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ABSTRACT

This paper addresses the issue of artifact visibility in automultiscopic 3-D lenticular displays. A straightforward
extension of the two-view lenticular autostereoscopic principle to M views results in an M-fold loss of horizontal
resolution due to the subsampling needed to properly multiplex the views. In order to circumvent the imbalance
between the horizontal and vertical resolution, a tilt can be applied to the lenticules to orient them at a small
angle to the vertical direction, as is done in the SynthaGramTM display from Stereographics Corp. In either
case, to avoid aliasing the subsampling should be preceded by suitable lowpass pre-filtering. Although for purely
vertical lenticules a sufficiently narrowband lowpass horizontal filtering suffices, the situation is more complicated
for diagonal lenticules; the subsampling of each view is no more orthogonal, and more complex sampling models
need to be considered. Based on multidimensional sampling theory, we have studied multiview sampling models
based on lattices. These models approximate pixel positions on a lenticular automultiscopic display and lead to
optimal anti-alias filters. In this paper, we report results for a separable approximation to non-separable 2-D
anti-alias filters based on the assumption that the lenticule slant is small. We have carried out experiments on a
variety of images, and different filter bandwidths. We have observed that the theoretically-optimal bandwidth is
too restrictive; aliasing artifacts disappear, but some image details are lost as well. Somewhat wider bandwidths
result in images with almost no aliasing and largely preserved detail. For subjectively-optimized filters, the
improvements, although localized, are clear and enhance the 3-D viewing experience.

Keywords: Automultiscopic displays, lenticular displays, multidimensional sampling, anti-alias filtering

1. INTRODUCTION

Stereoscopic displays have been effectively used for visualization of 3-D information for many years. Whether in
the form of anaglyph, polarized or shuttered glasses, or by means of lenticular or parallax barrier mechanisms,
stereoscopic visualization quality has been steadily improving. One reason for this improvement has been a
continuous evolution of the underlying display technology, while the other – a steady progress in the application
of digital signal processing methods. For example, a significant improvement in color reproducibility in anaglyph
stereoscopic viewing has been achieved by means of digital signal processing,1 while an efficient attenuation of
view crosstalk (ghosting) in active-eyewear (liquid-crystal shutters) stereoscopic visualization has been achieved
by means of suitable digital image pre-processing.2 Further improvements can be expected as we understand
better deficiencies of 3-D displays and seek signal processing means of defeating them.

Although stereoscopic displays are effective in conveying 3-D information to a static viewer, serious difficulties
arise when the viewer starts to move, e.g., turns his/her head. In these circumstances, motion-parallax conflict
arises since the screen parallax does not change with viewer motion although it always does when viewing true
3-D environment. This causes such unnatural effects as the perception of a rotating 3D object induced by
sideways head motion, even if the object is static (e.g., single stereo pair). The motion-parallax conflict can
be alleviated by view adaptation, i.e., the delivery to each eye of suitable views depending on current viewer
position. This can be achieved by standard stereoscopic displays in combination with head tracking; in response
to head position change suitable view is presented on the screen. The computation of views is not a problem for
computer-rendered data, however it is difficult for camera-acquired images.3

An interesting alternative is a passive mechanism used in autostereoscopic displays where switching of views in
time (temporal multiplexing) is replaced by spatial multiplexing, although at the expense of reduced spatial res-
olution. An early version of such automultiscopic (multiview autostereoscopic) display based on LCD technology
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was proposed by Philips Research Laboratories.4 Recently, two commercial automultiscopic displays have been
offered. Stereographics Corp. has developed a line of 9-view lenticular displays, called the SynthaGramTM,5

while 4-D Vision Gmbh of Germany – an 8-view display based on wavelength-selective filter arrays.6 Both
technologies have been demonstrated on LCD and plasma screens.

We have been experimenting with a 9-view 18-inch LCD version of the SynthaGramTM in which a lenticular
sheet is used to create multiple viewing zones. A straightforward extension of the two-view lenticular autostereo-
scopic principle to M views, would result in an M -fold loss of the horizontal resolution. In order to circumvent
the imbalance between the horizontal and vertical resolution, Stereographics Corp. applied a small tilt to the
lenticules. In this way a better trade-off between the vertical and horizontal resolution loss in each view can be
achieved.

