
Graphics Hardware (2002)
Thomas Ertl, Wolfgang Heindrich and Michael Doggett (Editors)

© The Eurographics Association 2002

Resample Hardware for 3D Graphics

Koen Meinds and Bart Barenbrug

Philips Research, Eindhoven, The Netherlands

Abstract
Texture mapping is a core technology of current real-time 3D graphics systems. To avoid aliasing artifacts,
the texture mapping resample process requires proper filtering. We present a new resample algorithm for two-
pass forward texture mapping that is suited to an efficient hardware implementation. This method delivers
high quality anti-aliased images using filter techniques based on digital signal processing. We use an input
sample driven texture resample and filtering algorithm that "splats" the contribution of each input sample
(texel) to output samples (pixels). We show how the algorithm can be efficiently implemented in a hardware
resample structure. The algorithm is incorporated and tested in a standard 3D graphics pipeline using the
OpenGL interface. Our results exhibit better anti-aliasing of textures than anisotropic filtering found in cur-
rent advanced graphics chips. We also show that the same texture filtering method can be used to implement
edge anti-aliasing. Our edge anti-aliasing results show an absence of aliasing on most edges.

Categories and Subject Descriptors: I.3.1 Graphics processors, I.3.3 Anti-aliasing, I.3.7 Texture Mapping

1 Introduction
Almost all current texturing hardware is based on the prin-
ciple of inverse texture mapping . For real-time systems, bi-
or trilinear MIP-map interpolation is the de facto standard.
Its main advantage is that it is simple to implement in
hardware. Its disadvantages (poor quality, blurry effects)
have been partially addressed by the introduction of aniso-
tropic filtering. These filtering techniques require clever
caching techniques 11 in order to reduce bandwidth de-
mands. However, with all these algorithmic and architec-
tural efforts, texture mapping in today’s real-time systems
exhibits annoying aliasing artifacts as is discussed by
Kirk16.

With forward texture mapping, texels are mapped to
screen space. Forward mapping is sometimes being viewed
as being unsuited for real time hardware acceleration. In
this paper we introduce a novel texture filter algorithm and
hardware structure based on two-pass forward texture map-
ping 5 that avoids a lot of the drawbacks commonly associ-
ated with forward texture mapping. We show how forward
texture mapping can be implemented in real time hardware
accelerators that generates high quality images which are
both texture and polygon edge anti-aliased at less costs
compared to inverse texture mapping with super sampling.
In order to test functional correctness and to be able to gen-
erate images, we have implemented our algorithms in a 3D
graphics pipeline using the OpenGL interface.

We use a texel driven resample algorithm that “splats”
the color of a texel onto the surrounding pixels of the
mapped texel. The image quality resulting from our texture

filtering method is higher than the current state-of-the-art
anisotropic filtering that uses a maximum of 8 trilinear
probes and can be found in commercially available ad-
vanced graphics accelerators, whereas computational costs
are roughly the same. Comparing our method, using ani-
mated sequences, shows absence of texture aliasing arti-
facts while preserving sharpness, whereas aliasing artifacts
are visible with anisotropic filtering.

Besides texture aliasing, that relates to the interior of
polygons, there is also aliasing that relates to the edges of
polygons. This edge aliasing may appear in the form of
staircase jaggies. Although texture aliasing and edge
aliasing may have different appearances, from a filter theo-
retical point of view, there is no reason to distinguish be-
tween the two: both types of artifacts are due to high fre-
quencies present in the rendered scene that can not be dis-
played by a discrete screen.

Super sampling is the traditional solution for the edge
aliasing problem in consumer 3D graphics accelerators.
Although super sampling can be used for both edge anti-
aliasing and texture anti-aliasing, in practice, it is mainly
used for edge anti-aliasing only. It is expensive to use super
sampling for texture anti-aliasing because it requires a high
resolution texture MIP-map level that is suited to calculate
color values on the (higher resolution) subsample grid. The
use of such a higher resolution texture MIP-map level in-
creases the required texture memory bandwidth. For edge
anti-aliasing the higher resolution texture map is not re-
quired. Multi-sampling 13, a variant of super sampling, can
only help to reduce edge aliasing. It explicitly focuses on a

koen.meinds@philips.com, bart.barenbrug@philips.com

17

Meinds and Barenbrug / Resample Hardware for 3D Graphics

© The Eurographics Association 2002

low texture bandwidth by determining only a single color
value for a group of sub-pixels.

Our solution applies a single filtering method to sup-
press high frequencies induced by both texture mapping
and polygon edges. Our edge anti-aliasing quality is better
than 4x4 super sampling. Whereas the required off-chip
memory bandwidth and computational costs are roughly
comparable with 2x2 super sampling.
Our contribution

Our main contributions of the presented two-pass for-
ward texture mapping work are:
• We have developed a novel discretely computable

resample process that combines box reconstruction
filtering and high order prefiltering and does not suffer
from DC-ripple: no post-processing intensity normali-
zation pass is required.

• We have designed an efficient hardware resample
structure that implements our discrete resample proc-
ess.

• We use two-pass forward texture mapping with a cou-
ple of lines accumulation buffer memory. No off-chip
frame size accumulation buffer that requires high
memory bandwidth is used, as is needed for one-pass
forward texture mapping with a 2D filter kernel.

• Rasterization takes place in texture space using a vari-
able resolution MIP-map texture grid, to keep required
texture bandwidth low.

• We have added a pixel fragment buffer to support high
quality edge anti-aliasing.

