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Abstract Wang et al. 2005] avoids the rotation problem since the alignment

is included in the transfer matrix stored per-vertex. However, in
the case of non-smooth surfaces, where the surface normal is mod-
ulated by a texture, a per-pixel rotation is needed even for PRT.
Also for global illumination computation, the efficiency of rota-
tion of functions represented by spherical harmonics can be critical.
Namely inradiance cachingKfivanek et al. 2005; Kvanek 2005],

'the speed of the spherical harmonics rotation procedure determines
the efficiency of illumination interpolation.

Rotation of functions represented by spherical harmonics is an im-
portant part of many real-time lighting and global illumination al-
gorithms. For some of them a per-vertex or even per-pixel rotation
is required, which implies the necessity of an efficient rotation pro-
cedure. The speed of any of the existing rotation procedures is
however, not able to meet the requirements of real-time lighting
or fast global illumination. We present an efficient approximation
of the spherical harmonic rotation applicable for small rotation an- To our knowledge, no simple rotation procedure exists for wavelet
gles. We replace the general spherical harmonic rotation matrix representation. Functions represented by spherical harmonics can
by its truncated Taylor expansion, which significantly decreases the be rotated by a linear transformation of the representation coeffi-
computation involved in the rotation. Our approximation decreases cients [Green 2003], but the existing procedures [Ivanic and Rue-
the asymptotic complexity of the rotation—the higher the order of denberg 1996; Ivanic and Ruedenberg 1998; Choi et al. 1999zKau
spherical harmonics, the higher the speed-up. We show applica-et al. 2002] are slow and therefore cause a bottleneck in rendering
tions of the proposed rotation approximation in global illumination algorithms. Representation by Zonal harmonics [Sloan et al. 2005]
and real-time shading. Although the rotation approximation is ac- or by a sum of Gaussians [Green et al. 2006] can be rotated effi-
curate only for small rotation angles, we show this is not a serious ciently, but the slow non-linear optimization needed to fit a given
limitation in our applications. function limits their use only to scenarios where a lengthy pre-
computation is tolerable.
CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism—Shading, Shadowing In this paper we address the rotation of functions represented by

spherical harmonics. We propose an efficient approximation of the
spherical harmonic rotation based on replacing the general spher-
ical harmonic rotation matrix with its truncated Taylor expansion.
The proposed rotation approximation is faster and has a lower com-
putational complexity in terms of spherical harmonic order than
previous methods. Unfortunately, our approximation is accurate
1 Introduction only for small rotation angles. Yet, we show that this is not a seri-
ous restriction in our applications.

Keywords: spherical harmonics rotation, global illumination, ra-
diance caching, environment mapping, normal mapping

When using spherical basis functions (e.g. spherical harmonics orWe employ our rotation in two rendering applications: (1) global
wavelets) for real-time shading with environment lighting , one has illumination computation and (2) real-time shading with environ-
to face the problem of aligning the environment lighting (repre- ment lighting. In the former case, the fast rotation is used in radi-
sented in the global coordinate frame) with the reflectance func- ance caching for coordinate-frame alignment in radiance interpola-
tion, or BRDF (represented in the local coordinate frame at each tion [Kfivanek et al. 2005; Kvanek 2005]. In the latter application,
surface point). The alignment is achieved through a rotation of a the ability to perform our fast rotation in real-time on a per-pixel
(hemi)spherical function. Kautz et al. [2002] perform the rotation basis on graphics hardware is employed to enhance Kautz et al.’s
of the environment lighting represented by spherical harmonics for shading algorithm [Kautz et al. 2002] with normal mapping. The
each vertex during real-time rendering and report that the rotation real-time per-pixel rotation, and, consequently, the possibility to use
is the bottleneck. Ng et al. [2004] avoid the rotation by storing the normal maps to represent surface detail, allows us to decouple the
BRDF multiple times, pre-rotated to the global frame for differ- illumination quality from the number of vertices.