The M -fold loss of the horizontal resolution in the case of purely vertical lenticules is the result of horizontal
M -fold subsampling of each view in order to multiplex the M views on the screen. Clearly, this subsampling
should be preceded by a suitable lowpass pre-filtering in order to avoid aliasing. In this case, a simple horizontal
lowpass filtering with the bandwidth of [−π/M, π/M ] would suffice. The situation, however, is more complicated
in the case of diagonal lenticules. The subsampling of each view is no more orthogonal (retained samples are not
aligned vertically between rows), and more complex sampling models need to be considered.

Based on the multidimensional sampling theory,7 we study in this paper multiview sampling models based
on lattices. These models can approximate pixel positions on lenticular automultiscopic displays thus leading to
optimal anti-alias filters. We report results for a separable approximation to non-separable 2-D anti-alias filters
based on the assumption that the lenticule slant is small. We carry out experiments on a variety of images,
and different filter bandwidths. We observe that the theoretically-optimal bandwidth is too restrictive; aliasing
artifacts disappear, but some image details are lost as well. Somewhat wider bandwidths result in images with
almost no aliasing and largely preserved detail. For subjectively-optimized filters, the improvements, although
localized, are clear and enhance the 3-D viewing experience.

2. REVIEW OF M-D SAMPLING THEORY

Automultiscopic displays convey 3-D information by means of multiplexing a number of views on the screen,
and by employing a light-path selective mechanism such as lenticular sheet, parallax barrier, etc. At a specified
distance from the screen, a viewer can see largely different sets of pixels by each eye due to the difference in angles
formed by lines passing from each eye’s optical center to a given screen point, thus inducing 3-D perception.
If the display employs M views, and each original view is captured at full-screen resolution (e.g., 1280×1024),
then in order to multiplex all views on the screen some form of M :1 subsampling must be applied to intensi-
ties/color of each view. As it will turn out in the next section, this subsampling is, in general, non-orthogonal
(non-rectangular) and, therefore, cannot be described by two 1-D (one-dimensional) sampling processes, one
horizontally and one vertically. A more general sampling structure is required in order to model the multiplexing
process employed in automultiscopic displays such as the SynthaGramTM.

Below, we briefly review sampling theory of multidimensional (M-D) signals developed by Dubois.7 Let
uc(x) be an N -dimensional continuous signal, i.e., uc ∈ R and x ∈ RN . For N=2 one can think of uc as light
distribution on a 2-D sensor at a single time instant, while for N=3 – the same distribution but as a function
of time as well. Let the vectors {v1,v2, ...,vN} form a basis, not necessarily orthogonal, of RN . Then, lattice

Λ ⊂ RN is defined as a set of discrete points in RN formed by all linear combinations of vectors v1,v2, ...,vN

with integer coefficients, i.e., Λ = {w : w = n1v1 + ... + nNvN , ni ∈ Z, i = 1, ..., N}, where Z is the set of all
integers. The set {v1,v2, ...,vN} is called a basis of lattice Λ. Clearly, x ∈ Λ can be represented as a linear
combination of basis vectors: x = n1v1 + ... + nNvN . Alternatively, x = V n where V = [v1|v2|...|vN ] is called
the sampling matrix of Λ. Note that the columns of V are formed by basis vectors of Λ.

We introduce now two concepts that are essential for frequency-domain representation of M-D signals. P
is a unit cell of lattice Λ ∈ RN if: 1) P ⊂ RN ; 2)

⋃

x∈Λ
(P + x) = RN ; and 3) (P + x) ∩ (P + y) = ∅ for

x 6= y, x,y ∈ Λ. Two important examples of unit cells are: parallelepiped and Voronoi cell. Then, the set of
vectors y ∈ RN such that yT x ∈ Z ∀x ∈ Λ is called a reciprocal lattice, denoted Λ∗, with respect to the lattice
Λ (Z is again the set of all integers).
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Let u(x) be an M-D signal defined over lattice Λ, i.e., with x ∈ Λ. The Fourier transform of u(x) is defined
as follows:

U(f) =
∑

x∈Λ

u(x)e−j2πf ·x, f ∈ RN .