We do not claim that forward texture mapping can easily
be used to support all the features of the most recent 3D
graphics API’s. Features that have been developed on the
inverse texture mapping architecture, such as dependent
multi-texturing (e.g. as used for bump mapping), may not
have an easy match on a forward texture mapping pipeline.
But independent multi-texturing (or pixel shading) may be
implemented using multipass texturing. A 3D pipeline im-
plementation without multiple texturing or pixel shading
can still be very interesting to various application domains
such as “mobile”. For shading in screen space perspective
correction is required. For example, Gouraud shading using
bilinear interpolation in screen space results in minor arti-
facts 23. However, procedural pixel shading (such as to gen-
erate marble patterns) in screen space without perspective
correction, may result in unacceptable artifacts. It is there-
fore better to use procedural texel shading.
Related work

By means of forward texture mapping, the process of
selecting and weighting texels becomes much easier. This
has been shown by Ghazanfarpour and Peroche 10 where
they describe one-pass forward texture mappping. Catmull
and Smith5 introduced the two-pass forward texture map-
ping method, that uses two orthogonal 1D resample passes,
and has a “scanline” order texture memory access, where
they generalize the meaning of scanline to also include
vertical “scanline”. Fant 9 describes a specific two-pass im-
plementation that uses first order (box-filter) like filtering,
from which it is known 2 that it delivers poor quality. The

Ampex video spatial effects system uses a two pass image
transformation and can perform, amongst others, perspec-
tive transformations in real-time on video streams. How-
ever, from a patent1 it can be seen that at each 1D resam-
pling pass they apply inverse texture mapping with a pre-
filter mapped to input space. In the “Forward Image Map-
ping” paper 6 a one-pass forward mapping technique is
presented that does not require a perspective division per
pixel. The “Surface Splatting” paper 24 uses a one-pass
forward mapping technique for point primitives, combined
with an A-buffer like pixel fragment buffer for transparency
and edge anti-aliasing. The papers 6, 10, 24 use an intensity
normalization post-processing pass requiring a division per
pixel.
Paper organization

In Section 2 we will argue that it is easier to obtain high
quality images using forward texture mapping with prefil-
tering in screen space than with inverse texture mapping
with a mapped prefilter in texture space. In Section 3, we
present our discrete approximation of the texture resample
process. In Section 4 we present our resample hardware
structure derived from our discrete resample approximation.
Section 5 shows how two of our 1D resample structures are
merged into a 2D resample unit. Section 6 details how we
drive the 2D resample unit with our texture space rasterizer.
Section 7 describes how we combine fragments in the
fragment buffer to obtain edge anti-aliasing. Images gener-
ated by our implementation are discussed and compared
with competitive methods in Section 8. Cost factors are
compared in Section 9 and the conclusions are given in
Section 10.

2 Resample Process
The perspective transformation of a texture map is a two
dimensional resampling process: it maps a sampled input
image (the texture map) onto a sampled output image (the
screen). The ideal resampling process consists of four steps
12, 20:
1. Use a reconstruction filter to construct a continuous

signal from the discrete input;
2. Transform the reconstructed input signal;
3. Prefilter the transformed signal to bandlimit it to the

half of the output sample rate;
4. Sample the filtered signal to produce the discrete out-

put.

Most of the texture mapping in a typical 3D scene re-
sults in minification (i.e. the number of output samples is
smaller than the number of input samples). In such cases,
the prefilter that attenuates high frequencies caused by
minification, has more influence on the quality of the re-
sulting image than the reconstruction filter. So for minifi-
cation, a high quality prefilter is desired whereas the recon-
struction filter is less important. In the case of magnifica-
tion the reconstruction filter dominates the prefilter. Minifi-
cation is the more critical case because it can generate high
frequencies that can give rise to annoying aliasing artifacts.

In Section 3 we present our discretization of the resam-
ple process. To present this in its proper context we start

18

Meinds and Barenbrug / Resample Hardware for 3D Graphics

© The Eurographics Association 2002

with reviewing the inverse texture mapping process and the
forward texture mapping process in the next two subsec-
tions.

2.1 Inverse texture mapping
Real-time 3D graphics systems traditionally use inverse

texture mapping. In this section we discuss some difficul-
ties with inverse texture mapping that hamper proper fil-
tering. With inverse texture mapping a pixel’s prefilter (in
screen space) is mapped onto input samples (texels). The
following schema illustrates the filtering process in the
backend of an inverse texture mapping graphics pipeline.

UDVWHUL]HU�LQ
VFUHHQ�VSDFH

UHVDPSOHU�LQ
WH[WXUH�VSDFH SL[HO

IUDJPHQW
RSHUDWLRQV

WH[WXUH
PHPRU\

SRO\JRQV

PDSSHG
SUH�ILOWHU
IRRWSULQW

SL[HOV
,S

;S <S

,W8W 9W

Figure 1: backend of inverse texture mapping pipeline

(Ut , Vt) is the texture coordinate of a texel with index t.
(Xp , Yp) is the screen coordinate of pixel with index p . It is
the color of texel t and Ip is the filtered color of pixel p .

Rasterization of the polygon takes place in screen space.
For every pixel traversed, its prefilter (footprint and profile)
is mapped into the texture space. The texels within the
mapped footprint must be determined and weighted ac-
cording to the mapped profile. The pixel color is computed
using the mapped prefilter in texture space. The process is
output sample (pixel) driven.

The next figure illustrates that a square prefilter foot-
print mapped to texture space results in an arbitrary quad-
rilateral.

VFUHHQ�VSDFHWH[WXUH�VSDFH

SUHILOWHU�IRRWSULQW

SUH�LPDJH

WKH

Figure 2: only texels within the quadrilateral mapped
prefilter footprint and within the polygon contribute.

To determine the texels that fall within the arbitrary
quadrilateral is not an easy task. Moreover, only texels
confined to the mapped polygon being rasterized should be
selected (see the left side of Figure 2). Using the required
mapped prefilter function to weigh the selected texels com-
plicates matters further. Inverse texture mapping methods,
like trilinear filtering and anisotropic filtering such as foot-
print assembly 19, Feline 17 and Potential MIP mapping 3

can be seen as approximations of this texel selection and
weighting process.

2.2 Forward texture mapping
The opposite of inverse texture mapping is forward tex-

ture mapping: the texel’s reconstruction filter is mapped
onto the output pixels. The backend of a forward texture
mapping graphics pipeline with filtering is shown in the
next figure:

UDVWHUL]HU�LQ
WH[WXUH�VSDFH

SRO\JRQV UHVDPSOHU�LQ
VFUHHQ�VSDFH

SL[HO
IUDJPHQW
RSHUDWLRQV<S;S

WH[WXUH
PHPRU\

,W
8W�9W SL[HOV

PDSSHG
UHFRQVWUXFWLRQ
ILOWHU�IRRWSULQW

,S

Figure 3: backend of forward texture mapping pipe-
line

Rasterization is done in texture space. Texels confined
to the polygon being rasterized are splat on pixels in screen
space. The coordinates of these texels are mapped to screen
space and all pixels whose prefilter footprint covers such a
mapped texel are contributed according to this prefilter.