ent surface normal directions. This approach is memory demand-
ing, prohibits the use of high frequency BRDFs and does not al-
low anisotropic BRDFs. Pre-computed radiance transfer (PRT) on
rigid objects with smooth surfaces [Sloan et al. 2002; Lehtinen and
Kautz 2003; Sloan et al. 2003; Wang et al. 2004; Liu et al. 2004;

The rest of this paper is organized as follows. The next section

provides the background on spherical harmonic rotation; Section

3 describes our rotation approximation. Applications in radiance

caching and in real-time shading are presented in Sections 4 and 5,
respectively. Finally, Section 6 concludes the work.
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2.1 Spherical Harmonics

Any spherical functionL(w) can be approximated in terms of
spherical harmonics dfw) = 315! | AMY™(w), wherew is

a direction in 3D)Y,™ are the spherical harmonics (abbreviated SH)
[Green 2003] and is the SH approximatioarder. Coefficients\™
constitute the representation lofw) with respect to the SH basis.



There aren? coefficients in the approximation of order Spherical
harmonics of equal indeixform aband with one harmonic in the
first band (n= 0), three in the second banth& —1,0,1), five in
the third bandih= —2,—-1,0,1,2), etc. Although the coefficients
have two indice$ andm, they are stored in a one-dimensional ar-
ray A, A 5L AQ AL, .], indexed byi = I(1 + 1) +m. This layout

is used in the example code in this paper.

2.2 Spherical Harmonic Rotation

Problem Statement. Given a vector of SH coefficients = {A™}
representing a spherical functidrfw) = s-2s! | AMYM(w),
find a vector of coefficient¥' = {u/"} representing the rotated func-
tion L(Z~Y(w)) = $]=5 he | Y™ (w), whereZ is the desired
rotation.

A rotated version of any function represented by the spherical har-
monics coefficientg\ of ordern can exactly be represented by an-
other set of coefficienty, also of ordem. The rotation can be
carried out as a linear transformatidn= RA with a block-sparse
rotation matrixR (Figure 1). The rotation matriR is composed of
blocksR', each corresponding to one band. Note that coefficients
between different SH bands do not interact. The problem is how to
constructR for a desired 3D rotation and order Different ways

of solving this task are described in [Green 2003]. Our approach to
SH rotation, described in Section 3, avoids explicit construction of
R. We compare our approach with the methods of Ivanic and Rue-
denberg [1996; 1998] and tlzezxzrotation of Kautz et al. [2002].
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Figure 1: Form of the SH rotation matrix. (After [Green 2003]).

Ivanic and Ruedenberg [1996; 1998] constriaaecurrently, start-

ing from R! continuing oveiR? up toR! for any givenl. Elements

of the blockR! are computed from elements Rt~ andR? using
rules summarized in [lvanic and Ruedenberg 1998; Green 2003].
(See Figure 1 for the composition of matfrom the sub-blocks.)

A more efficient spherical harmonics rotation can be achieved with
the method of Kautz et al. [2002] that we call thezxzrotation.

A general 3D rotation is first decomposed irtgz Euler angles
(a,B,y). The rotation aroung by anglef is then expressed as

a rotation around by 77/2, a rotation around by 3 and a rotation
aroundx by — /2. The angle of the two rotations aroun fixed;

therefore, the rotation matrices for them can be pre-computed. The

number of non-zero elements in thkerotation matrices is only

a fourth of that of a general spherical harmonics rotation matrix.
Additionally, a general rotation arourdlis very simple (see Ap-
pendix B), therefore thexzxzrotation is more efficient than Ivanic
and Ruedenberg’s rotation.

Direct3D API [Microsoft 2004] provides the3DXSHRotate () call

implementation is probably based on explicit formulas for the el-
ements of the rotation matrix in terms of Euler angles [Sloan et al.
2002], since it only works for orders up to= 6. Itis, furthermore,
slower than the method of Ivanic and Ruedenberg [1996; 1998].