It can be easily verified that for r ∈ Λ∗, U(f + r) = U(f), i.e., the spectrum of signal sampled on lattice Λ is
periodic with periodicity defined by the reciprocal lattice Λ∗. This is analogous to spectral periodicity at integer
multiples of 2πfs in the 1-D case, where fs denotes 1-D sampling frequency.

We are ready now to see the frequency-domain consequences of M-D sampling. Let the samples of u be drawn
from the continuous signal uc as follows: u(x) = uc(x), x ∈ Λ ⊂ RN . Then, it can be shown7 that the Fourier
transform of the sampled signal u is:

U(f) =
1

|det V |

∑

r∈Λ∗

Uc(f + r),

where Uc is the Fourier transform of the continuous signal uc. The immediate consequence of the above summa-
tion is that a spectral overlap, known as aliasing, may occur after sampling if Uc is not sufficiently band-limited.
If aliasing occurs, the original continuous signal uc cannot be reconstructed from u without distortion. Spatial
aliasing is often visible as jagged edges in still images (N=2), while temporal aliasing can be noticed in motion
sequences as the opposite direction of sprocket wheel rotation (N=3). It has been shown,7 that in order to
assure no aliasing in the sampled signal u(x) it is sufficient (although not necessary) to limit the spectral support
of the continuous signal to the Voronoi cell PΛ∗ of the reciprocal lattice Λ∗, i.e., Uc(f) = 0 for f 6∈ PΛ∗ .

In the case of automultiscopic displays, we assume that the M views have been properly acquired and contain
no aliasing. These views are then subsampled by factor of M :1 in order to allow multiplexing on the screen. If
we can model this subsampling process by lattice Λ then, in order that the subsampled views contain no aliasing,
we must apply lowpass filtering with the passband limited to the Voronoi cell of Λ∗.

3. SAMPLING MODEL

A schematic representation of how 9 views are seen by a viewer in front of an automultiscopic lenticular display,
such as the SynthaGramTM, is shown in Fig. 1. RGB components of pixels from each view can be assigned to
screen RGB components (sub-pixels) depicted in Fig. 1 in a variety of ways. For example, a pixel component
from one view can be assigned to one screen sub-pixel (component) only, or it can be divided between several
neighboring sub-pixels.

1 83 4 52 96 7 1 83 4 52 96 7 1 83 4 52 96 7

R G B R G B R G B R G B R G B

R i g h t  e y e L e f t  e y e

Figure 1. Schematic representation of lenticule positions with respect to RGB sub-pixels on an LCD display, and fictitious
representation of 9 views visible from different angles.

Fig. 2 shows an assignment of single-view intensities to pixels’ RGB components similar to the one used in
9-view 18-inch SynthaGramTM monitor. The plot is at pixel resolution, with three components assigned to each
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pixel (circles – R, squares – G, triangles – B). A circle, square or triangle present means that a value is assigned
to the corresponding component at this pixel. Assignment for view #1 is shown in Fig. 2.a, and that for view #2
– in Fig. 2.b. Clearly, a complicated, non-orthogonal subsampling takes place that cannot be accurately modeled
by independent horizontal and vertical sampling processes.
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Figure 2. Simulation of an assignment of single-view intensities to RGB components of a 9-view 18-inch SynthaGramTM

monitor from Stereographics Corp. (see acknowledgments): (a) view #1; and (b) view #2. The representation is at pixel
resolution with circles denoting the red component (R), squares – green component (G), and triangles – blue component
(B).

We propose to model the above view subsampling using the concept of lattice developed in Section 2. Let
Γ be an orthonormal lattice (traditional rectangular sampling) on which pixels of one view are defined. As
stated earlier, each pixel consists of three components RGB. In Fig. 2, lattice Γ is depicted by dots. We search
for a lattice Λ with the sampling matrix V Λ, such that positions x ∈ Λ coincide as close as possible with the
subsampled locations of one component of one view (e.g., circles, squares or triangles in Fig. 2). Clearly, we can
only find an approximate lattice Λ since locations of one component in Fig. 2 do not constitute a lattice. A more
accurate model could be achieved by a union of shifted lattices, but this is beyond the scope of this paper.

