-
dinates is done in the pixel shader itself (see figure 7.9).

float2 TexCoordViewNrs;
TexCoordViewNrs.x = fmod(Input.TexCoordOutput.x, 3); // x = [0.5 .. 2.5]
TexCoordViewNrs.y = fmod(Input.TexCoordOutput.y, 9); // y = [0.5 .. 8.5]

float3 ViewNrs; ViewNrs = texRECT(ViewNrTexture, TexCoordViewNrs);
ViewNrs = ViewNrs - (5/255.0); //central view is 0 now

Figure 7.9: Cg pixel shader code for determining the three view numbers.

After the view numbers have been fetched from the texture they are all positive. For the
RGBD rendering it is needed that the central view is zero. A constant value is subtracted from
the view numbers to accomplish this.

7.4.4 RGBD rendering variants

When the viewnumbers are known the next step of the pixel shader is to perform the RGBD
rendering. Three pixel shader variants for the RGBD rendering have been developed. They
differ in their computational cost and the quality of their output.

1. Output-depth RGBD rendering

2. Input-depth find-nearest RGBD rendering

44 c© Koninklijke Philips Electronics N.V. 2005

Company Confidential till 04/2006 TN-2004/00920

3. Input-depth RGBD rendering

These three variants will be discussed in the next three sections.

7.4.5 Output-depth RGBD rendering

The output-depth RGBD rendering is a computationally cheap algorithm. It uses an approxima-
tion to do the RGBD rendering that increases performance but decreases the output quality.

Output-depth RGBD rendering takes the depth at the current output position and uses that to
determine which input pixels shifts to the output position. The pseudocode for the output-depth
RGBD rendering pixel shader is shown in figure 7.10.

determine the three viewnumbers;

read the (output-position) depth from texture;
calculate three positions in input image using the depth and viewnumbers;
do three texture reads in color texture (color1 t/m 3);
output color (red) = color1 (only red);
output color (green) = color2 (only green);
output color (blue) = color3 (only blue);
//output color is written to the framebuffer

Figure 7.10: Pixel shader pseudocode for output-depth RGBD rendering.

Since no searching is done in the input image output-depth RGBD rendering is much cheaper
than ‘real’ (input-depth) RGBD rendering. Only one depth value has to be read and only one
shift calculation has to be performed. With the ‘real’ RGBD rendering all the depths of all the
input pixels in the search-range have to be read and the amount of shift has to be calculated.

Output-depth RGBD rendering uses the assumption that depth values don’t change much in
a small horizontal region. It approximates the depth of an input pixel by the depth of the input
pixel at the (corresponding) output position. Since the distance between an input pixel and the
output position is not large this usually works fine, except at edges of objects in the depth-map.
At edges the the depth value changes suddenly, which causes an artifact in the output image as
shown in figure 7.11. The artifact is greater for the outer views (the central view has no artifacts).

Figure 7.11: A single outer view created with output-depth RGBD rendering. The artefact on
the left side of the rocket launcher is clearly visible. It is the result of an edge in the depth-map.

The Cg pixel shader code for output-depth RGBD rendering is shown in appendix A.2.

c© Koninklijke Philips Electronics N.V. 2005 45

TN-2004/00920 Company Confidential till 04/2006

When compiled with the fp30 profile the Cg program is 30 instructions long (of which 5 are
texture fetches). The performance will be discussed in chapter 8.

The code basically shows how a single depth value is read (using the output position) and
how this value is used to calculate thex position of three input pixels. The vector datatype
float3 is used to calculate three results (for r,g,b) at once. Graphics hardware can do vectorized
computations (with up to four components) without performance loss compared to scalar com-
putations. The calculatedx positions are used as the texture address for three texture fetches in
the color input.

7.4.6 Input-depth find-nearest RGBD rendering

The second pixel shader variant that has been developed is called input-depth find-nearest. As
the name states it uses the depth from the input position. This is the correct approach: an input
pixel is shifted based on its own depth.

The second part of the name is find-nearest. This refers to the fact that the algorithm only
finds one input pixel (per sub-pixel in the output) that shifts the nearest to the output position.
The algorithm is computationally more expensive than the previous (output-depth) variant. But
it still doesn’t perform all the operations needed for a ‘real’ RGBD rendering algorithm. No
occlusion handling or filtering is done.

The pseudocode for the input-depth find-nearest RGBD rendering pixel shader is shown in
figure 7.12.

determine the three viewnumbers;

minimum distance = infinite;
for each input pixel (i) in the search range:

read depth from texture;
for the three sub-pixels (vectorized):

calculate new position based on depth;
calculate distance between output position and new position;

if distance < minimum distance:
nearest pixel = i;
minimum distance = distance;

for the three nearest input pixels:
read color from texture;
output sub-pixel color = color; (only r,g or b)

//output color is written to the framebuffer

Figure 7.12: Pixel shader pseudocode for input-depth find-nearest RGBD rendering.

The algorithm consists of a small loop: it walks over a small horizontal region in the input
image around the output position. The position (in the output image) of the current input pixel is
calculated based on its depth. This is done for all the three views at once (vectorized). Then the
distance between the calculated position and the output position is measured. The goal is to find
the pixel with the smallest distance. This is why the algorithm is called find-nearest. Actually
there are three nearest pixels (for r,g,b). Once these pixels have been found three texture fetches
are done in the color input texture to get the colors. Only one color component of each color is
used. These three components are then combined into the final output color of the pixel shader.
This pixel then ends up in the interleaved output image.

46 c© Koninklijke Philips Electronics N.V. 2005

Company Confidential till 04/2006 TN-2004/00920

The algorithm explained in section 5.1.3 to handle occlusions is not used. This means that
pixels that are not visible in a new view are not removed like they should. The algorithm to
handle occlusions is not used because that allows us to do only a single pass over the input
pixels. Using the algorithm would mean that three passes over the input pixels are necessary
(for the three viewnumbers), which is more expensive. Also no filtering is done: the color of the
pixel that shifts the closest to the output position is just used.

This variant is more expensive than the output-depth variant above because a search is done
in the input image. The width of the search range in the input image is adjustable. This means
that more texture fetches in the depth texture are needed. A larger search range means more
depth in the resulting 3D image but it also means more texture fetches.

This variant is also more expensive because more calculations are needed: the minimum
distance has to be found. The distance has to be computed for each candidate input pixel based
on its depth. Again, these calculations have been vectorized wherever possible.

The Cg pixel shader code for input-depth find-nearest RGBD rendering is shown in ap-
pendix A.3. When compiled with the fp30 profile the Cg program is 120 instructions long (of
which 13 are texture fetches). These numbers are for a search range of 9 input pixels. Loops are
unrolled by the Cg compiler.

After implementing and testing this pixel shader it became clear that this algorithm is not
an improvement over the previous (output-depth) version. The shader is slower but it doesn’t
produce better results. The artifacts caused by this variant are more noticeable than the artifacts
of the previous variant, especially for moving images. The artifacts can be seen on edges (in the
depth-map). The artifacts can vary quickly when the input image changes only slightly whereas
the artifacts of the previous variant are more stable.

Because of the bad quality/performance ratio of this variant it is no longer used. Also no
performance measurements will be done in chapter 8 for this variant.

7.4.7 Input-depth RGBD rendering

The third RGBD rendering variant is called input-depth. The goal of this variant is to be equiv-
alent with the already existing offline algorithm (from section 5.2.1). So it should produce high
quality output, which means: handle occlusions and deocclusions and do proper filtering.

The pseudocode for the input-depth RGBD rendering pixel shader is shown in figure 7.13.
The algorithm consists of three major parts: first the color and depth of the all the input pixels
in the search range are read (from the texture) and stored into two arrays. This done because the
color and depth of an input pixel are needed multiple times later on. Storing them in an array
reduces the the number of texture fetches that are needed. Array indexing is possible in this case
because loops are unrolled by the Cg compiler.

The second part of the algorithm uses the depth of the input pixels to compute their new
positions. For each input pixel three new positions are computed (for the three viewnumbers of
the RGB sub-pixels). These computations are done vectorized for performance reasons.