VFUHHQ�VSDFHWH[WXUH�VSDFH

RQH�RI�WKH
SUHILOWHU�IRRWSULQWV

Figure 4: texels are traversed in texture space and
splat to pixels in screen space

 Using this method, the resampling from texel colors to
pixel colors, takes place in screen space and is input sample
(texel) driven. We will now argue that this process simpli-
fies proper filtering significantly.

Compared to the inverse texture mapping, firstly, it is
easier to determine which texels contribute to a particular
pixel: it is simple to determine if a texel coordinate, mapped
in screen space, is within the axis aligned square prefilter
footprint of a pixel. Secondly, contrary to inverse texture
mapping, there is no need to transform the filter function
from pixel space to texture space. Finally, due to rasteriza-
tion in texture space, only texels restricted to the polygon
are considered for the filtering process.

3 Resample Discretization
Our resampling algorithm is based on the two-pass forward
texture mapping technique presented by Catmull and
Smith5. They have demonstrated how a 2D perspective
transformation can be decomposed into two orthogonal 1D
resampling passes. In this section we present our novel
discretization for such a 1D resampling process, but first we
review a common resample discretization and show why it
is inappropriate for texture mapping. We now limit our-
selves to texture minification (down sampling). In Section 6
we will explain how we handle magnification.

19

Meinds and Barenbrug / Resample Hardware for 3D Graphics

© The Eurographics Association 2002

3.1 Discretization with DC-ripple
A common 1D discretization of the resampling process

of Section 2, known from digital signal processing 7, 8, 14

and suited for spatial variable resampling such as perspec-
tive transformation, uses a zero-order reconstruction filter
(dirac function). It is described by the formula:

(1)

Xt is the mapped texel coordinate Ut. h is the prefilter
function. ft is the local scaling factor of texel t and is equal
to the length of a to screen space mapped unit texel spacing
around texel t. It is used to normalize the intensity of the
calculated pixels. ft varies per texel due to the perspective
transformation applied. ft · It is the reconstructed signal by
the dirac reconstruction filter.

The aformentioned resampling process suffers from an
artifact called DC-ripple 14, also known as sample-
frequency ripple. DC-ripple is visible as intensity fluctua-
tions on the output signal while the input signal has a con-
stant intensity. DC-ripple is most visible with small filter
footprints and scale factors close to one (thus low minifica-
tion).

Figure 5: Constant intensity input results in DC-ripple
at output. Minification with fixed scale factor 0.9 using a

tent filter.

We realized that DC-ripple is due to the fact that the
sum of the weights (h(Xt - Xp) · ft) of the texels is spatial
varying (depending upon X t – Xp). This is illustrated in the
following figure, where the weight of texel t has been
graphically represented by the hatched area:

;S ;S��;S��

IW IW��

;W�� ;W ;W�� ;W��

IW�� IW�� IW��

;W��

K�;W�;S�

ZHLJKW�RI
WH[HO�W�IRU�;S
 �K�;W�;S�IW

K�;�;S�

PW�� PWISDUW ISDUW

LQSXW�VDPSOHV

RXWSXW�VDPSOHV

SUHILOWHU�IRRWSULQW

Figure 6: traditional weight of a texel

The hatched area can be considered to be an approxima-
tion of the integral of h between mt-1 and mt. Hence, the
sum of the signed area’s of all texels within the prefilter
footprint is an approximation of the definite integral of the
filter function h . This approximation varies for different
pixel positions and is the source of the DC-ripple artifact.
To avoid DC-ripple we should make sure that the weights
of all texels covered by the prefilter footprint sum to the
definite integral over the footprint of h, which is a constant.

3.2 Discretization without DC-ripple
 To avoid the DC-ripple artifact, we apply a first order

(box) reconstruction filter, instead of the zero-order (dirac
function times scale) reconstruction filter as used in eq. (1).

;S ;S��;S��

;W��

SUHILOWHU�IRRWSULQW

K�;�;S�

;W�� ;W ;W�� ;W�� ;W��

IW�� IW IW�� IW�� I
W��I
W��

PW�� PW

ER[�
UHFRQVWUXFWHG
DQG�PDSSHG

VLJQDO

WH[HOV

SL[HOV

PE�� PH

H[WHQGHG�SUHILOWHU�IRRWSULQW

òIW��òIW��

ZHLJKWW�
+�PW�;S����+�PW���;S�

PH��PE

Figure 7: box reconstruction filter applied to input
samples

 The box reconstructed texture, mapped to screen space,
is a piece-wise constant signal. We recognized that, for
such a signal, exact convolution with the prefilter function
h becomes easy. The continuous convolution process with a
box filter can be written as:

(2)

With mbox being the (piece-wise constant) mapped box-
reconstructed input signal: mbox() = It for mt-1 < < mt,
with mt being the midpoints of the mapped texels. Because
mbox() has a constant value between two midpoints we
can rewrite the above formula as follows:

(3)

H being the indefinite integral of h, the last formula may
be rewritten to the following discrete computable form:

(4)

with b being the left most texel and e the right most
texel contributing to I p. Note that the weight term H(mt-Xp)
- H(mt-1-Xp) calculates the exact area below the prefilter
profile between mt-1 and mt in Figure 7, and that the sum of
all these weight terms is equal to definite prefilter integral,
and thus constant (independent of pixel position Xp). For
texture mapping, intensity amplification is undesired: the
definite integral over the footprint of h must be one. Note
that H(mb-1-Xp) = 0 and H(me-Xp) = 1.

Note that a texel within ½ft distance to the prefilter foot-
print boundary (inside and outside the prefilter footprint)
will contribute partially to Ip. See Figure 7 where the texels
at location Xt-2 and Xt+3 are partially contributing.

Traditionally, DC-ripple in input driven resample struc-
tures based on (1) is alleviated for a fixed (or a set of fixed)
scaling ratio(s), by “fine-tuning” the tabulated filter func-
tion values. This does not work for a stepless spatial vari-

∑ −=
W

WWSWS IfXXhI)(

WSWSW

H

EW
S IXmHXmHI))()((� −−−= −

=
∑

τττ dmboxXhI SS)()(∫
∞

∞−

−=

W

W

W

P

P
SS IdXhI

W

W

))((
�

ττ∑ ∫
∞=

−∞=
−

−=

20

Meinds and Barenbrug / Resample Hardware for 3D Graphics

© The Eurographics Association 2002

able scale factor, as is the case for perspective transforma-
tions. For input driven resampling processes with stepless
variable scale factors often 6, 10, 24 a per pixel intensity nor-
malization is performed by means of a post-processing pass
that divides each pixel fragment color, stored in a screen
space buffer, by the sum of the filter weights. This will also
remove DC-ripple. The normalization post-processing pass
increases (off-chip) memory bandwidth. It also requires a
higher accuracy color representation than required for the
final pixel color in order to avoid overflow before the divi-
sion. Moreover, due to the intensity normalization, the pre-
filter function is not clearly defined: The amplitude of the
prefilter function varies per pixel. Our resample process
does not require such a normalization post-processing pass.