Choi et al.’s method [1999] performs the rotation in the complex
domain and then converts the results back to the real domain. (Our
spherical harmonics and coefficient vectors ea@l.) According

to [Green 2004], this procedure is slower than the method of Ivanic
and Ruedenberg [1996; 1998].

Since none of the above methods is fast enough for per-pixel rota-
tion, we have developed the fast rotation described below.

3 Fast Rotation Approximation

This section describes our fast approximation of the spherical har-
monics rotation using a truncated Taylor expansion of the rotation
matrix.

According to Euler’s rotation theorem, any rotation in 3D space
can be described by three angles. We decompose rotations using
the zyzconvention and express them as three subsequent rotations
aroundz, y, andz axes by angles, 3, andy, respectively, i.e.

R = R;(a)Ry(B)R(y).

Spherical harmonics rotation arounds simple and efficient (see
Appendix B). It remains to find the rotation matri¥,(3). We
replace this matrix by its truncated Taylor expansiofs at O:

@R,
dB

wherel is the identity matrix. Computation of the derivative matri-
ces is described in Appendix A and they are depicted in Figure 2.
The first derivative matrix%%y (0) has non-zero elements only on
the superdiagonal and the subdiagonal. The elements of the second

. . . 2 . .
derivative matnx%}(o) are non-zero only on the main diagonal

and on the diagonal just below the subdiagonal and just above the
superdiagonal. Therefore, the resulting rotation matrix approxima-
tion is very sparse. The rotation mati, () does not have to be
explicitly constructed at all because we know where the non-zero
elements are.
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In practice we use a so called “1.5th order” Taylor expansion, where
any non-diagonal elements of the second derivative matrix are set to
zero. The “1.5th order” expansion is only slightly less accurate than
the second order expansion, but incurs less computation. The fol-
lowing C code shows how simple tlygotation is using the “1.5th
order” Taylor expansion.

/** Rotate around y using the 1.5th order Taylor expansion
@param beta
*/
void shRotYdiff15(int order, float* dest, const float* src,
const float* dySubDiag, const float* ddyDiag, float beta)

angle of rotation around y

float bbeta = 0.5f*betaxbeta;
dest[0] = src[0];
for(int i=1; i<order*order-1; i++) {
dest [i] src[i] * (1.0 + bbeta*ddyDiagl[i]) +
beta * (dySubDiag[il*src[i-1] - dySubDiagl[i+1l*srcl[i+1]);

¥
dest[i] = src[i] * (1.0 + bbeta*ddyDiag[il) +
beta * dySubDiagl[i] * srcli-1];

that rotates a function represented by spherical harmonics. The}
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Figure 2: First (left) and second (right) derivative of heotation matrix a3 = 0. (Numbers are rounded to three significant digits.)

ArraysdySubDiag andddyDiag contain the subdiagonal %%V (0)
and the diagonal 0%2%(0), respectively. They are computed just

and the average err@() and also the actual measure@3) for
a Phong lobe ¢d$8). Although the maximum error grows quite
fast with 3, the results for the Phong lobe show good accuracy up

once at the start-up and remain constant throughout run-time. Thetg B =25.

superdiagonal O%%Y(O) does not have to be stored, since the first

derivative matrix is, like any other infinitesimal rotation matrix, an-
tisymmetric [Weisstein 2004].

All components for the full rotatiorR = Rz(a)Ry(B)Rz(y) are,
now, available. The rotation proceeds as follows:

1. Decompose the desired rotation into #iygEuler anglesr, 3
andy.

Rotate around by a (see Appendix B) .
UseshRotYdiff15() to rotate around by 3.

Rotate aroundby y.

2.
3.
4.