The new positions of the input pixels are used in the third part of the algorithm. Here it is
checked if a pixel is not occluded by another pixel. If this is not the case a so called weight is
calculated. The weight defines how much the color of the input pixel contributes to the color
of the output sub-pixel. The weight can be calculated by using a filter function. Based on the
weight the color of the input pixel is added to the color of the output sub-pixel. The third part of
the algorithm cannot be vectorised like the previous part. This is because the occlusion detection
algorithm is based on the order of which the input pixel are processed. And it is almost never the

c© Koninklijke Philips Electronics N.V. 2005 47

TN-2004/00920 Company Confidential till 04/2006

case that the three viewnumbers all need the same order. Most of the time we need to process the
input pixels from left to right for one viewnumber, and from right to left for another viewnumber.

determine the three viewnumbers;

for each input pixel in search range:
read color from texture into array;
read depth from texture into array;

for each input pixel:
calculate three new positions based on depth (vectorized)

for each output sub-pixel (r,g,b):
sub-pixel color = 0;
if viewnumber >= 0

for each input pixel in search range (from left to right)
if pixel is not occluded

calculate weight;
sub-pixel color += weight * input color;

else
for each input pixel in search range (from right to left)

if pixel is not occluded
calculate weight;
sub-pixel color += weight * input color;

//output color is written to the framebuffer

Figure 7.13: Pixel shader pseudocode for input-depth RGBD rendering.

Our pixel shader does input-depth RGBD rendering with occlusion handling and filtering. It
does however still not produce the same quality as the already existing (offline) algorithm. For
example the existing algorithm takes care of ‘lens shifting’ which helps to produce high quality
output. Our pixel shader doesn’t take this into account. Also the oflline algorithm can use user
defined filter functions. Our pixel shader only uses a box filter for performance reasons.

Implementing all this would make the pixel shader so big that it couldn’t be executed on
the graphics card anymore. The current pixel shader however does give a good indication of
the minimal number of instructions needed to perform RGBD rendering on the graphics card.
Higher quality would even cost more instructions. Since the pixel shader is very slow it is not
really useful except for performance measurements.

The Cg pixel shader code for input-depth RGBD rendering is shown in appendix A.4. When
compiled with the fp30 profile the Cg program is 708 instructions long (of which 25 are texture
fetches). These numbers are for a search range of 11 input pixels. Loops are unrolled by the Cg
compiler. The performance will be discussed in chapter 8.

7.5 YUVD output

Instead of doing the RGBD rendering on the graphics card, we could also perform the RGBD
rendering externally. The graphics card is then only used to send a 2D image plus its depth-map
to the outside (see figure 7.14). Philips has developed an external RGBD rendering board. Our
wrapper software has been extended with support so it can create the output required for the
external RGBD rendering board.

48 c© Koninklijke Philips Electronics N.V. 2005

Company Confidential till 04/2006 TN-2004/00920

graphics
card 3D display

external
RGBD

rendering
2D image plus depth-map interleaved image

Figure 7.14: When the RGBD rendering is done externally the graphics card sends a 2D image
plus depth-map to the outside.

Hardware board

The hardware RGBD rendering board developed by Philips has a 2D image plus depth-map as
input and produces an interleaved image as output. The board has two DVI ports: one for input
and one for output. The input port is connected to the output of a graphics card. The output port
is connected to (the input of) a 3D display. This dedicated hardware board can do high quality
RGBD rendering at a high framerate. The input for the board must be at a fixed resolution and
refresh rate (e.g. 720x540 at 60 Hz), otherwise it will not work.

YUVD format

The (DVI) output of a graphics card can only output three color channels (RGB). We would
like to use these color channels not only for color, but also for depth. YUVD is a method of
packing color and depth into these three RGB channels. It works by using the red and green
channels for the colors and the blue channel for the depth. The RGB colors of the image are
first converted into the YUV colorspace. The red channel is used to store Y, the green channel is
used alternating to store U or V, and the blue channel is used to store D(epth). (See figure 7.15).
The U and V components have only half the vertical resolution of the Y component, but this is
no problem since the human eye is much better at seeing differences in brightness than in color.

R G B R G B

Y U D Y V D

even odd
Figure 7.15: Color plus depth information stored in the RGB channels through the use of the
YUVD format.

Pixel shader

The OpenGL wrapper originally created for RGBD rendering was extended with support for
YUVD output. This was done so that games can be played realtime with high quality at the 3D
display (with the help of the hardware rendering board).

The RGBD rendering was implemented as a two pass pixel shader algorithm (see figure 7.1)
for the reasons discussed in section 7.3.1. For the YUVD output however, these reasons are no
longer valid:

1. The resolution of the YUVD output is (in most cases) about the same as the resolution on
the RGB (and Z) input.

c© Koninklijke Philips Electronics N.V. 2005 49

TN-2004/00920 Company Confidential till 04/2006

2. The conversion to YUVD needs only a single Z input value per D output value.

Color
texture

Z-buffer
texture

YUVD
output
image

YUVD
output

Z to D
function
texture graphics card

Hardware
RGBD

rendering
board

3D
display

Interleaved
output
image

Figure 7.16: YUVD output is done with one pixel shader pass: no intermediate depth texture is
used.

This means that the YUVD output can be implemented as a single pass pixel shader algo-
rithm, without the intermediate depth texture step. The Z to D conversion can be integrated into
the YUVD output pixel shader and this doesn’t increase the number of Z to D calculations.

read color from texture;
convert RGB color to YUV color;
read Z from texture;
convert Z to D (using function texture);

output color (red) = Y;
if output pixel is on even position:

output color (green) = U;
else

output color (green) = V;
output color (blue) = D;

Figure 7.17: Pixel shader pseudocode for YUVD output.

The pseudocode for the YUVD output pixel shader is shown in figure 7.17. The Cg pixel
shader code for YUVD output is shown in appendix A.5. When compiled with the fp30 profile
the Cg program is 13 instructions long (of which 3 are texture fetches). The performance will
be discussed in chapter 8.

Hardware gamma correction

All current graphics cards support hardware gamma correction. This means that the RAMDAC
on the graphics card can perform the gamma correction in hardware so the graphics application
no longer has to do this in software. This is handy for applications, but it can interfere with the
YUVD output. It is very important that the YUVD content of the framebuffer is sent exactly to
the hardware board without the hardware gamma correction interfering. This means it should be
turned off. Some games can be configured to use their own software gamma correction instead
of the hardware method. This is the easiest solution. If the game cannot be configured to not use
the hardware gamma correction another solution is needed. A possible solution is to have the

50 c© Koninklijke Philips Electronics N.V. 2005

Company Confidential till 04/2006 TN-2004/00920

wrapper disable the hardware gamma correction. But this does mean that the gamma correction
should then be performed somewhere else, either in the YUVD pixel shader or in the hardware
board. Neither of these options have been implemented at the moment.

Morphological filtering

With RGBD rendering we want to repeat the background (and not the foreground) to fill up
deocclusions, as explained in section 5.1.3. This is a problem with content that has been anti-
aliased. The effect of anti-aliasing is that the color of a pixel on the edge of an object is a
combination of the color of the object (the foreground) and the object behind it (the background).
The depth-value in the depth-map has only one value: foreground or background. To be sure that
the RGBD rendering algorithm repeats the correct background color when deocclusions occur
the depth-map can be preprocessed with a morphological filter. The filter is chosen so it ‘grows’
foreground objects. A simple (and expensive) implementation is to replace each depth-value in
the depth-map by the minimum of the 8 surrounding depth-values (and the depth-value itself, 9 in
total thus). This implementation is called morph 3x3. Two other variants have been developed,
called morph 3x1, morph5. They are less expensive because they calculate the minimum by
using less surrounding depth-values.

Morphological filtering is not useful for our RGBD rendering pixel shaders because they
have other more severe artifacts, but for the offline RGBD rendering algorithm it makes sense.
After quality and performance comparisons it was decided that the morph 3x1 variant has the
best quality/performance ratio. Using a more expensive variant has very little additional effect
on the quality.

The Cg code for the YUVD ouput pixel shaders with integrated morphological filtering is
shown in appendices A.6, A.7 and A.8.

c© Koninklijke Philips Electronics N.V. 2005 51

TN-2004/00920 Company Confidential till 04/2006

Chapter 8

Performance measurements and
analysis

Since our software will be used to play interactive games performance is an important aspect.
We have measured and analyzed the performance of both our own software and the already
existing ‘rendering multiple times’ software. The results are presented in this chapter.

First the overall performance (the achieved framerate) will be measured in two games. Using
these measurements we will draw some conclusions. Then we will look more closely at the
various detailed aspects that determine this overall performance.

Only the performance of our software will be measured and not the quality. Quality mea-
surement is a difficult and (partly) subjective task, which is not considered useful at the moment.
The quality of the RGBD rendering variants has already been described in section 7.4.4.

8.1 Systems

For the performance measurements two PC’s were used:

• System ‘5950’: Pentium 4 (2.4 GHz), Nvidia Geforce FX 5950 ultra (AGP 8x)

• System ‘6800’: Pentium 4 (2.4 GHz), Nvidia Geforce FX 6800 ultra (AGP 8x)

System ‘6800’ has a graphics card of the latest generation, the graphics card in system ’5950’
is one generation older. Both cards are the fastest versions of their respective generation. Doing
the measurements on two systems enables us to analyze how the software scales with respect to
new graphics cards.