3.3 Resampling and Polygon Edges
The resample discretization (4) can be used for accurate
prefiltering when the prefilter footprint is intersected by a
polygon edge: texels less than ½f t distance from the edge
should only contribute for the box reconstructed constant
signal within the polygon. This can easily be achieved by
clipping the mt-1 and mt values, before applying formula (4),
against the left and right edge coordinates of the polygon.
We call these coordinates xL and xR respectively.

;S ;S��;S��

;W��

K�;�;S�

;W�� ;W ;W�� ;W�� ;W��PW�� PW

ER[�
UHFRQVWUXFWHG
DQG�PDSSHG

VLJQDO

WH[HOV

SL[HOV

PE�� PH

ZHLJKWW�
+�[5�;S����+�PW���;S�

PH��PE

ULJKW�SRO\JRQ�HGJH

[5

Figure 8: clipping against right polygon edge xR.

In the example shown by Figure 8 the weight of texel t is
adapted to correspond to the reconstructed part within the
polygon. Both mt-1 and mt are clipped but only the value of
mt is actually changed.

In our system we use this accurate way of contributing
texels, with partial weights, for high quality edge anti-
aliasing as described in Section 7. We will call pixels
whose prefilter foot print is intersected with a polygon edge
partial pixels. We now introduce the so-called contribution
factor Cp, that is needed by our edge anti-aliasing algorithm
and is generated by the resample structure of Section 4. The
contribution factor Cp, for a pixel, is the sum of the texel
weight terms (H(mt-Xp) - H(mt-1-Xp) of equation (4)) and is
1, if all texels within the prefilter footprint are contributing.
If a polygon edge prohibits all texels within the prefilter
footprint to contribute, Cp will be between 0 and 1, for a
fully positive prefilter profile.

4 Resample Structure
In this section we present a novel 1D resample structure
that implements equation (4) as a so-called polyphase
transposed direct-form structure 7. It efficiently integrates

the box reconstruction filtering and prefiltering into a single
structure.

The resample equation (4) can be implemented in two
ways: output sample (pixel) driven and input sample (texel)
driven. The method suggested by equation (4) is output
driven.

Our resample structure is input driven: we traverse the
texels from left to right, and for each texel t its color is
“splatted” onto a group of pixels. Pixel coordinate Xp is
being defined closest to Xt and to the left: X p = Xt. Let us
consider a prefilter width of 4. For other widths the con-
struction of the resample structure is analogous. We ob-
serve that the group of pixels that can be contributed is: p-2
to p+2. There are two cases: in the first case Xp is to the left
of mt-1 and in the second case Xp lays on interval [mt-1, mt].
The first case is illustrated in Figure 9. In this case the pre-
filter footprint of p-2 does not overlap [mt-1, mt] and only 4
pixels (p-1 to p+2) receive a contribution from texel t. In
the second case 5 pixels (p-2 to p+2) receive a contribution.
In this case, due to processing texels from left to right, p-2
will get its last contribution and can be outputted to a next
stage in the pipeline. We will call the latter case the “step”
case and the first case the “non-step” case.

;S ;S��;S��

;W�� ;W�� ;W ;W�� ;W��

;S��

IW

RXWSXW�VDPSOHV

LQSXW�VDPSOHV

PWPW��

;S��

ϕW

K� K�K� K�

Figure 9: Contribution of a texel to 4 pixels. Non-step
case. h0 to h3 corresponds to their integrals H0 to H3.

In both cases, we have to evaluate H(x) for x = mt-Xp-1,
mt-Xp, mt-Xp+1 and mt-Xp+2 to splat the color of t. Note that
the step case, when 5 pixels get a contribution, does not
require more terms to be evaluated because then: H(mt-Xp-2)
= 1 and H(mt-1-Xp+2) = 0. Instead of using one H table that
has to be indexed with 4 different values, we use 4 tables
(H0 to H3), all indexed by the same value:

H(mt-Xp-1) = H(mt-Xp+1) = H0(mt-Xp)
H(mt-Xp) = H(mt-Xp) = H1(mt-Xp)
H(mt-Xp+1) = H(mt-Xp-1) = H2(mt-Xp)
H(mt-Xp+2) = H(mt-Xp-2) = H3(mt-Xp)

The domain of H is [-2, 2]. The domain of H0 to H3 is [0,
1]. H0 is equal to the last quarter of H and to H3 is equal to
the first quarter of H, see the bold parts of the graphs in
Figure 9. We will call t = mt-Xp the phase. Because p is
the closest pixel left to mt the phase is equal to the frac-
tional part of mt.

An algorithm that implements this process is illustrated
in Figure 10. The algorithm cycles over the texels, and for
each texel its contributions to all the involved pixels is ac-
cumulated before the next texel is processed.

21

Meinds and Barenbrug / Resample Hardware for 3D Graphics

© The Eurographics Association 2002

1 initialization of: mt-1 and Ip-1 to Ip+2
2 input per texel: It and mt
3 t-1 = frac(mt-1)
4 t = frac(mt)
5 step = int(mt) - int(mt-1)
6 if step == 1
7 Xp-2 = int(mt) – 2
8 Ip-2 = Ip-1 + (1 - H[0][t-1]) * It
9 Ip-1 = Ip + (H[0][t] - H[1][t-1]) * It
10 Ip = Ip+1 + (H[1][t] - H[2][t-1]) * It
11 Ip+1 = Ip+2 + (H[2][t] - H[3][t-1]) * It
12 Ip+2 = 0 + (H[3][t] - 0) * It
13 output per pixel: Ip-2 and Xp-2
14 else /* step == 0 */
15 Ip-1 = Ip-1 + (H[0][t] - H[0][t-1]) * It
16 Ip = Ip + (H[1][t] - H[1][t-1]) * It
17 Ip+1 = Ip+1 + (H[2][t] - H[2][t-1]) * It
18 Ip+2 = Ip+2 + (H[3][t] - H[3][t-1]) * It
19 mt-1 = mt

Figure 10: pseudo code for input driven calculation of
equation (4), for a prefilter width of 4.