It has to be emphasized that the described procedureamuisox-
imatesspherical harmonics rotation and is usable only if the angle
of rotation aroundy is small. An application using our approxi-

3.2 Complexity

In this section we compare the complexity of Ivanic and Rueden-
berg’s rotation [1996; 1998] and thexzxzrotation [Kautz et al.
2002] with the complexity of our approximation. The complexi-
ties are expressed in terms of order

Ivanic and Ruedenberg’s method’he number of non-zero ele-
ments in a general spherical harmonics rotation matrix for ander
is Nnz(n) = 31 (2i — 1)2 = n(4n? — 1) /3. Computation of each el-
ement of the matrix using lvanic and Ruedenberg’s method [1996;
1998] is a constant-time operation, therefore the complexity of the
spherical harmonics rotation matrix constructiorOg?®). Com-

mation must make sure that this condition holds. The next section plexity of transforming a spherical harmonics coefficient vector

compares the approximation error for the first, the “1.5th”, and the
second order Taylor expansions.

3.1 Error Analysis

Let Ry(B) be the correct matrix for rotation arougdy 3 and let
Rg,(B) be our approximation. The error caused by rotating a coef-
ficient vector/A\ using our approximation is given by the following
L, norm:

£(B) = [Ry(B)A=Ry(B)All = [[(Ry(B) = Ry(B))All = [D(B)A.

Maximum of the errore(B) over all unit length/\ is given by the
L, norm of the matriXD (), which is equal to the greatest singular
value ofD(B). Average errog([3) over all unit length\ is given by
the average singular value Bf{3). Figure 3 shows the maximum

with the matrix is als@®(n®).

zxzxzRotation. One z-rotation involvesN;(n) = 2n(n— 1) multi-
plications; the cost of onerotation isNg(n) = 31 ;(i?—i+1) =
n(n® +2)/3. Rotation of one spherical harmonics vector with
the zxzxzrotation, thus, costsNg(n) + 2Nx(n) = n(2n? + 18n —
14) /3 € O(n®) multiplications. This is only about a half of the num-
ber of multiplications needed for transforming a vector by a full
spherical harmonics rotation matiX. Additionally, the rotation
matrix itself does not have to be constructed inzkexzrotation.

Our rotation approximation.There areNgy,(n) = 5n2 multiplica-

tions inrotYdiff15(). The total cost of our rotationN&(n) +
Ngy(n) = 9n? — 4n € O(n?) is asymptotically lower than that of the
previous methods. The advantage of our method in terms of speed
becomes more pronounced as the omlércreases, the downside
being the lower accuracy for higher
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Figure 4: RotatiorR; aligns the coordinate frame at the record lo-
cationp; with the coordinate frame at the point of interpolatipn
to make interpolation possible.

If, on the other hand, cached records are found pedéne cached
incoming radiance coefficient vectofg are interpolated with the
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. -1
wi(p) = (”p,;—p'” +\/1—n~ni) , wheren is the normal at the
point of interpolatiorp, p; is the location of the-th cache record,

% s ‘ 5 10 15 20 25 30 35 40 45 andn; is the normal ap;. The harmonic mean distand®, to the
Rotation angle (degrees) Rotation angle (degrecs) objects visible fromp;, is computed from the ray lengths during
SH order 5 SH order 8 hemisphere sampling and stored in the cache. The’seftrecords

Figure 3: Rotation approximation erre(B) as a function of angle ~ Used for interpolation is defined & = {ijwi(p) > 1/a}, wherea
B for spherical harmonics of order 5 (left) and 8 (right). The plotsin 1S @ user defined maximum allowed interpolation error.

the first row show the maximum error for any unit length vector, the The important thing here is the rotatid®) that has to be used to
second row shows the average error over all unit length vectors, andalign the coordinate frames at the point of interpolatipand the
the third row shows the actual error for a Phong lobé 6@ Error record locatiorp;: the cached incoming radianbeas to be rotated

is expressed as the Euclidean distance between coefficient vector ] S ] . :
Each plot shows the error for the 1st, the “1.5th”, and the 2nd ordersit,)se(f)%f(tjl:?r:gtrzrf(;)t;attig?s'Zg?ﬁggégggge 4). This means that there

Taylor expansion.