Both systems have almost identical hard- and software except for the amount of memory,
but that shouldn’t affect our measurements. The software installed on both systems includes the
following:

• Windows XP

• Nvidia ForceWare drivers 66.93

• Nvidia Cg Compiler Release 1.3 Beta 2

52 c© Koninklijke Philips Electronics N.V. 2005

Company Confidential till 04/2006 TN-2004/00920

8.2 Overall performance

The overall performance of a graphics application can be measured in frames/second (fps). A
game can be played realtime if the number of frames per seconds stays above a certain minimal
value. Usually 30 to 50 frames per second is considered the minimum for realtime gaming.

8.2.1 Measurements

A series of tests were performed to determine the overall performance in two games: Quake 3
and Doom 3. Quake 3 is an old game (released in 1999) while Doom 3 is a fairly new game
(released in 2004). In each game a demo was recorded and later played back, while using the
following wrappers/pixel shaders:

no wrapper: The game uses the original opengl32.dll file directly. The resolution mentioned
in the table is the resolution at which the game renders.

empty wrapper: The game uses the an empty wrapper DLL. This wrapper DLL only forwards
function calls to the original DLL, without doing anything else. The resolution mentioned
in the table is the resolution at which the game renders.

9 view rendering: The game uses the old ‘rendering multiple times’ wrapper DLL, as explained
in chapter 3. The game renders at 533x400 and the resolution of the interleaved output
image is 1600x1200.

RGBD output-depth: The game uses our wrapper DLL with the output-depth RGBD rendering
pixel shader (see section 7.4.5). The game renders at 800x600 and the resolution of the
interleaved output image is 1600x1200. The intermediate depth texture is not scaled down:
it is also 800x600.

RGBD input-depth: The game uses our wrapper DLL with the input-depth RGBD rendering
pixel shader (see section 7.4.7). The pixel shader uses a search range of 11 pixels in
the input image. (The effect of the search range on the performance is measured in sec-
tion 8.3). The game renders at 800x600 and the resolution of the interleaved output image
is 1600x1200. The intermediate depth texture is not scaled down: it is also 800x600.

YUVD output: The game uses our wrapper DLL with the YUVD output pixel shader (see
section 7.5). The game renders at 720x540 and the resolution of YUVD output is also
720x540.

The results of the measurements are shown in table 8.1 and 8.2. The input-depth find-nearest
RGBD rendering variant was not included in the measurements because it is slower than the
output-depth variant but doesn’t produce better results (see section 7.4.6).

In the tables two numbers are presented: frames/seconds (fps) and time per frame (ms/frame).
The time per frame is simply the reciprocal of the framerate.

8.2.2 Analysis

What can be concluded from the overall performance measurements?

• Playing recent games on the 3D display is only possible with the RGBD output-depth
wrapper (33.4 fps) or with the YUVD output wrapper in combination with the hardware
rendering (52.7 fps). The mentioned framerates are for an 6800 card.

c© Koninklijke Philips Electronics N.V. 2005 53

TN-2004/00920 Company Confidential till 04/2006

Geforce 5950 Geforce 6800
Test fps ms/frame fps ms/frame
no wrapper (800x600) 408.5 2.4 327.7 3.0
no wrapper (1600x1200) 311.8 3.2 251.1 4.0
empty wrapper (1600x1200)176.6 5.7 235.8 4.2
9 view rendering 29.0 34.5 49.0 20.4
RGBD output-depth 24.9 40.1 85.1 11.8
RGBD input-depth 0.148 6745 2.5 400.0
YUVD output (720x540) 177.0 5.6 223.1 4.5

Table 8.1: Quake 3 overall performance measurements.

Geforce 5950 Geforce 6800
Test fps ms/frame fps ms/frame
no wrapper (800x600) 31.5 31.7 55.7 18.0
no wrapper (1600x1200) 9.2 108.7 37.8 26.5
empty wrapper (1600x1200)8.7 114.9 34.1 29.3
9 view rendering 7.2 138.9 13.1 76.3
RGBD output-depth 13.4 74.6 33.4 29.9
RGBD input-depth 0.182 5497 2.4 416.7
YUVD output (720x540) 27.2 36.8 52.7 19.0

Table 8.2: Doom 3 overall performance measurements.

• The RGBD input-depth shader is very slow, even with the 6800 card (2.5 fps). A graphics
card should be at least 12 times as fast to let this shader run at an acceptable speed (30
fps). For our performance measurements we used a small search range of 11 input pixels.
This limits the 3D effect. To produce output with the same quality as the offline rendering
algorithm the search range has to to be increased. Also the pixel shader has to be improved
(taking care of lens shift, better filtering, etc.). These two combined would make the pixel
shader much slower. Therefore we can be sure that input-depth RGBD rendering on the
graphics card will not be a viable option in the near future (assuming that the programming
model doesn’t change).

• The RGBD input-depth shader runs 15x faster (on average) on a Geforce 6800 than on a
Geforce 5950. This can (partly) be explained by the fact that the 6800 has more and faster
pixel shader units. We are unsure if this trend will continue at the same rate in the future.

• The YUVD output wrapper has a low overhead (average 4.15 ms/frame on a Geforce 5950
and 1.25 ms/frame on a Geforce 6800) compared to ‘no wrapper 800x600’.

8.3 Detailed performance

In addition to measuring the overall achieved framerate we would like to know how long the
individual tasks that are performed take. If we look at the work done for one frame we can
divide it into two major parts: the time needed by the application to render the central view and
the extra time needed by the wrapper to do its work. The work of the wrapper can be further
divided into smaller parts:

54 c© Koninklijke Philips Electronics N.V. 2005

Company Confidential till 04/2006 TN-2004/00920

1. Application render time

2. Wrapper overhead time:

(a) Save & set state

(b) Update textures

(c) Z to D

(d) RGBD rendering

(e) Restore state

For the YUVD output the division is somewhat different: there is no separate Z to D step
since that is integrated into the YUVD output step:

1. Application render time

2. Wrapper overhead time:

(a) Save & set state

(b) Update textures

(c) YUVD output

(d) Restore state

8.3.1 Framerate formula

The achieved frameratef (in frames/sec) of a graphics application in combination with our
wrapper is determined by the following formula:

frameratef =
1

a+ w
(8.1)

wherea is the time (in seconds) needed by the application to render a frame andw is the
overhead time (in seconds) needed by the wrapper to do its work. Suppose an application (with-
out wrapper) achieves a framerate of 50 frames/sec. This means thata is 0.02 seconds (20 ms).
If we use this application in combination with a wrapper that needs 10 ms per frame to do its
work then framerate will drop to 1

0.02+0.01 = 33.3 fps.
Formula 8.1 is a simplification of the real situation. Using a wrapper DLL not only affects

the timew, but also the timea needed by the application to render a frame. This is because the
forwarding of function calls to the original DLL takes some time. We will ignore this effect in
our calculations, but this effect is visible in table 8.1. There is a difference in framerate between
‘no wrapper (1600x1200)’ and ‘empty wrapper (1600x1200)’.

We would like to know how large the overhead timew is for the different wrappers/pixel
shaders. This would enable us to calculate the new framerate of a graphics application given the
original framerate (without wrapper).

Also our software has many parameters (different resolutions, search range, etc.). We would
like to know how these parameters affect the performance of the individual steps shown in sec-
tion 8.3 and and how this scales.

Parameters

The parameters in table 8.3 can possibly affect the performance of our software.

c© Koninklijke Philips Electronics N.V. 2005 55

TN-2004/00920 Company Confidential till 04/2006

Application render resolution (# pixels) Na

Color depth (bits per pixel) Bc
Z-buffer precision (bits per pixel) Bz
Depth texture resolution (# pixels) Nd

RGBD or YUVD output resolution (# pixels) No

Z to D function texture width (# texels) Nf

Table 8.3: Parameters that can possibly affect the performance of our software.

8.3.2 Measurements

Reliability

We have added code in our wrapper that measures how long the individual steps shown in sec-
tion 8.3 take. This is not as simple as it seems: it is not enough to measure the time it takes to do
the OpenGL function calls. The OpenGL calls only submit rendering requests to a buffer. The
actual rendering is done on the graphics card asynchronously later. To get good timing results
we have to wait until the OpenGL calls have been executed (by the hardware). TheglFinish
call can be used for that: it blocks until all the previous commands have been executed. It syn-
chronizes the CPU and the GPU. This means that the timing code in the wrapper affects the
measurements, but this is inevitable.