For every processed texel t, its color It and its right
mapped midpoint m t clipped to the right polygon edge as
described in Section 3.3, are input for the algorithm. In the
step case the pixel color Ip-2 and coordinate Xp-2 are output-
ted. Lines 8 to 12 represent a combination of a texel contri-
bution to 5 pixels, and a shift between the pixel color vari-
ables (Ip-2 to Ip+2). In line 5, the step or non-step case is
determined. Note that int(mt-1) is one less than int(mt)
only when Xp is to the left of mt-1. It can not differ more
than one because we limited ourselves to minification.

S��

,W

D
�

ϕW

RQH�WDS

��

z

IUDF

IUDF

LQW LQW

D

D

67(3

;25�RQ
/6%

VKLIW

PW
ϕW��

LI�67(3
VZLWFKHV
WR�OHIW

67(3
;S��

,S��
LI�67(3
VZLWFKHV

WR�OHIW

,S,S��

S��S

IRU�ILYH
FKDQQHOV�
5*%$&

��

PW PW��

H
[1

][ϕ
]

H
[0

][ϕ
]

H
[1

][ϕ
]

H
[0

][ϕ
]

Figure 11: hardware resample structure implementing
the algorithm of Figure 10 for a prefilter width of 2.

We have designed a hardware resample structure that
implements this pseudo code which is shown in Figure 11
for a prefilter width of 2. In dedicated hardware, lines 8 to
12 and lines 15 to 18 from Figure 10, can be implemented
in parallel. H0 to H3 can be quantized and stored in 4 tables.
We combine these in a single table that can output H0(t) to
H3(t) in one clock cycle. Preliminary experiments show
that a table size of 32 entries and 8 bit values does not in-
troduce visible aliasing.

Both the pixel and texel I variables represent RGBA
values extended with the contribution factor C introduced
in Section 3.3. We can easily generate the contribution
factor as an additional color component C. For our system
the gray part of Figure 11 is duplicated five times: once for
each RGBAC color channel.

 The shift input is controlled by the rasterizer and is
needed in order to generate partial pixel values outside the
polygon boundary, that are still in the registers after the
final texel color has been shifted in. The resample structure
as shown here is for prefilters with width equal to an even
number of pixels. Slight modification is necessary to ac-
commodate odd filter widths.

5 2D Resample Unit
In this section we describe how we combined two 1D re-
sample structures, described in Section 4, to obtain a 2D
resample unit. The main disadvantage of one-pass input
driven resampling using a 2D filter is the high random read-
write data traffic to a screen space accumulation buffer 12.
Without resorting to tile based rendering, the high data
traffic will be to a off-chip accumulation buffer. To avoid
the off-chip data traffic we choose an alternative solution
using two-pass forward mapping, introduced by Catmull
and Smith 5. The two-pass mapping also allows us to effi-
ciently implement resample discretization (4). Another
advantage is that the two-pass resample process requires
fewer operations per pixel compared to the one-pass using
the same filter footprint.

The following diagram illustrates our implementation.

UHVDPSOHU

;S��,S��

,W PW

GRXEOH�EXIIHUHG
DFFXPXODWLRQ�UHJLVWHUV

5*%$&��PW����[5
�OLQH�PHPRULHV

�VW�SDVV

�Q
G�
SD
VV

UH
VD
P
SO
HU

Figure 12: two pass resampling. The 2nd pass requires
some line memories for per pixel color accumulation.

To avoid the need for memory for the intermediate image
between the horizontal and vertical pass, we have inter-
leaved both passes: e.g.: for every row produced by the
horizontal pass the vertical pass cycles over the columns
and consumes one input sample for every column and ac-
cumulates the splatted values in the (double buffered) ac-
cumulation registers of the structure. These registers should
contain the values associated width the filter state of the

22

Meinds and Barenbrug / Resample Hardware for 3D Graphics

© The Eurographics Association 2002

current column: For each column the registers values are
stored, to be used for the next line, in on-chip line memo-
ries that can be accessed in a fifo manner. The 1D resample
structure of Figure 11 has been designed to minimize the
number of registers, and thus to minimize the number of
required line memories for the 2D resample unit. The pixels
are outputted in an irregular way, to the next stage of the
pipeline. But a pixel position is only once outputted per
polygon.

Although we have implemented floating-point arithme-
tic and not fixed point arithmetic in our algorithms yet, we
can give a fair estimate of the amount of line memories
needed. The values we need to store are mt-1, xR. The xL
value is not stored in the line memories: we initialize it in
mt-1 for each line. Both mt-1 and xR can be stored in 15 bits
(fixed point 10.5). For a output color I t with 8 bits per color
component about 10 bits for the accumulation registers are
sufficient. The extra precision is required due to the re-
peated accumulation and possible negative parts in the pre-
filter function. The amount of storage we need for five
channels (RGBAC) and a prefilter width of two is:

2 x 15 + 5 x (2 x 10) = 130 bits.
For a scan line length of 1024 pixels this results in a re-
quired on-chip memory of 16 Kbyte (29 Kbyte for a four
wide prefilter). Note that the line memories only have to be
as wide as a scan line for large polygons that indeed fill the
whole scan line length. To divide the line memory require-
ment by, for example, a factor of 2 or 4 we could vertically
split the geometry of polygons larger than 512 or 256 pixel
spacings.

The bandwidth required to the line memories depends
on the average minification factor and the prefilter width.
The average minification factor, using MIP-map textures, is
roughly 1.5. With N being the prefilter width, we require
1.5 x N read-write accesses per pixel. The bandwidth to the
accumulation using a 2D filter is roughly 1.5 2 x N2. So the
required bandwidth to the accumulation buffer of our two-
pass algorithm compared to the one-pass is 3 times less for
N=2 and 6 times less for N=4. But more important, the
bandwidth to the line memories of our two-pass imple-
mentation can be kept on-chip, whereas in the case of one-
pass forward texture mapping the required bandwidth is to a
off-chip accumulation buffer, unless the accumulation
buffer fits on chip or tile based rendering is used.