In order to find the sampling matrix V Λ, we carry out the following minimization:

min
V Λ

∑

y∈Γ

|ξΛ(y) − ξC(y)|, (1)

where ξΛ is an indicator function for Λ, i.e.,

ξΛ(y) =

{

1 if y = nint(x) for some x = [x1 x2]
T ∈ Λ,

0 otherwise,
(2)

with nint(x) = [nint(x1) nint(x2)]
T , and nint(a) being the nearest integer of a ∈ R. Similarly, ξC(y) is an

indicator function for component C, i.e., either R (circle), G (rectangle) or B (triangle):

ξC(y) =

{

1 if y coincides with location of component C,
0 otherwise.

(3)
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The above minimization searches for parameters of the sampling matrix V Λ such that locations of the lattice Λ
maximally coincide with those of one “interzigged” component. We implemented this minimization by means of
hierarchical exhaustive search, and for the subsampling patterns of one component from Fig. 2 we obtained:

V Λ =

[

1.00 0.00
8.79 13.89

]

. (4)

Note that entries in the above matrix are expressed with respect to those of the unit matrix V Γ. To verify the
accuracy of our sampling model, Fig.3 shows lattice Λ for the above sampling matrix overlaid onto R and G
components of views #1 and #2. Note an accurate overlay for isolated component sub-pixels and reasonable in-
between positions for sub-pixel pairs. For visualization reasons, Fig.3 shows only a tiny portion of the full-image
sampling grid, but we have confirmed that similar alignment occurs in the remaining parts of the grid.

As discussed in Section 2, in order to determine specifications of the anti-alias pre-filter for lattice Λ we need
to consider its reciprocal lattice Λ∗. In Fig. 4 both the lattice Λ and and its reciprocal Λ∗ are shown as bullets,
whereas the orthonormal lattice Γ and its reciprocal Γ∗ – as triangles. Recall that reciprocal lattice locations in
the frequency domain (Fig. 4) denote where the spectral replications occur. Clearly, since Λ∗ is denser than Γ∗,
the maximum support of a signal spectrum that would not induce aliasing can be larger in the case of Γ than in
the case of Λ. This is better illustrated in Fig. 5.a where the reciprocal lattices Λ∗ and Γ∗ are shown together
with their Voronoi cells (shaded). Again, to avoid aliasing when subsampling from Γ to Λ, the signal defined on
Γ must be pre-filtered by a lowpass filter with the passband limited to the Voronoi cell of the reciprocal lattice
Λ∗ (the diamond-shaped shaded area in the center).

The shape of the Voronoi cell for Λ∗ identifies the passband boundary of an ideal 2-D anti-alias pre-filter.
However, such a filter is not separable into two 1-D filters, and thus its design and implementation are far from
trivial. In the next section, we consider an approximation to these filter specifications that, although not very
accurate, will give us an indication as to what visual improvements can be expected from pre-filtering.

4. ORTHOGONAL APPROXIMATION OF THE SAMPLING MODEL

Specifications of the anti-alias pre-filter discussed above are difficult to attain in a practical filter. First, the
passband shape is not separable. Secondly, the transition-band width is zero to assure no aliasing and no loss of
information. One must approximate the ideal pre-filter, and it is a design choice how close the approximation
should be to the ideal specifications. Since for now we are interested only in validating the concept of pre-filtering
when multiplexing views, we opt for a separable rectangular passband (aligned with frequency axes fx, fy), as
shown in Fig. 5.b. The remaining issue is to decide as to the width of the rectangular passband. In order to
assure no aliasing in the subsampled data, the passband must be small enough not to overlap when replicated
on Λ∗. It turns out that a square passband with 1/4-bandwidth horizontally and vertically is a simple and
sufficiently accurate choice. Although this filter permits aliasing at frequencies located in the square’s corners,
we consider these effects negligible for now. Note that the 1/4-bandwidth means 1/4 of the Nyquist rate. Since
all the lattice plots in this paper are normalized to the orthonormal lattices Γ and Γ∗, the passband of a 1/4-band
filter is limited by ±0.125 in both directions.