In the next five sections the individual measurements will be discussed. We will measure the
following steps:

• Update textures

• Z to D

• RGBD output-depth rendering

• RGBD input-depth rendering

• YUVD output

We will not measure the time taken by the save & set state and the restore state steps since
they are very small.

Update textures

Update textures copies the framebuffer (both RGB and Z) to two textures. Since this is done
with a memory copy on the graphics card itself the time this takes will be proportional to the
render resolution of the application (Na). Two other parameters that affect the performance are
the color depth of the color buffer (Bc) and the precision of the z-buffer (Bz).

We variedNa and measured the time update textures takes (withBc = 8 andBz = 24). As
expected the performance scaled linearly with the resolution. This resulted in 1.56 ns/pixel on
a Geforce 5950 and 0.69 ns/pixel on a Geforce 6800. Using these results we can calculate the
speed at which both graphics cards can copy memory internally.

Memory copy bandwidth (5950)=
1

1.56 · 10−9
· 3 · 8 + 24

8
= 3.58 GB/s (8.2)

56 c© Koninklijke Philips Electronics N.V. 2005

Company Confidential till 04/2006 TN-2004/00920

Memory copy bandwidth (6800)=
1

0.69 · 10−9
· 3 · 8 + 24

8
= 8.10 GB/s (8.3)

These results seem alright.
We only measured with a 32-bits color buffer and a 24-bits z-buffer since 16-bits color or Z

is not used anymore by current games.

Z to D

The Z to D step will take a time proportional to the resolution of resulting the depth texture (Nd).
Some other parameters that can be varied are the resolution of the input (the Z-buffer texture,
Na) and the width (in texels) of the function texture (Nf).

We varied the depth texture resolutionNd and measured the time Z to D takes while keeping
all other parameters constant (Na = 800 × 600 andNf = 256). As expected the performance
scaled linearly with the resolution. This resulted in 0.67 ns/pixel on a Geforce 5950 and 0.24
ns/pixel on a Geforce 6800.

We didn’t measure the effect of varying the resolution of the Z textureNa, but this should
have very little effect. The number of Z texture fetches depends solely on the resolution of the
resulting depth texture: one texture fetch is done in the Z texture is for each pixel in the depth
texture.

Changing the width of the Z to D function texture (Nf) didn’t have measurable impact on
the results.

RGBD output-depth

The performance of the RGBD output-depth rendering depends on the following parameters:
color texture resolution (Na), depth texture resolution (Nd), output resolution (No) and the gain
parameter.

The output resolution is by far the most important. We varied the output resolutionNo and
measured the performance while keeping all the other parameters constant (Na = 800×600 and
Nd = 800× 600). As expected there was a linear relation between the performance and output
resolution. This resulted in 12.07 ns/pixel on a Geforce 5950 and 1.89 ns/pixel on a Geforce
6800.

Varying the resolution of the depth texture (Nd) should have very little effect on the perfor-
mance since the number of depth texture fetches depends solely on the resolution of the output:
one texture fetch in the depth texture is done for each pixel in the output image. We didn’t
measure this effect.

The gain parameter for the RGBD rendering affects the distance pixels shift horizontally.
When this distance increases the texture fetches in the color texture will become slower because
they are no longer cached by the texture cache (a small memory that hold the last accessed
texels). We didn’t measure this effect.

RGBD input-depth

The performance of the RGBD input-depth rendering depends on the following parameters:
color texture resolution (Na), depth texture resolution (Nd), output resolution (No) and the gain
parameter and the size of the search range.

We varied the output resolutionNo while keeping all the other parameters constant (Na =
800 × 600, Nd = 800 × 600 and search range 11 input pixels). As expected there was a linear

c© Koninklijke Philips Electronics N.V. 2005 57

TN-2004/00920 Company Confidential till 04/2006

relation between the time needed and the output resolution. This resulted in 3292 ns/pixel on a
Geforce 5950 and 207.7 ns/pixel on a Geforce 6800.

We also varied the search range and kept all other parameters constant. The resulting mea-
surements are shown in figure 8.1 and 8.2. As can be seen in these two plots the relationship
between the search range and the time needed is non-linear. This can be expected because a
larger search range means that the texture cache on the graphics card is used less efficiently.

0

1000

2000

3000

4000

5000

6000

7000

3 4 5 6 7 8 9 10 11

tim
e

(m
s)

search range (# input pixels)

RGBD ID rendering

5950

Figure 8.1: RGBD input-depth measurements on 5950.

0

50

100

150

200

250

300

350

400

3 4 5 6 7 8 9 10 11

tim
e

(m
s)

search range (# input pixels)

RGBD ID rendering

6800

Figure 8.2: RGBD input-depth measurements on 6800.

YUVD output

The performance of the YUVD output pixel shader mainly depends on the output resolution (No)
and only a little bit on the application render resolution (Na). Normally these two resolutions are
the same, or only slightly different. When using the YUVD output pixel shader it makes sense

58 c© Koninklijke Philips Electronics N.V. 2005

Company Confidential till 04/2006 TN-2004/00920

to let the game render a frame at the same resolution as the YUVD output resolution. No up-
or downscaling has to performed in that case, so no quality is lost. Only when the game cannot
render at the resolution required for the YUVD output another resolution has to be chosen. For
example when the game cannot render at 720x540 it is configured to render at 640x480 instead.
The YUVD output pixel shader automatically scales this to 720x540.

There are a number of different YUVD output variants, they only differ in the type of mor-
phological filtering they perform on the Z-buffer.

We varied the output resolutionNo while keeping all the other parameters constant (Na =
800 × 600). We did this for all the morphological filtering variants. As expected there was a
linear relation between the time needed and the output resolution. The measurement results are
in table 8.4.

8.3.3 Analysis

All the detailed measurements are collected in table 8.4.

ns/pixel
Step Symbol 5950 6800
update textures Put 1.56 0.69
Z to D Pztod 0.67 0.24
RGBD output-depth Prgbd−od 12.07 1.89
RGBD input-depth Prgbd−id 3292 207.7
YUVD Pyuvd 7.87 1.54
YUVD morph 3x1 Pyuvd31 17.03 2.83
YUVD morph 5 Pyuvd5 21.04 4.17
YUVD morph 3x3 Pyuvd33 42.39 6.87

Table 8.4: Detailed performance measurements.

What can be concluded from the detailed measurements?

• The Z to D step is very fast when compared to the RGBD rendering step. Optimizing it
cannot have a big effect.

• The YUVD output with morph 3x1 is about twice as slow as the YUVD output (without
morphological filtering). The other variants are a lot slower, but offer no real quality
improvement. Therefore the morph 3x1 variant is the ‘recommend’ one to use.

The measurements in the table can be used to calculate the framerate of a graphics applica-
tion, given some input parameters.

Let us start with the simplest case: YUVD output. In that case the frameratef can be
calculated as follows:

f =
1

a+ (Put ·Na) + (Pyuvd ·No)
(8.4)

Put is the time taken (in seconds) by the copy to textures step (per pixel). It can be found in
section 8.3.2.Pyuvd is the time taken (in seconds) by YUVD output per output pixel. It can be
found in table 8.4.

With a similar formula the framerate for all the other wrappers/pixel shaders can be calcu-
lated. We will not do this however, since it has no real practical use.

c© Koninklijke Philips Electronics N.V. 2005 59

TN-2004/00920 Company Confidential till 04/2006

Chapter 9

Conclusions & future work

9.1 Conclusions

RGBD rendering is a method that takes a 2D image plus its depth-map and uses these to construct
new images for virtual viewpoints. We have investigated how realtime RGBD rendering can be
implemented on a graphics card by using programmable pixel shaders. This was implemented
by means of an OpenGL DLL wrapper.

We have accomplished the following:

• We have created an OpenGL DLL wrapper that uses pixel shaders to do RGBD render-
ing on a graphics card. Three RGBD rendering variants have been implemented using
pixel shaders. Only one of them (the output-depth variant) is practically useful due to
performance reasons.

• We have analyzed how the information in the z-buffer of a graphics pipeline can be used
as depth information for RGBD rendering. This resulted in the Z to D equation.

• We have modified our OpenGL DLL wrapper and created a new pixel shader that produces
‘YUVD output’. YUVD is a method to encode a 2D image plus depth-map in a single
image. It is used as input for a hardware RGBD rendering board that has been developed
by Philips.

Our work resulted in some spinoffs:

• Philips has developed a ‘video-recorder’ OpenGL wrapper [6]. This wrapper logs frame-
buffer images to bitmap files on the harddisk. We have created a new video-recorder
wrapper that also supports the logging of Z-maps (directly from the z-buffer) and depth-
maps (resulting from the Z to D function).