4 Application in Radiance Caching 4.2 The Use of our Rotation in Radiance Caching

Due to the interpolation criterion based on the weightp), the
In this section we describe the application of our fast rotation ap- normals at the record locatiqn and the point of interpolatiop
proximation in radiance caching for global illumination computa- are always similar (if they were not, the recordpatvould not be
tion. We start by briefly reviewing the radiance caching algorithm. ysed for interpolation g, because of the/I—n-n; term in the
definition ofw;(p)). The angle of rotation around tlyeaxis in the
Eulerzyzdecomposition oR; corresponds to the angle between the
two normalsn; andn, hence it is always small. We can therefore
safely apply our rotation approximation for the coordinate frame
alignment.

4.1 Radiance Caching Overview

Radiance caching [vanek et al. 2005; Kvanek 2005] general-
izes Ward et al.’s [1988] irradiance caching algorithm for the use
on glossy surfaces. It accelerates indirect illumination computa-
tion by reusing previously computed and cached incoming radiance
values through interpolation over glossy surfaces.

Rotation Approximation Limiting Angle. To keep the error
caused by the rotation approximation low, we use the approxima-
tion only for angle3 = Z(n,n;) smaller than a threshof8j,,. The
Whenever a ray hits a glossy surface at a ppinthe radiance accurate, but more costlgxzxzrotation is used i3 > Bjm. We
cache is queried for cached nearby incoming radiance values (orset the limiting angle tg; = 1.25a (derivation in Appendix C),
recordy. If no cached incoming radiance record is found ngar ~ wherea s the user specified maximum allowed interpolation error
radiance cache-based interpolation cannot be used. Therefore, th@f radiance caching. This allows higher error in rotation if the user
hemisphere above is sampled by secondary rays, the sampled di- allows higher error in interpolation. Additionally, settiryy, to
rectional distribution of incoming radiance ptis projected onto @ multiple ofa has for consequence that the percentagexakz
spherical or hemispherical harmonics [Gautron et al. 2004], and the rotations in a given scene is constant, no matter what value the user
resulting coefficient vectof; is stored with a new record in the  specifies form.

radiance cache.

20nly a simplified version of the actual formula, omitting traxisinal
Lrradiance caching only supports view independent, diffusrfaces. gradients, is shown here.




are visually indistinguishable, we show a color coded difference
between the results of the two methods. Image areas exhibiting
the maximum error are usually very curved. In those areas, visual
artifacts, if any, are well-masked.

Table 1 shows the rendering times for the flamingo and the sphere
(Figure 5 left) with radiance caching. The rendering time only in-
cludes the interpolation from the cache. For SH omdler 6, our
method is 4 times faster than tlagzxzrotation; forn = 10 it is 6
times faster.

0.02

=4
=3
S

Order 6 10
RT TPR RT TPR

Flamingo
Ignore 10.3s — 11.2s —
Our method | 128s 0.68pus | 169s 154 pus
ZXZXZ 21.2s 29@us | 47.4s 9.8us
Ivanic 47.3s 10.dus | 192s 49.1us
DirectX 76.4s 17.Qus — —
Sphere
Ignore 3.30s — 3.96s —
Our method | 428s 065us | 6.13s 144us
ZXZXZ 7.08s 251us | 16.8s 8.57us
Ivanic 17.8s 9.63us | 75.8s 47.&s
DirectX 30.3s 17.us — —

N
Ward aniso ax=0.15 ay=0.5
Table 1: Rendering times for the flamingo and sphere images in

et / A : N
Figure 5 with radiance caching. The rendering time includes only
interpolation from the cache. Various rotation methods are used
for interpolation: Ignore (rotation is ignored), our methadzxz
rotation, the method of Ivanic and Ruedenberg and the DirectX ro-
tation. ‘RT’ is the frame rendering time and ‘TPR’ is the time per
rotation. There were,226,917x 3 = 3,680,751 rotations for the
flamingo and 50420x 3 = 1,504, 260 rotations for the sphere.