It is interesting to observe that if the above 1/4-band square-shaped passband is considered to characterize
an optimal anti-alias pre-filter for some lattice, this lattice must be orthogonal (square shape of the Voronoi cell
of the reciprocal lattice). Fig. 6 shows this orthogonal lattice Λo and its reciprocal lattice Λ∗

o. This is why we
call Λo an orthogonal approximation to the sampling model.

5. EXPERIMENTAL RESULTS

5.1. Design of optimal anti-alias pre-filter

Since the 1/4-band square-shaped passband is separable, we need to design only a 1-D prototype filter. We
used the Parks-McClellan algorithm for optimum FIR filter design implemented in Matlab through the remez

function. Table 1 shows specifications of three filters with different passbands (1/3-band, 1/-4-band, and 1/5-
band) but the same transition band, in order to assure the same passband magnitude error. We will evaluate
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Figure 3. Lattice Λ (×) obtained by the minimization (1) and overlaid (with a suitable shift) onto the assignments of
red and green components from Fig. 2: (a) red component – view #1; (b) red component – view #2; (c) green component
– view #1; and (d) green component – view #2.

later the impact of filter bandwidths on the amount of aliasing present and loss of resolution. As can be seen,
filter specifications have been carefully selected so that the filter’s magnitude response drops by 3dB at exactly
1/5-th, 1/4-th and 1/3-rd of the Nyquist rate, respectively.

Fig. 7 shows the 1-D magnitude and impulse responses of the designed filters, and also the 2-D magnitude
responses of the effective 2-D filter implemented through the convolution of horizontal and vertical 1-D filters.
Note the narrow transition band of the magnitude responses, and square shape of the passbands.
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Figure 4. Subsampling model for one component of a single view: (a) lattice Λ overlaid onto Γ, and (b) reciprocal lattice
Λ∗ overlaid onto Γ∗ (• = Λ,Λ∗, and 4 = Γ,Γ∗).

Table 1. Specifications and effective bandwidths of three 1-D FIR anti-alias pre-filters (normalized Nyquist rate = 1.0).

# coeff. desired passband specified passband/stopband effective passband (-3dB)

1/5-band filter 51 0 – 0.2000 0 – 0.167 / 0.257 – 1 0 – 0.1995

1/4-band filter 51 0 – 0.2500 0 – 0.217 / 0.307 – 1 0 – 0.2495

1/3-band filter 51 0 – 0.3333 0 – 0.301 / 0.391 – 1 0 – 0.3333

5.2. Importance of bandwidth limitation before subsampling

We first demonstrate the importance of image pre-filtering prior to subsampling. Figs. 8 and 9 show images
Wedding and Julie (see acknowledgments) subsampled by 4 both horizontally and vertically without and with
1/4-band pre-filtering. Note graininess of the pavement and jagged edges (shadow of the lamp post, columns
in the ruins) in Wedding with no pre-filtering, and again graininess of the wall and jagged edges on the hat in
Julie. These effects are very clear when viewed on a computer monitor, but are less obvious in print due to the
reduced dynamic range reproduced. Differences between images processed by the 1/4-band filter and the other
two filters are subtle, and do not reproduce well in print. Clearly, lack of pre-filtering introduces distortion.

5.3. Subjective viewing of multiview images on the SynthaGramTM monitor

We have applied the designed filters to all 9 views of Wedding and Julie, and subsequently multiplexed them using
the “interzigging” software from Stereographics Corp. Viewed on an 18-inch LCD 1280×1024 SynthaGramTM

monitor the pre-filtered images offered clear although subtle improvements compared to the non-filtered ones.
In Wedding, we observed the following improvements: eliminated false colors (mostly green and red dots) on
sharp edges, improved detail on the bouquet of flowers, no “dirty-window” distortion on the metal railing under
arches of the ruins, and no false colors on the heap of rocks under the arches to the left of the photographer. We
have observed fewer improvements in Julie: eliminated false colors on the stripes of the hat, and improved edge
detail, e.g., on the rim of the hat. The smaller improvement for Julie is due to the fact that the image contains
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Figure 5. Reciprocal lattices: (a) Λ∗, and (b) Λ∗

o
overlaid onto Γ∗ together with their Voronoi cells (shaded areas at the

center) and their repetitions. (• = Λ∗ in (a) and Λ∗

o
in (b); 4 = Γ∗.)

less high-frequency content, in particular fewer high-contrast edges. We have observed similar improvements on
other images, both camera-acquired and computer-rendered.