• Philips has developed a CreateWrapper application [6]. It uses an existing DLL file as
input to produce a C source code file that, when compiled, results in an (empty) wrapper
DLL. We have made some small modifications to the existing CreateWrapper application.

The most important conclusion of this thesis is that high quality realtime RGBD rendering
on the graphics hardware itself is not feasible. This is caused by the limited programming model
of the graphics hardware. A pixel shader is output driven: each execution of a pixel shader
results in only one output color. It forces us to use an inefficient inverse version of the RGBD
rendering algorithm. Either a huge performance increase of the graphics hardware, or a more

60 c© Koninklijke Philips Electronics N.V. 2005

Company Confidential till 04/2006 TN-2004/00920

general programming model is needed. To implement RGBD rendering efficiently we would
need input driven pixel shaders that can update the color of multiple output pixels at once.

There are however two other approaches that enable graphical applications such as games to
be played in realtime on the multiview display:

1. Low quality RGBD rendering on graphics hardware. This can be done in realtime on the
graphics hardware itself but the quality is low (resulting in artifacts on edges of objects,
less sharp images, etc.).

2. High quality RGBD rendering on a separate RGBD rendering hardware board. In this
scenario the graphics card is still used to convert the information in the z-buffer into a
depth-map and to send the 2D image and its depth-map to the hardware board in a special
format. This enables high quality realtime 3D gaming but a separate hardware board is
needed.

Another important problem for RGBD rendering on the graphics card is that the information
in the z-buffer is increasingly less reliable for use as depth-map. New games use more and more
‘rendering tricks’ that result in incorrect depth-maps.

9.2 Future work

There remains enough work for the future:

1. Investigate the effect on our software of enabling anti-aliasing. The game can enable
anti-aliasing (multisampling and/or supersampling). How does that affect our wrapper?
Possible problems: higher resolution color buffer texture, pixel shader gets executed mul-
tiple times per output pixel, etc.

2. Investigate if it is possible to let the game render the central view directly to a texture.
Currently the game renders the central view in the framebuffer and the first thing the
wrapper does is to copy it to a texture. Letting the game render directly to a texture is
expected to be faster. The OpenGL extension ARB_render_texture can be used for this,
but it has some restrictions that could limit its use.

3. Render the depth-map directly to a texture during the Z to D conversion pass. Currently it
is rendered to the framebuffer and then copied to a texture directly afterwards. Rendering
directly to a texture is expected to be faster.

4. Research different kinds of mappings from scene depth to perceived depth (see sec-
tion 6.4.4). This could involve making the mappings described in section 6.4.4 realtime
adjustable which allows for easy experimentation with depth effects.

5. Change the behavior of the OpenGL functions listed in table 7.1. These functions cause
troubles when viewport scaling is used.

6. Further investigate how the z-buffer errors can be solved. This should result in changes
to the wrapper that result in better depth-maps when the application uses all kinds of
‘rendering tricks’.

7. Instead of only rendering the central view we could let the game only render the two outer
views and use the two depth-maps to create the in-between views. This would help to
solve the deocclusion problem.

c© Koninklijke Philips Electronics N.V. 2005 61

TN-2004/00920 Company Confidential till 04/2006

8. Improve the detection of the near and far plane values used by the application (see sec-
tion 7.3.3).

There are numerous small improvements that can be made in the wrapper and pixel shader
software. These have been documented in a text file that is included with source code.

62 c© Koninklijke Philips Electronics N.V. 2005

Company Confidential till 04/2006 TN-2004/00920

References

[1] Vision 3D, What is Stereo Vision?, http://www.vision3d.com/stereo.
html

[2] R-P. Berretty and F.J. Peters,Overview of rendering methods for 3d autostereoscopic
displays, Nat.Lab. Technical Note TN 2004/00529, Philips Research, 2004

[3] Dr. Nick Holliman,3D Display Systems, 2003,http://www.dur.ac.uk/n.s.
holliman/Presentations/3dv3-0.pdf

[4] Dr. Nick Holliman, Autostereoscopic Displays: Personal VR for the office and
home, 2001,http://www.dur.ac.uk/n.s.holliman/Presentations/
DTI-2001-1up.pdf

[5] StereoGraphics,Developers Handbook, 1997,http://www.stereographics.
com/support/downloads_support/handbook.pdf

[6] P. Theune,Dynamic Link Library wrapper, Koninklijke Philips Electronics N.V., 2004,
Nat.Lab. Technical Note TN 2001/457

[7] Cees van Berkel,Image Preparation for 3D-LCD, Proc SPIE vol 3639 pp84-91 (1999),
http://www.research.philips.com/Assets/Downloadablefile/
spie99-1460.pdf

[8] Nvidia Corporation, Cg Toolkit Users Manual, January 2004, http://
developer.nvidia.com/object/cg_users_manual.html

[9] Philips, 3D Displays website (public), http://www.research.philips.
com/technologies/display/3d/index.html

[10] R-P. Berretty and F. Ernst,Rendering frames for 3DTV: filtering occlusions and filling
in deocclusions, Koninklijke Philips Electronics N.V., 02/2003, Nat.Lab. Technical
Note 2003/00109

[11] William R. Mark and R. Steven Glanville and Kurt Akeley and Mark J. Kilgard,Cg: a
system for programming graphics hardware in a C-like language, ACM Trans. Graph.,
volume 22, number 3, 2003, issn 0730-0301, pages 896–907,http://doi.acm.
org/10.1145/882262.882362

[12] Michael W. Halle,Multiple Viewpoint Rendering for 3-Dimensional Displays, Mas-
sachusetts Institute of Technology, Program in Media Arts and Sciences, May 1997,
http://www.media.mit.edu/groups/spi/SPIPapers/halazar/

c© Koninklijke Philips Electronics N.V. 2005 63

http://www.vision3d.com/stereo.html
http://www.vision3d.com/stereo.html
http://www.dur.ac.uk/n.s.holliman/Presentations/3dv3-0.pdf
http://www.dur.ac.uk/n.s.holliman/Presentations/3dv3-0.pdf
http://www.dur.ac.uk/n.s.holliman/Presentations/DTI-2001-1up.pdf
http://www.dur.ac.uk/n.s.holliman/Presentations/DTI-2001-1up.pdf
http://www.stereographics.com/support/downloads_support/handbook.pdf
http://www.stereographics.com/support/downloads_support/handbook.pdf
http://www.research.philips.com/Assets/Downloadablefile/spie99-1460.pdf
http://www.research.philips.com/Assets/Downloadablefile/spie99-1460.pdf
http://developer.nvidia.com/object/cg_users_manual.html
http://developer.nvidia.com/object/cg_users_manual.html
http://www.research.philips.com/technologies/display/3d/index.html
http://www.research.philips.com/technologies/display/3d/index.html
http://doi.acm.org/10.1145/882262.882362
http://doi.acm.org/10.1145/882262.882362
http://www.media.mit.edu/groups/spi/SPIPapers/halazar/thesis-orig.pdf
http://www.media.mit.edu/groups/spi/SPIPapers/halazar/thesis-orig.pdf

TN-2004/00920 Company Confidential till 04/2006

thesis-orig.pdf

[13] Paul Bourke,Calculating Stereo Pairs, http://tinyurl.com/6z4ae

[14] The OpenGL Graphics System: A Specification,, 2004, version 2.0, SGI,
http://www.opengl.org/documentation/specs/version2.0/
glspec20.pdf

[15] R. P. Berretty and F. Ernst,High-Quality Images from 2.5D Video, Proceedings of
EUROGRAPHICS ’03, sep 2003

[16] Nick Holliman, Mapping Perceived Depth to Regions of Interest in Stereoscopic
Images, http://www.comp.leeds.ac.uk/edemand/publications/
hol04a.pdf

[17] Nick Holliman,Controlling Perceived Depth in Stereoscopic Images, http://www.
dur.ac.uk/n.s.holliman/Presentations/EI4297A-07Protocols.
pdf

[18] NVIDIA, GPU Programming Guide, Chapter 9 Stereoscopic Game Devel-
opment, http://developer.nvidia.com/object/gpu_programming_
guide.html