Figure 5: Left: Radiance caching renderings obtained with our ap- 5 Application in Real-time Shading

proximate rotation. The flamingo is assigned a Phong BRDF with

the exponent of 7 (top) or 15 (middle) and the glossy sphere has ) o

an anisotropic Ward BRDF [Ward 1992] with, = 0.15, ay = 0.5. To demonstrate the use of our fast rotation approximation in real-
Spherical harmonics order= 10 is used for all renderings. Right:  {ime shading, we extend the rendering method of Kautz et al. [2002]
Color coded difference between images with approximated and cor- 0 compute shading on objects with a per-pixel modulated normal.
rect rotation, measured on[@,1] RGB scale. The difference is We start by giving a short overview of the original algorithm.

below the visual threshold of 1% for most pixels.

5.1 Fast, Arbitrary BRDF Shading for Low-
If, on the other hand, we keif§in independent of the caching er- Frequency Lighting
ror a, increasinga would lead to a more frequent use of thezxz
rotation. This would actually slow down the interpolation—an un- . .
expected effect of increasing the allowed caching error. Kautz et al. [2002] uses graphics hardware to perform real-time
shading of surfaces with arbitrary BRDFs illuminated by low-
Our rotation approximation and tlzazxzrotation may not meet in frequency environment lighting. By environment lighting we un-

a visually continuous fashion &, if a is high @ > 0.3 in our derstand the light incident at an object from the whole sphere of
scenes). However, in such a case, the caching artifacts are morairections. Shadowing is ignored and an assumption is made that
serious anyway and the rotation artifacts go unnoticed. the lighting is spatially invariant. Therefore, each point on an object

surface receives the same illumination.

Spherical harmonics are used to represent both the environment
lighting and BRDFs. A BRDF is represented as a 2D table, whose
each element stores the spherical harmonics coefficient vector of
For the results in this section we used the “1.5th Taylor expansion” the BRDF lobe for one fixed outgoing (viewing) direction. The
of they rotation matrix (all non diagonal elements of the second lighting integral for a given viewing direction is computed as a dot
derivative matrix are ignored). In Figure 5 we compare the results product of the environment lighting coefficients and the BRDF co-
of radiance caching obtained by the correct and the approximatedefficients for that outgoing direction. The rendering algorithm pro-
rotation. Instead of a side-by-side comparison, in which the results ceeds as follows:

4.3 Radiance Caching Results



Figure 6: Detail of a normal mapped vase rendered with our SH rotatigit) and with the simplified normal mapping (left). Normal
mapping with our SH rotation is more successful at conveying the shgpexamated by the normal map. The vase is illuminated by the St
Peter’s Basilica environment map; the BRDF comes from a measut@i@irushed metal [cite westinOOlafortune].

1. [Per-vertex, CPURotate the lighting coefficients to the local ~Modulation of surface normals by a normal map is usually limited
coordinate frame of vertex,. Send the rotated coefficient as  to rather small angles; we can therefore safely use our rotation ap-

vertex data to the GPU. proximation. Thanks to the approximation simplicity, we were able
2. [Per-pixel, GPYLook up the BRDF coefficients for the view- 10 implement the per-pixel rotation in a pixel shader of the graphics
ing direction transformed to the local coordinate frame. hardware.
3. [Per-pixel, GPYCompute the dot product of the BRDF coef-  oyr extension leads to a substantial improvement of visual qual-
ficients and the rotated lighting coefficients. ity as illustrated in Figures 6 and 7. It also allows using meshes