The observed improvements are exclusively in high-frequency image areas, thus confirming the importance
of bandwidth limitation. Certainly a delicate balance between aliasing suppression and resolution loss needs to
be found. We observed that 1/5-band filtering offered no more improvements than the 1/4-band filtering, while
significantly reducing detail in high-frequency areas in both images. On the other hand, 1/3-band filtering, that
theoretically does not offer sufficient bandwidth limitation, resulted only in a marginally increased aliasing but
markedly improved detail compared to the 1/4-band filter. This suggests that further improvement might be
possible if a more accurate approximation of filter’s passband to the Voronoi cell PΛ (Fig. 5.a) can be found.

Another interesting observation we made is that aliasing distortions are particularly visible at high-contrast
edges, such as the lower arches in Wedding. We believe that the distortion is not solely due to a single-view
aliasing component but also to the multiplexing algorithm. In particular, if a screen pixel on the dark side of a
sharp high-contrast boundary contains RGB components from different views, then it is likely that a component
from another view is located on the bright edge side, thus causing edge “coloring”. A remedy for this might be
an adaptive multiplexing scheme that accounts for local contrast.

6. CONCLUSIONS

We have presented an analysis of 2-D sampling of views in a lenticular automultiscopic 3-D display. We have
found parameters of a lattice that closely approximates this sampling pattern. Since this sampling requires
non-separable 2-D filtering, we have approximated the band-limitation by a separable square-shaped 2-D filter
that is equivalent to assuming an orthogonal sampling model. We have designed 1-D 51-coefficient zero-phase
FIR filters meeting the orthogonal subsampling specifications. Applied to all views prior to multiplexing, these
filters resulted in subtle although clear improvements on edges and in high-detail areas.

As we have pointed out, a slightly wider filter resulted in improved detail without significantly increased
aliasing. This suggests that a better optimization of filter bandwidth might be beneficial. To this effect, we are
planning to study non-orthogonal sampling that leads to non-separable 2-D anti-alias filters. One possible path
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Figure 6. Orthogonal approximation of the subsampling model from Fig. 4 for one component of a single view: (a) lattice
Λo overlaid onto Γ, and (b) reciprocal lattice Λ∗

o
overlaid onto Γ∗ (• = Λo,Λ

∗

o
, and 4 = Γ,Γ∗).

to a straightforward design and implementation of non-orthogonal filtering is the Fourier transform. Efficient
implementation of the Fourier transform through the FFT (Fast Fourier Transform), and the relative ease of
specification of arbitrary passband shape in the frequency domain, provide a clear alternative to complex design
and implementation issues in the spatial domain.8

Finally, a careful inspection of the lattice Λ overlaid on individual components in Fig. 3 reveals that a more
accurate sampling model would be possible with a union of shifted lattices, so that all component positions
(circles, squares or triangles) would coincide with samples of such a model. This would require the so-called
union of cosets sampling7 and call for even more sophisticated 2-D filtering.
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Figure 7. Magnitude and impulse responses of 1/5-, 1/4-, and 1/3-band anti-alias filters used in experiments. (a-c) 1-D
magnitude response; (d-f) 1-D impulse response; and (g-i) 2-D magnitude response of separable 2-D filter. Normalized
frequency of 1.0 corresponds to the Nyquist rate.
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(a)

(b)

Figure 8. Illustration of 2-D subsampling artifacts for image Wedding: (a) 4:1 subsampling with no pre-filtering; (b) 4:1
subsampling with 1/4-band pre-filtering (Fig. 7.b).
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(a)

(b)

Figure 9. Illustration of 2-D subsampling artifacts for image Julie: (a) 4:1 subsampling with no pre-filtering; (b) 4:1
subsampling with 1/4-band pre-filtering (Fig. 7.b).
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