64 c© Koninklijke Philips Electronics N.V. 2005

http://www.media.mit.edu/groups/spi/SPIPapers/halazar/thesis-orig.pdf
http://www.media.mit.edu/groups/spi/SPIPapers/halazar/thesis-orig.pdf
http://tinyurl.com/6z4ae
http://www.opengl.org/documentation/specs/version2.0/glspec20.pdf
http://www.opengl.org/documentation/specs/version2.0/glspec20.pdf
http://www.comp.leeds.ac.uk/edemand/publications/hol04a.pdf
http://www.comp.leeds.ac.uk/edemand/publications/hol04a.pdf
http://www.dur.ac.uk/n.s.holliman/Presentations/EI4297A-07Protocols.pdf
http://www.dur.ac.uk/n.s.holliman/Presentations/EI4297A-07Protocols.pdf
http://www.dur.ac.uk/n.s.holliman/Presentations/EI4297A-07Protocols.pdf
http://developer.nvidia.com/object/gpu_programming_guide.html
http://developer.nvidia.com/object/gpu_programming_guide.html

Company Confidential till 04/2006 TN-2004/00920

Appendix A

Pixel shaders source code

A.1 Z to D

// Pixel shader
// Performs the Z to Disparity transformation (using a texture)

struct VertOut
{
float4 Position : POSITION;
float2 TexCoordOutput : TEXCOORD0;
float2 TexCoordInput : TEXCOORD1;
};

float4 main(VertOut Input,
uniform samplerRECT ZBufferTexture,

uniform sampler1D ZtoDFuncTexture) : COLOR
{
float Z;
Z = texRECT(ZBufferTexture, Input.TexCoordInput).r;

float4 ColorOut;
ColorOut.rgb = tex1D(ZtoDFuncTexture, Z).r; //output is luminance
return ColorOut;
}

A.2 RGBD output-depth
// Pixel shader
// RGBD rendering on GPU
// output-depth version

struct VertOut
{

float4 Position : POSITION;
float2 TexCoordOutput : TEXCOORD0;
float2 TexCoordInputRgb : TEXCOORD1;
float2 TexCoordInputD : TEXCOORD2;

};

//TexCoordOutput is for example [0.5..1599.5], [0.5..1199.5] with steps of 1

float4 main(VertOut Input
,uniform samplerRECT ColorBufferTexture
,uniform samplerRECT DisparityTexture
,uniform samplerRECT ViewNrTexture
,uniform float DOffset
,uniform float DGain
) : COLOR

c© Koninklijke Philips Electronics N.V. 2005 65

TN-2004/00920 Company Confidential till 04/2006

{
float4 ColorOut;
float2 TexCoordViewNrs;
float4 ViewNrs;
float4 Disparity;

//get the three view numbers from the ViewNrTexture:
TexCoordViewNrs.x = fmod(Input.TexCoordOutput.x, 3); // x = [0.5 .. 2.5]
TexCoordViewNrs.y = fmod(Input.TexCoordOutput.y, 9); // y = [0.5 .. 8.5]

ViewNrs = texRECT(ViewNrTexture, TexCoordViewNrs);
ViewNrs = (ViewNrs - ((4*31)/255.0)); //center view is 0 now

Disparity = texRECT(DisparityTexture, Input.TexCoordInputD);
Disparity = (Disparity - DOffset) * -DGain; //negation is for free (fp30)
Disparity *= ViewNrs; //amount of shift

Disparity += Input.TexCoordInputRgb.x; //new x position

ColorOut.r = texRECT(ColorBufferTexture, float2(Disparity.r, Input.TexCoordInputRgb.y)).r;
ColorOut.g = texRECT(ColorBufferTexture, float2(Disparity.g, Input.TexCoordInputRgb.y)).g;
ColorOut.b = texRECT(ColorBufferTexture, float2(Disparity.b, Input.TexCoordInputRgb.y)).b;

return ColorOut;
}

A.3 RGBD input-depth find-nearest
// Pixel shader
// RGBD rendering on GPU
// input-depth ’find nearest’ version, (no occlusion handling, no filtering).

struct VertOut
{

float4 Position : POSITION;
float2 TexCoordOutput : TEXCOORD0;
float2 TexCoordInputRgb : TEXCOORD1;
float2 TexCoordInputD : TEXCOORD2;

};

float4 main(VertOut Input
,uniform samplerRECT ColorBufferTexture
,uniform samplerRECT DisparityTexture
,uniform samplerRECT ViewNrTexture
,uniform float DOffset
,uniform float DGain
,uniform float DisparityScaleX
) : COLOR

{
half4 ColorOut;
half2 TexCoordViewNrs;

//get the three view numbers from the ViewNrTexture:
TexCoordViewNrs.x = fmod(Input.TexCoordOutput.x, 3);
TexCoordViewNrs.y = fmod(Input.TexCoordOutput.y, 9);

float3 ViewNrs = texRECT(ViewNrTexture, TexCoordViewNrs).rgb;
ViewNrs = (ViewNrs - ((4*31)/255.0)) * DGain; //center view is 0

float3 NearestDis = 1000; //’infinity’
float3 Nearesti = 0;
for(int i=-4; i<=4; i++)
{

float2 TexCoord = {Input.TexCoordInputD.x + (i*DisparityScaleX), Input.TexCoordInputD.y};
float Disparity = texRECT(DisparityTexture, TexCoord).r;
float3 Shift = (Disparity - DOffset) * ViewNrs;

66 c© Koninklijke Philips Electronics N.V. 2005

Company Confidential till 04/2006 TN-2004/00920

float3 Distance = abs(i + Shift);

Nearesti = Distance < NearestDis ? i.xxx : Nearesti;
NearestDis = Distance < NearestDis ? Distance : NearestDis;

}

float2 TexCoordR = {Input.TexCoordInputRgb.x + Nearesti.r, Input.TexCoordInputRgb.y};
float2 TexCoordG = {Input.TexCoordInputRgb.x + Nearesti.g, Input.TexCoordInputRgb.y};
float2 TexCoordB = {Input.TexCoordInputRgb.x + Nearesti.b, Input.TexCoordInputRgb.y};

ColorOut.r = texRECT(ColorBufferTexture, TexCoordR).r;
ColorOut.g = texRECT(ColorBufferTexture, TexCoordG).g;
ColorOut.b = texRECT(ColorBufferTexture, TexCoordB).b;

return ColorOut;
}

A.4 RGBD input-depth
// Pixel shader
// RGBD rendering on GPU
// input-depth ’high quality’ version, (occlusion handling, repeat background, box filter).

struct VertOut
{

float4 Position : POSITION;
float2 TexCoordOutput : TEXCOORD0;
float2 TexCoordInputRgb : TEXCOORD1;
float2 TexCoordInputD : TEXCOORD2;

};

//TexCoordOutput = [0.5..1599.5], [0.5..1199.5] with steps of 1
//texture coordinate 0.5, 0.5 is the center of the lower left texel

float Shift(float Disparity, float ViewNr)
{

//change shift => also change search range
return Disparity * ViewNr;

}

//search range (in pixels) in the input image:
#define RANGE 11 //must be odd (11 is the maximum on a Geforce 6800)
#define HALF_RANGE 5 // == RANGE/2, must be even

float4 main(VertOut Input
,uniform samplerRECT ColorBufferTexture
,uniform samplerRECT DisparityTexture
,uniform samplerRECT ViewNrTexture
,uniform float DOffset
,uniform float DGain
,uniform float DisparityScaleX
,uniform float RenderScaleX
,uniform sampler1D IFilterFuncTexture
) : COLOR

{
float4 ColorOut = {0,0,0,1};

//get the three view numbers from the ViewNrTexture:
float2 TexCoord;
TexCoord.x = fmod(Input.TexCoordOutput.x, 3);
TexCoord.y = fmod(Input.TexCoordOutput.y, 9);
float3 ViewNrs = texRECT(ViewNrTexture, TexCoord).rgb;
ViewNrs = (ViewNrs - ((4*31)/255.0)) * DGain; //center view = 0

float3 c[RANGE];
TexCoord.x = Input.TexCoordInputRgb.x - HALF_RANGE;
TexCoord.y = Input.TexCoordInputRgb.y;

c© Koninklijke Philips Electronics N.V. 2005 67

TN-2004/00920 Company Confidential till 04/2006

for(int i=0; i<RANGE; i++)
{

c[i]= texRECT(ColorBufferTexture, TexCoord).rgb;
TexCoord.x += 1;

}

float3 d[RANGE+2]; //nr of d’s needed = nr of colors + 2
TexCoord.x = (Input.TexCoordInputRgb.x - HALF_RANGE - 1) * DisparityScaleX;
TexCoord.y = Input.TexCoordInputD.y;
for(int i=0; i<RANGE+2; i++)
{

//read in D value
d[i] = texRECT(DisparityTexture, TexCoord).r;
//apply disparity offset
d[i] -= DOffset;
//calculate shift relative to input position i
d[i] *= ViewNrs;
//calculate new position relative to position of output pixel
d[i] += (i - HALF_RANGE) * RenderScaleX;