In this technique, the shading variance due to surface orientation isW'th lower number of vertices than the original algorithm, which

limited by the number of vertices in the mesh. A very fine mesh improves the overall rendering performance.

must be used for detailed shading. Our extension of the algorithm,

presented in the next section, removes this restriction by allowing

to modulate the surface normal by a texture (normal mapping). Simplified Normal Mapping. To simplify normal mapping, one

can ignore the per-pixel rotation (step 4) and use the normal map
only to modulate the local frame for the BRDF lookup. Unlike
our method, this simplified normal mapping generates flat looking

. . surfaces and does not capture color variations on the surface bumps
Per-Pixel Rotation due to multicolored environment lighting.

5.2 Shading on Normal-Mapped Surfaces through a

Normal maps modulate surface normals by a texture in order to
represent small surface variations, for which an explicit geometry
representation would be too bulky. Our extension of the shading al-
gorithm of Kautz et al. allows to use normal mapping on an object
illuminated by environment lighting, thereby decoupling the possi- Figures 6 and 7 compare the results obtained with our rotation to
ble shading details from the number of mesh vertices. the results of the simplified normal mapping. We used spherical
. - . . . . harmonics of orden = 5 (25 coefficients). The rotation approxi-
We modify the .0“.9"13' rendering algorithm in the following way mation used the “1.5th order” Taylor expansion for bahds1 to
(new steps are in italics): | = 3 and the first order Taylor expansion for band4. Due to the

1. [Per-vertex, CPUROotate the lighting coefficients to the local limited pixel-shader instruction-count we had to use four passes to
coordinate frame of vertex,. Send the rotated coefficient as accommodate 25 coefficients. The frame rates for these images at

5.3 Results

vertex data to the GPU. resolution 800< 600 were:

2. [Per-pixel, GPULook up the normal map (normal map repre- Simplified | Rotation
sents the modulation of the local coordinate frame at the pixel Vase (891 vertices) 58 fps 46 fps
with respect to the frame given by the interpolated per-vertex Sphere (560 vertices) 65 fps 54 fps
normals). Plane (25 vertices) 75 fps 56 fps

3. [Per-pixel, GPYLook up the BRDF coefficients for the view- ] ] )
ing direction transformed to thenodulatedlocal coordinate ~ These figures were measured on a 2.2 GHz Pentium IV PC with ATI

frame. Radeon 9800 Pro GPU. The drop in the frame rate due to the rota-
tion is more pronounced for low polygon count meshes, for which

4. [Per-pixel, GPY Use our fast spherical harmonics rotation the rendering time is determined mostly by fragment processing.

approximation to rotate the BRDF coefficients from the mod-
ulated local frame to the interpolated per-vertex local frame.  Ajthough those results are outdated by the power of recent graphics

5. [Per-pixel, GPU Compute the dot product of local lighting  hardware, the presented algorithm is useful as a demonstration of
and BRDF coefficients. the possible uses of our fast rotation approximation.
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A SH Rotation Matrix Derivative

Here we describe the computation of tkéh derivative matrix
k

of the derivative matrix blocl%

we denote therRS( ) (I,mg, mp). We start with bands= 0 andl = 1:

are indexed byn; andmy, and

RO, o 0 =10 RrRN@ o 0 = cod¥p)

RO, -1, -1 =10  R¥@, o 1) = —sin¥(g)
R{"’(l, 1, 0 =0 RM@M, 1, -1) =0

RM@M, -1, 1) =0 RM1, 1, 0) = sin®(p)