6 Rasterization Unit
This section discusses the main changes to a traditional
inverse texture mapping rasterizer, that are required to im-
plement an efficient two-pass forward texture mapping
rasterizer. We restrict ourselves to planar maps.

The vertex coordinates of the polygon to rasterize in
texture space are the texture coordinates, u and v, that are
given at each of the polygon vertices. Due to our box re-
construction filter, we require texels that lay outside the
polygon within a border ½ft distance from the polygon
boundary. This complicates the design of the rasterizer,
especially because the border for the 2nd pass has to be gen-
erated by the 1st pass. However, in spite of the complica-
tions, the computational costs for the rasterizer setup and

the “polygon edge walk”, are in the same order of an in-
verse texture mapping rasterizer.
MIP-maps

Both with inverse texture mapping and forward texture
mapping, there is no upper bound to the number of texels
that can fall within the (mapped) prefilter footprint of a
pixel, and thus also no upper bound to required processing
and texture memory bandwidth. For inverse texture map-
ping, this has been commonly solved by the MIP-map 22

preprocessing technique. In our forward texture mapping
pipeline we have also implemented the MIP-map technique.
When using MIP-map textures, scale factors close to one
are common. So, the common resample discretization (1) is
not suited. Our resample structure based on resample dis-
cretization (4) is suited.

Because our forward texture mapping is performed in
two passes, we do not directly use the standard 3D MIP-
maps that are given by OpenGL applications. Our rasterizer
traverses the texels of a polygon on a texture grid that can
change resolution in a power of two, according to 4D MIP-
map 12 level switches. The required 4D MIP-map texels are
generated “on-the-fly” from the given 3D MIP-maps using
bilinear interpolation or unweighted pixel averaging. The
horizontal MIP-map level may change per texel. In our
current implementation we keep the vertical MIP-map level
constant for the whole polygon to simplify the implementa-
tion of the vertical pass. The vertical MIP-map level is
based on the highest required vertical resolution within the
polygon. This causes unnecessary texels to be fetched for
locations within the polygon where a lower resolution
would be sufficient. In future work we would like to sup-
port vertical MIP-map level switches on a per texel basis.

Note that our forward texture mapping algorithm does
not have to average between adjacent MIP-map levels as is
the case with commonly used trilinear and anisotropic in-
verse texture mapping filters. Moreover our resample algo-
rithm does not require MIP-map textures for proper filter-
ing. We can use video streams as texture without the need
for real-time generation of MIP-map textures at the same
speed of real-time MIP-map generation. However, for
strong minification we require a higher precision of the
accumulation registers in the resample structure of Figure
11. For real-time generation of MIP-maps dedicated hard-
ware circuitry, described in Schilling at al. 19, may be re-
quired.
Magnification

In the case of texture magnification our rasterizer inserts
“artificial texels”, using the bilinear interpolation recon-
struction filter that feeds the resample unit, which is also
use to generated the 4D MIP-maps. The resample unit still
applies the prefilter for magnification. This is required to
generate proper “partial pixel values” for the polygon edge
anti-aliasing method as described in Section 7.
Other interpolants

Besides texture colors, our texture space rasterizer must
also generate other pixel properties. We also generate depth
(z) values and diffuse interpolated colors. Specular colors
may also be generated, however this is not yet imple-
mented. The color shading can be interpolated in texture

23

Meinds and Barenbrug / Resample Hardware for 3D Graphics

© The Eurographics Association 2002

space and blended together with the associated texel colors
before the texel is sent to the resample unit.

7 Edge Anti-Aliasing
In this section we describe how we perform edge anti-
aliasing, using the pixel fragments delivered by the 2D
resample unit (Section 5) for each polygon. The general
idea is not to limit the texture prefiltering mechanism to the
polygon boundary: the texture space rasterization and the
splatting 2D resampling process results in “partial prefil-
tered” pixels within a border of half a prefilter width out-
side and inside the polygon boundary. For much of the
polygon edge situations, we can use the generated pixel
partial colors and contribution factor to correctly obtain a
prefiltered pixel, as if the prefilter would be applied on
texels from the interior of the same polygon.

7.1 Edge situations
For edges of adjacent polygons, correct prefiltering is

obtained by adding partial pixel colors (Section 3.3), deliv-
ered by the 2D resample unit. For multiple adjacent poly-
gons that fall within a pixel’s prefilter footprint, the pixel
color contributions from each polygon are accumulated to
reach full contribution.

For silhouette edges, it is more complicated. Let us con-
sider polygon A overlapping polygon B. In the case that the
silhouette edge overlaps the interior of B (where the pixels
of B have contribution factor C B = 1), we also obtain a cor-
rect prefiltered edge. In this case, we use CA to adjust the
pixel color of B before adding:

I = IA + (1 - CA) · IB (5)
We can also have a complex silhouette edge, where a sil-
houette edge of A overlaps an edge pixel area of B: the B
pixels have partial colors CB < 1. In this case we do not
obtain a correct prefiltered edge. We add the partial pixel
color of B to A. This might result in no contribution of a
third polygon that is adjacent to B or partial overlapped by
B. Note that complex silhouette edges are rare.

We obtain correct prefiltering on so-called arbitrary
shaped edges that are defined by the alpha channel of tex-
ture maps. For example they are used to model branches
with leaves where the space between the leaves is transpar-
ent. A texel color should only contribute to a pixel if its
alpha value passes the so-called “alpha-test”. We moved the
alpha-test operation before the 2D resample unit where it is
performed in texture space: this way prefiltering is only
applied on texels that pass the alpha-test.

7.2 Fragment buffer
To be able to implement the above process, we require

pixel fragments in depth sorted order. Because polygons
can be delivered in random depth order, we choose to store
pixel fragments, per pixel location in depth sorted order in a
pixel fragment buffer, similar to the A-buffer 4. However,
we do not store a measure of geometric coverage per pixel
fragment (such as a coverage mask), as is often used 4, 15, 24.
We store the contribution factor C per pixel fragment that
represents the partial weight according to the polygon
overlap with the 2D prefilter overlap. Whereas the geomet-
ric coverage is often obtained using a sub-pixel masks cor-

responding to a box prefilter, with 1x1 footprint size, our
contribution factor is based on a higher order prefilter that
can have a larger footprint size, such as 2x2 or 4x4.