TexCoord.x += DisparityScaleX;
}

float dx,dn; //previous and current pixels
float pl, pr; //left and right address for ifilter function

for(int subpix=0; subpix<3; subpix++) //r,g,b
{

if(ViewNrs[subpix] >= 0)
{

//camera translation to the left
//walk over the input image from the left to the right

//box filter:
pl = clamp(d[1][subpix]*0.75 + 0.5, 0, 1);

for(int i=0; i<RANGE; i++) //step over the color input
{

if(d[i+2][subpix] > d[i+1][subpix])
{

//Splat(dn, OutX, dx, subpix, pIn[XYC_INDEX(x, (int)(OutY/ScaleY), sub-
pix, g_RenderResolutionX)]);

//void Splat(float left, int address, float right, int subpix, float color)

pr = clamp(d[i+2][subpix]*0.75 + 0.5, 0, 1);

//weight = IFILTFUNC(pr) - IFILTFUNC(pl);

//pRow[address*3+subpix] += weight * color;
ColorOut[subpix] += (pr - pl) * c[i][subpix];

pl = pr;
}

}
}
else
{

//camera translation to the right
//walk over the input image from the right to the left

//box filter:
pr = clamp(d[RANGE][subpix]*0.75 + 0.5, 0, 1);

for(int i=RANGE-1; i>=0; i--) //step over the color input
{

if(d[i][subpix] < d[i+1][subpix])
{

//Splat(dn, OutX, dx, subpix, pIn[XYC_INDEX(x, (int)(OutY/ScaleY), sub-

68 c© Koninklijke Philips Electronics N.V. 2005

Company Confidential till 04/2006 TN-2004/00920

pix, g_RenderResolutionX)]);
//void Splat(float left, int address, float right, int subpix, float color)

pl = clamp(d[i][subpix]*0.75 + 0.5, 0, 1);

//weight = IFILTFUNC(pr) - IFILTFUNC(pl);

//pRow[address*3+subpix] += weight * color;
ColorOut[subpix] += (pr - pl) * c[i][subpix];

pr = pl;
}

}
}

} //for subpix

return ColorOut;
}

A.5 YUVD output

// Pixel shader
// YUVD output (for use with hardware rendering board).

// The output is encoded in the RGB channels of the output as follows:
// YUD YVD YUD YVD etc.

// Notes:
// -Disable hardware gamma correction (in the game) when using this shader!
// For Quake3: +set r_ignorehwgamma "1" +set r_ext_gamma_control "0"
// -Using halfs instead of floats didn’t improve frame rate on 5950 or 6800 cards.

struct VertOut
{
float4 Position : POSITION;
float2 TexCoordOutput : TEXCOORD0;
float2 TexCoordInput : TEXCOORD1;
};

float4 main(VertOut Input,
uniform samplerRECT ColorBufferTexture,
uniform samplerRECT ZBufferTexture,
uniform sampler1D ZtoDFuncTexture

) : COLOR
{
#define Fy 230.0/255.0
#define Fuv 235.0/255.0
const float3 Yweights = { 0.299*Fy , 0.587*Fy , 0.114*Fy };
const float3 Uweights = { -0.169*Fuv, -0.331*Fuv, 0.500*Fuv };
const float3 Vweights = { 0.500*Fuv, -0.419*Fuv, -0.081*Fuv };
float4 ColorOut;

float4 C = texRECT(ColorBufferTexture, Input.TexCoordInput);
float Z = texRECT(ZBufferTexture, Input.TexCoordInput).r;
float D = tex1D(ZtoDFuncTexture, Z).r;
ColorOut.r = 0.0625+dot(Yweights,C.rgb);
ColorOut.g = 0.5 +
(frac(0.5*Input.TexCoordOutput.x)<0.5 // odd or even pixel
? dot(Uweights,C.rgb)
: dot(Vweights,C.rgb));
ColorOut.b = D;

return ColorOut;
}

c© Koninklijke Philips Electronics N.V. 2005 69

TN-2004/00920 Company Confidential till 04/2006

A.6 YUVD output (morph 3x1)
struct VertOut
{
float4 Position : POSITION;
float2 TexCoordOutput : TEXCOORD0;
float2 TexCoordInput : TEXCOORD1;
};

float4 main(VertOut Input,
uniform samplerRECT ColorBufferTexture,
uniform samplerRECT ZBufferTexture,
uniform sampler1D ZtoDFuncTexture

) : COLOR
{
#define Fy 230.0/255.0
#define Fuv 235.0/255.0
const float3 Yweights = { 0.299*Fy , 0.587*Fy , 0.114*Fy };
const float3 Uweights = { -0.169*Fuv, -0.331*Fuv, 0.500*Fuv };
const float3 Vweights = { 0.500*Fuv, -0.419*Fuv, -0.081*Fuv };

// 0 0 0
// 1 1 1
// 0 0 0
float Z;
Z = texRECT(ZBufferTexture, Input.TexCoordInput).r;
Z = min(Z, texRECT(ZBufferTexture, Input.TexCoordInput+float2(-1, 0)).r);
Z = min(Z, texRECT(ZBufferTexture, Input.TexCoordInput+float2(1, 0)).r);

float4 C = texRECT(ColorBufferTexture, Input.TexCoordInput);
float4 ColorOut;
ColorOut.r = 0.0625+dot(Yweights,C.rgb);
ColorOut.g = 0.5 +
(frac(0.5*Input.TexCoordOutput.x)<0.5 // odd or even pixel
? dot(Uweights,C.rgb)
: dot(Vweights,C.rgb));
ColorOut.b = tex1D(ZtoDFuncTexture, Z).r;

return ColorOut;
}

A.7 YUVD output (morph 5)
struct VertOut
{
float4 Position : POSITION;
float2 TexCoordOutput : TEXCOORD0;
float2 TexCoordInput : TEXCOORD1;
};

float4 main(VertOut Input,
uniform samplerRECT ColorBufferTexture,
uniform samplerRECT ZBufferTexture,
uniform sampler1D ZtoDFuncTexture

) : COLOR
{
#define Fy 230.0/255.0
#define Fuv 235.0/255.0
const float3 Yweights = { 0.299*Fy , 0.587*Fy , 0.114*Fy };
const float3 Uweights = { -0.169*Fuv, -0.331*Fuv, 0.500*Fuv };
const float3 Vweights = { 0.500*Fuv, -0.419*Fuv, -0.081*Fuv };

// 1 0 1
// 0 1 0
// 1 0 1
float Z;
Z = texRECT(ZBufferTexture, Input.TexCoordInput).r;

70 c© Koninklijke Philips Electronics N.V. 2005

Company Confidential till 04/2006 TN-2004/00920

Z = min(Z, texRECT(ZBufferTexture, Input.TexCoordInput+float2(-1,-1)).r);
Z = min(Z, texRECT(ZBufferTexture, Input.TexCoordInput+float2(1,-1)).r);
Z = min(Z, texRECT(ZBufferTexture, Input.TexCoordInput+float2(-1, 1)).r);
Z = min(Z, texRECT(ZBufferTexture, Input.TexCoordInput+float2(1, 1)).r);

float4 C = texRECT(ColorBufferTexture, Input.TexCoordInput);
float4 ColorOut;
ColorOut.r = 0.0625+dot(Yweights,C.rgb);
ColorOut.g = 0.5 +
(frac(0.5*Input.TexCoordOutput.x)<0.5 // odd or even pixel
? dot(Uweights,C.rgb)
: dot(Vweights,C.rgb));
ColorOut.b = tex1D(ZtoDFuncTexture, Z).r;

return ColorOut;
}

A.8 YUVD output (morph 3x3)

struct VertOut
{
float4 Position : POSITION;
float2 TexCoordOutput : TEXCOORD0;
float2 TexCoordInput : TEXCOORD1;
};

float4 main(VertOut Input,
uniform samplerRECT ColorBufferTexture,
uniform samplerRECT ZBufferTexture,
uniform sampler1D ZtoDFuncTexture

) : COLOR
{
#define Fy 230.0/255.0
#define Fuv 235.0/255.0
const float3 Yweights = { 0.299*Fy , 0.587*Fy , 0.114*Fy };
const float3 Uweights = { -0.169*Fuv, -0.331*Fuv, 0.500*Fuv };
const float3 Vweights = { 0.500*Fuv, -0.419*Fuv, -0.081*Fuv };