RM@1, 0 -1) =0 RO, 1, 1) = cos¥(p)

where 8 = 0 and 1¥ is the derivative of one (¥ =1 if k =

0 and 1Y = 0 if k > 0). For higher bands, we compute si-
multaneously the zero-th, first, second, maxderivth deriva-
tive:

forl =2...n—1do
for k=0...maxderivdo
formpy=—I...1do
formp=—1...1do
RO m,my) == uhym,-dU® (1, mg,mp)+
VIIT]1I’T12 ) dv(k) (l ) ml7 m2)+
Wlmlmz : dW(k)(l 9 ml: mz)
end for
end for
end for
end for
Numerical coefficientsiy m, . Vin,m, andwi, m, are the same as in

the original paper [Ivanlc and Ruedenberg 1998]. Functiblds
dV anddW are defined as:

du® (1, mg, mp) =dP® (1,my, mp,0)

. The algorithm is based on Ivanic and Ruedenberg’s rotation
matrix construction [1996; 1998] and retains its structure. Elements

dP® (1,my —1,mp, 1)— .
Pyt 1mp, 1) T
V2dPX®) (1,0,mp, 1) ifmy =1
dP®(1,1,m,, 1 .
dvR (1, my,my) = dp<k>g| _inzmz)jl) if my = 0
V2dPX® (1,0,mp, —1) if mp=—1
dP( >(| —m—1m, -1+ .
OmytLm,y s
dP® (I 1,mp, 1 )
. (k)E| T?n:_’f]zrﬁz)jl) if my >0
dW( )(|7m17m2): (k) I’ ’ ’
(,m—1,m,1)— o erwise
(k)(|7_m1+17m27_1)
with
dT®(1,i,0,1 —1,my,mp) if |mp| <
<'<>(1,|,1| Lmgl-1)—
dPR (1, my, mp,i) = { dTO(Li,~1,1 —Lmy, —l+1) "2
<'<>(1| 1|—1 my, — + 1)+
aTO (i1 - 1m -y T
and

k K i
dT(k)(ImemZvl,vrr{brré) :20(|>R§/)(Iml>m2)
i=

RID (1, i, mh).

Function dT implements the product derivative rutefg)® =
5K o (4 f0gl=), wheref(®) denotes thé-th derivative.

B SH Rotation around z-Axis

The Z-rotation is computed efficiently without construct-
ing the rotation matrix Rz(a) using the following proce-
dure:
for|=0...n—1do
vl=AP
form=1...1 do
u M= A"Mcogma) — AMsin(ma)
o™ =A""sin(ma)+AMcogma)
end for
end for

The sines and cosine of multiple angles can be computed with the
recurrence formula:

2sin((m—1)a)coga) —sin((m—2)a)
2cog(m—1)a)coga)—cog(m—2)a)

The number of multiplications in the rotation procedurdljgn) =
2n(n— 1) thus the complexity i©(n?).

sin(ma) =
cofma) =

C Derivation of the Limiting Angle

This section justifies setting the limiting angB, in radiance
caching to a multiple of the maximum caching ereofsee Sec-
tion 4.2). A radiance cache recar included in interpolation at a

-1
pointp if a > 1/w;i(p). Weightw;(p) = <w ++v1-n- ni>

is a function of the distancip — pj|| and the angle between nor-
malsB = Z(n,n;). Consider a constant curvature surface with the

osculating circle radius. Then||p —pi|| = 2r5|n’3 and therefore
the weight is only a function g8, i.e.

%sing ++/1—cosp,

whereR; is the harmonic mean distance.

1/wi(p) = f(B) =

Our aim is to find for a givera and a fixed the value off}j, such
that for all accepted radiance cache records, the normal divezgen
is never more thagj,,. This can be done by inverting functidn
which is unfortunately impossible to do in a closed form. Instead
we take the first order Taylor expansion bfat 8 = 0, which is
f(B) ~ B(1/v2+ &), and we findBim = a(1/v2+ &)t We
chooseﬁ = 0.1 and getBjim = 1.25a (in degreeBim = 70.1a).
The choiceﬁ = 0.1 means that all surfaces of curvature/R0or
smaller will be rendered without exceedifig,. To conclude, by
settingBim = 1.25a, the slowerzxzxzrotation will be used only on
surfaces of curvature higher than/R), regardless of the value af