The fragment buffer algorithm consists of 2 stages: in-
sertion of pixel fragments and composition of pixel frag-
ments. We use a fragment buffer with a fixed number of
fragments, such as in 15, that can be stored at each pixel
location. To prevent overflow during the insertion stage we
merge fragments that are closest in their Z values. After all
polygons of the scene are rendered the composition stage
composes fragments in front-to-back order, according to
Section 7.1. The final pixel color is obtained when the sum
of the contribution factors of all added fragments is one or
more.

Contrary to inverse texture mapping systems, we deal
properly with very small triangles or slivers. High quality
anti-aliasing prefiltering can be obtained on polygon edges
as well as within polygon interiors, except for intersecting
and complex silhouette edges. We did not implement sup-
port for multipass texturing or multi-texturing blending in
the fragment buffer yet.

8 Results
We incorporated our texture mapping and resample al-

gorithms, as described in the previous sections, using a tent
prefilter with a footprint size of 2 in a public domain soft-
ware implementation of OpenGL: Mesa 18. We used ani-
mated image sequences to compare texture anti-aliasing and
edge anti-aliasing quality with images generated by a com-
mercially available advanced graphics card. Artifacts are
much more noticeable with animated images than with still
images.

 We compared our generated image sequence with an
image sequence generated with anisotropic level 8 filtered
images without super sampling and with 4x4 super sam-
pling. We used the popular game Quake III with separately
loaded scenery 21, that includes high contrast and high fre-
quency texture maps, to generate the 3D scenery. Light-
maps are switched off as they are not fully supported in the
pixel fragment buffer algorithm yet. Using the so-called
“timedemo” option of Quake III we used exactly the same
scenery to generate the image sequence with both the ani-
sotropic texture filtering capable graphics card and our
modified OpenGL implementation. We compared the gen-
erated image sequences side by side, frame synchronous, on
a high quality CRT monitor on a resolution of 640 x 480
pixels. A part of a bitmap (approx. 100x200) of each se-
quence is shown in Figure 13. The bitmaps are also shown
in the color section where a non-super sampled bitmap is
included for reference.

24

Meinds and Barenbrug / Resample Hardware for 3D Graphics

© The Eurographics Association 2002

Figure 13: bitmap left: 4x4 super sampling using ani-
sotropic level 8 texture filtering, right: our implementa-

tion using a tent prefilter and a maximum of 4 pixel frag-
ments per pixel.

Comparing texture filtering quality with the animated
sequences shows that our method is better as the anisotropic
filtered sequence for both non super sampled and 4x4 super
sampled images.

Comparing edge anti-aliasing quality with the animated
sequences shows that 4x4 super sampling has some visible
aliasing artifacts on all edges. We have less aliasing arti-
facts on the edges, except for edges due to polygon inter-
section and so-called complex silhouette edges which are
very rare. Moreover, our approach correctly anti-aliases
arbitrary shaped edges modeled with the alpha-test, often
used to model partial transparent trees.

9 Costs
Off-chip bandwidth

We compare our bandwidth costs to inverse texture
mapping. Because inverse texture mapping reads texels in
an non regular way a texture cache is required. But this will
not always prevent texels being fetched several times. Our
method fetches texels only once (except for “repeated tex-
tures”) and in regular order, decreasing required texture
bandwidth, but our method increases required texture
bandwidth due to our current implementation that allows no
vertical MIP-map level changes.

Our bandwidth requirements to the fragment buffer are
about the same as the frame buffer bandwidth requirements
of a 2x2 super sampling system. This can be seen using the
following reasoning: 2x2 super sampling uses 4 sub-pixels
per pixel, that are at least read and written once. Our re-
quired bandwidth to the fragment buffer depends on the
overdraw factor which depends on the scene and slightly on
the prefilter footprint size. In our test case scene 21 we
measured a average overdraw factor of 3.4 over 400 frames
rendered at a screen size of 640x480 and a tent prefilter

having a width of 2. The average overdraw factor per frame
varies between 2.3 and 4.4. Normally, the average over-
draw factor is less than 4, but in the fragment buffer we
must insert in sorted order. For small number of fragments
per pixel this is not that costly. We have implemented a
fragment buffer which uses at most 4 fragments per pixel.
So, we require somewhat less off-chip memory bandwidth
as 2x2 super sampling, but our image quality is better than
4x4 super sampling.

The measured average overdraw factor, using a prefilter
with width of 4, is 4.4 and it varies per frame between 2.9
and 5.8. So, in our test case, we can obtain better filtering
using the larger prefilter footprint 23 at only moderate in-
creases in required off-chip memory bandwidth.
Computational costs

Our rasterizer traverses texels instead of pixels. We as-
sume an average horizontal minification factor of 1.5 and a
somewhat higher average minification factor of 2.5 for the
vertical direction (or vice versa) due to the perspective
transformation. So per screen pixel, our rasterizer has to
traverse 1.5*2.5 = ~4 texels, comparable to the rasterization
(pixel traversal) costs of 2x2 super sampling.

For filtering, the average number of multiplications per
screen pixel in our two-pass algorithm, using the tent pre-
filter which corresponds to bilinear filtering, is roughly the
same as for anisotropic texture filtering with at most 8
trilinear probes.

10 Conclusions and Future Work
We have presented a method that implements the texture
mapping function within a 3D graphics pipeline, using two-
pass forward texture mapping that circumvents the pitfalls
of previous work on forward texture mapping. We have
implemented our algorithms within a software implementa-
tion of OpenGL. We tested our algorithms on functional
correctness and image quality using Quake III with 3D
scenery from a third-party.
• We have developed a new input driven 1D resample

structure that efficiently integrates box reconstruction
filtering and high order prefiltering. It is suited for
texture mapping with a continuously spatial varying
scale factor but it does not suffer from DC-ripple.
Therefore, no intensity normalization post-processing
stage is needed.

• We have shown how two of such 1D resample struc-
tures can be combined to obtain a 2D resample unit
that does not require off-chip memory bandwidth, as
is the case for a one-pass input driven 2D resample
unit.

• We integrated the 2D resample unit in a 3D pipeline
with a texture space rasterizer that uses MIP-map
textures to minimize texture memory data traffic.

• We have added a pixel fragment buffer to support
high quality edge anti-aliasing.

We do not claim that forward texture mapping can easily
support all the features of the most recent 3D graphics
API’s. Features that have been developed on the inverse
texture mapping architecture, such as dependent multi-

25

Meinds and Barenbrug / Resample Hardware for 3D Graphics

© The Eurographics Association 2002

texturing may not have an easy match on a forward texture
mapping pipeline. A 3D pipeline implementation without
these features can still be very interesting to various appli-
cation domains.