// 1 1 1
// 1 1 1
// 1 1 1
float Z;
Z = texRECT(ZBufferTexture, Input.TexCoordInput).r;
Z = min(Z, texRECT(ZBufferTexture, Input.TexCoordInput+float2(-1, 0)).r);
Z = min(Z, texRECT(ZBufferTexture, Input.TexCoordInput+float2(1, 0)).r);
Z = min(Z, texRECT(ZBufferTexture, Input.TexCoordInput+float2(-1,-1)).r);
Z = min(Z, texRECT(ZBufferTexture, Input.TexCoordInput+float2(0,-1)).r);
Z = min(Z, texRECT(ZBufferTexture, Input.TexCoordInput+float2(1,-1)).r);
Z = min(Z, texRECT(ZBufferTexture, Input.TexCoordInput+float2(-1, 1)).r);
Z = min(Z, texRECT(ZBufferTexture, Input.TexCoordInput+float2(0, 1)).r);
Z = min(Z, texRECT(ZBufferTexture, Input.TexCoordInput+float2(1, 1)).r);

float4 C = texRECT(ColorBufferTexture, Input.TexCoordInput);
float4 ColorOut;
ColorOut.r = 0.0625+dot(Yweights,C.rgb);
ColorOut.g = 0.5 +
(frac(0.5*Input.TexCoordOutput.x)<0.5 // odd or even pixel
? dot(Uweights,C.rgb)
: dot(Vweights,C.rgb));
ColorOut.b = tex1D(ZtoDFuncTexture, Z).r;

return ColorOut;
}

c© Koninklijke Philips Electronics N.V. 2005 71

TN-2004/00920 Company Confidential till 04/2006

A.9 Interleaving

This pixel shader is used with the rendering multiple times wrapper from chapter 3. It is not
used in our software.

// Pixel shader
// Input: 9 view tiled image
// Ouput: interleaved image

struct Vertout
{

float4 HPOS : POSITION;
float4 color : COLOR0;
float2 uv : TEXCOORD0;

};

float4 main(Vertout fromVertex,
uniform samplerRECT frameBufferTexture,
uniform samplerRECT r_mapX,
uniform samplerRECT g_mapX,
uniform samplerRECT b_mapX,
uniform samplerRECT r_mapY,
uniform samplerRECT g_mapY,
uniform samplerRECT b_mapY) : COLOR

{
float MAX_USHORT=65535.0;
float MAX_MSBITS=32.0;

float2 coord_R;
coord_R.x = ((float) texRECT(r_mapX, fromVertex.uv))*MAX_USHORT/MAX_MSBITS;
coord_R.y = ((float) texRECT(r_mapY, fromVertex.uv))*MAX_USHORT/MAX_MSBITS;

float2 coord_G;
coord_G.x = ((float) texRECT(g_mapX, fromVertex.uv))*MAX_USHORT/MAX_MSBITS;
coord_G.y = ((float) texRECT(g_mapY, fromVertex.uv))*MAX_USHORT/MAX_MSBITS;

float2 coord_B;
coord_B.x = ((float) texRECT(b_mapX, fromVertex.uv))*MAX_USHORT/MAX_MSBITS;
coord_B.y = ((float) texRECT(b_mapY, fromVertex.uv))*MAX_USHORT/MAX_MSBITS;

float4 colorOut;
colorOut.r = texRECT(frameBufferTexture, coord_R).r;
colorOut.g = texRECT(frameBufferTexture, coord_G).g;
colorOut.b = texRECT(frameBufferTexture, coord_B).b;
colorOut.a = 1.0;

return colorOut;
}

72 c© Koninklijke Philips Electronics N.V. 2005

Company Confidential till 04/2006 TN-2004/00920

Appendix B

Configuration files

B.1 wrapper_rgbd.ini

The configuration for our software is stored in an .ini file. A sample version is shown below.

[Config]

; Config file for the RGBD rendering OpenGL wrapper.
; Place this file together with the wrapper DLL (opengl32.dll) in the same
; directory as the OpenGL application.

; Should the wrapper change the current display settings when the application
; starts?
; 0 means don’t change that specific setting.
ChangeDisplayResW=0
ChangeDisplayResH=0
ChangeDisplayRefreshRate=0
; When disabling hardware gamma correction with the wrapper be sure to configure
; the game to use software gamma correction instead!
; Boolean: can be 0 (false) or 1 (true)
DisableHardwareGamma=0

; Resolution used by the OpenGL application.
; Both 0 means autodetect.
ResAppW=0
ResAppH=0

; Resolution of RGB (color) input for the RGBD rendering.
; The OpenGL application is forced to render at this resolution, indepent of
; it’s own resolution.
; This is called viewport scaling. It doesn’t work with all games. (Quake3 works).
; Both 0 means the application renders at is own resolution (no viewportscaling).
; This resolution cannot be higher than the active display resolution.
; (Otherwise the edges of the image will fall off).
ResInputRgbW=800
ResInputRgbH=600

; Resolution of the D (disparity) input for the RGBD rendering.
; The D input can be scaled down by the wrapper during the Z => D conversion
; pass.
; Both 0 means use the same size as ResInputRgb (no scaling down is
; performed).
ResInputDW=0
ResInputDH=0

; Resolution of the RGBD rendering output (the interleaved image).
; Both 0 means use the same size as ResApp.
ResOutputW=1600

c© Koninklijke Philips Electronics N.V. 2005 73

TN-2004/00920 Company Confidential till 04/2006

ResOutputH=1200
; Position of the lower left corner of RGBD rendering output on the display:
ResOutputPosX=0
ResOutputPosY=0

; Initial parameters for the RGBD rendering.
; These can be changed realtime with the function keys.
DOffset=0.5
DGain=35

; Use dynamic Z => D conversion (with inverse projection matrix), or use fixed
; ’guessed’ function.
; Boolean: can be 0 (false) or 1 (true)
DynamicZtoD=0

; Select which RGBD rendering shader should be used:
; Shader 0: output-depth (fast)
; Shader 1: input-depth ’find nearest’ (deprecated)
; Shader 2: input-depth (slow)
RgbdShader=0

; Paths to shader files, the correct path is used based on the value of
; RgbdShader above.
RgbdOdShaderPath=pixelshader_rgbd_od.cg
RgbdIdFnShaderPath=pixelshader_rgbd_id_fn.cg
RgbdIdShaderPath=pixelshader_rgbd_id.cg

ZtoDShaderPath=pixelshader_ztod.cg

; Cg compiler profile to use, valid profiles are: latest, arbfp1, fp30, fp40, ...
RgbdShaderProfile=latest
ZtoDShaderProfile=latest

; What do the shader files contain?: source (code) or object (code).
; Object code can be generated with the command-line cgc compiler.
RgbdShaderType=source
ZtoDShaderType=source

74 c© Koninklijke Philips Electronics N.V. 2005

	Introduction
	Background information
	Stereoscopic vision
	Depth perception
	3D displays
	Screen disparity
	Perceived depth
	Image separation

	Philips 3D displays
	Multiple views
	Sub-pixel display layout
	Image preparation for 3D display
	3D images

	3D computer graphics
	Computer graphics for the 3D display
	Double buffering
	Programmable shaders
	Shader programming languages

	Rendering multiple times
	OpenGL wrapper
	Rendering in tiled format
	Interleaving with pixel shader
	Advantages and disadvantages

	Assignment
	RGBD rendering
	Theory
	Related work
	Depth-dependent pixel shifting
	Occlusions and deocclusions

	Implementation
	Forward RGBD rendering

	Advantages and disadvantages

	From z-buffer to perceived depth
	Z-buffering
	Normalized disparity to perceived depth
	Normalized depth to normalized disparity
	Z-buffer to normalized depth
	Z-buffer
	Forward calculation
	Reverse calculation
	Issues

	RGBD rendering on GPU
	Render central view
	Framebuffer to textures
	Z to D
	Intermediate depth texture
	Pixel shader
	Detecting the projection matrix
	Z-buffer errors

	RGBD rendering
	Forward versus inverse RGBD rendering
	Implementation
	Determine the view numbers
	RGBD rendering variants
	Output-depth RGBD rendering
	Input-depth find-nearest RGBD rendering
	Input-depth RGBD rendering

	YUVD output

	Performance measurements and analysis
	Systems
	Overall performance
	Measurements
	Analysis

	Detailed performance
	Framerate formula
	Measurements
	Analysis

	Conclusions & future work
	Conclusions
	Future work

	Pixel shaders source code
	Z to D
	RGBD output-depth
	RGBD input-depth find-nearest
	RGBD input-depth
	YUVD output
	YUVD output (morph 3x1)
	YUVD output (morph 5)
	YUVD output (morph 3x3)
	Interleaving

	Configuration files
	wrapper_rgbd.ini