Image quality
Our texture anti-aliasing quality is better than aniso-

tropic texture filtering with 8 trilinear probes, but filtering
costs are about the same. The required memory bandwidth
costs for edge anti-aliasing, using a prefilter footprint size
of 2x2, are about the same as 2x2 super sampling, however,
our edge anti-aliasing quality is better than 4x4 super sam-
pling, except on so-called called complex silhouette edges
and edges due to polygon intersection. Very small polygons
or slivers do not show popup artifacts as is common with
inverse texture mapping. If a larger prefilter footprint of
4x4 is used costs are only moderate increased for our test
case, but higher quality can be obtained (for example using
artificial sharpening filters functions).

Future work
We now use a single vertical MIP-map level for the

whole polygon. We aim to change the vertical MIP-map
level selection on a per texel basis to avoid unnecessary
texel fetches, thereby decreasing required texture band-
width.

We aim to enhance the fragment buffer insertion and
composition algorithm, such to better deal with complex
silhouette edges and edges due to intersection. We also aim
to add support for multiple texturing and multipass textur-
ing.

Acknowledgements
The authors would like to thank the other project mem-

bers Marcel Tomáš and Patric Theune. We would also like
to thank Frans Peters for his helpful comments and sugges-
tions.

References
1 Bennett, P.P. and Gabriel, S.A. System for spatially transforming

images, , United States patent nr 4472732, Sep. 18, 1984
2 Blinn J.F., Return of the jaggy, IEEE Computer Graphics & Appli-

cations, March 1989
3 Cant, R.J. and Shrubsole, P. A. Texture Potential MIP Mapping, A

New High-Quality Texture Antialiasing Algorithm, ACM Transac-
tions on Graphics, Vol. 19, No. 3, July 2000

4 Carpenter, L. The A-buffer, an Antialiased Hidden Surface Method.
Computer Graphics (SIGGRAPH '84 Proceedings), vol. 18, pp. 103 -
108, July 1984

5 Catmull, E. and Smith A.R. 3-D Transformations of Images in Scan-
line Order. Computer Graphics (SIGGRAPH '80 Proceedings), vol.
14, no.3, pp. 279 - 285, July 1980

6 Chen, B., Dachille, D. and Kaufman, A. Forward Image Mapping,
IEEE Visualization '99

7 Crochiere R.E. and Rabiner L.R. Multirate Digital Signal Process-
ing. Prentice Hall, 1983

8 Dalfsen A.J., Stessen J.H.J.C. and Janssen J.G.W.M. Sample rate
conversion, United States patent nr 5892695, Oct. 28, 1997

9 Fant, K.M. A nonaliasing, real-time spatial transform technique,
IEEE Computer Graphics and Applications, January 1986

10 Ghazanfarpour D. and Peroche B., A high-quality filtering using
forward texture mapping, Comput. & Graphics vol. 15, no.4, pp. 569
- 577, 1991

11 Hakura, Z. and Gupta. A. The Design and Analysis of a Cache Ar-
chitecture for Texture Mapping. Proceedings of 24th International
Symposium on Computer Architecture, 1997

12 Heckbert, P.S. Fundamentals of Texture Mapping and Image Warp-
ing. Masters Thesis, Dept. of EECS, University of California at Ber-
keley, 1989.

13 HRAA: High-resolution Antialiasing through Multisampling, NVidia
Technical Brief, www.nvidia.com/docs/IO/83/ATT/HRAA.pdf

14 Janssen, J.G.W.M.; Stessen, J.H.; de With, P.H.N. An advanced
sampling rate conversion technique for video and graphics signals,
Sixth International Conference on Image Processing and Its Applica-
tions, Volume 2, p 771 -775, 15-17 July 1997

15 Jouppi, N.P. and Chang, Chun-Fa Z3: An Economical Hardware
Technique for High-Quality Antialiasing and Transparency. Pro-
ceedings 1999 SIGGRAPH/Eurographics Hardware Workshop

16 Kirk, D.B. Unsolved Problems and Opportunities for High-quality,
High-performance 3D Graphics on a PC Platform. Invited paper,
Proceedings 1998 Eurographics/SIGGRAPH Workshop on Graphics
Hardware. The presentation slides discuss different anisotropic fil-
tering in more detail: www.merl.com/hwws98/presentations/kirk/
ACM 1998.

17 McCormack J., Perry R., Farkas K.I. and Jouppi N.P. Feline: Fast
Elliptical Lines for Anisotropic Texture Mapping, Computer Graph-
ics (SIGGRAPH ‘99 Proceedings), pp. 243-250, August 1999

18 Mesa 3.2, 3D Graphics Library by Brian Paul at
http://www.mesa3d.org/

19 Schilling A.G., Knittel G. and Straßer W., Texram: A Smart Mem-
ory for Texturing, IEEE Computer Graphics & Applications, 1996

20 Smith A. R., Digital Filtering Tutorial for Computer Graphics, part 1,
Lucasfilm technical memo 27, www.alvyray.com, Nov. 20, 1981 also
presented as turorial notes at SIGGRAPH ’83 and ‘84

21 Tequila's "Subversive Tendencies" Quake III scene, available at
http://bettenberg.home.mindspring.com/teqtrny3.html which uses
textures maps from http://www.planetquake.com/hfx/ for some of
which we increased the contrast to make the scene more bright since
we have not implemented support for lightmaps yet.

22 Williams, L. Pyramidal Parametrics, , Computer Graphics (SIG-
GRAPH ‘83 Proceedings), july 1983

23 Wolberg, G. editor. Digital Image Warping, IEEE Computer Society
Press, Los Alamitos, CA 1990

24 Zwicker, M., Pfister, H., Baar, J. van and Gross, M. Surface Splat-
ting, Computer Graphics (SIGGRAPH ‘01 Proceedings), pp. 371-
378, August 2001

26

Meinds and Barenbrug / Resample Hardware for 3D Graphics

© The Eurographics Association 2002

Figure 14: bitmap left: no super sampling using anisotropic texture filtering with at most 8 trilinear probes,
center: 4x4 super sampling using anisotropic texture filtering with at most 8 trilinear probes,
right: our implementation using a tent prefilter and a maximum of 4 pixel fragments per pixel

154

