Remote Rendering of Massively Textured 3D Scenes Through
Progressive Texture Maps

J-E. Marvie and K. Bouatouch
IRISA-INRIA
University of Rennes
Rennes, France
email: {jemarvie kadi}@irisa.fr

ABSTRACT

In this paper we present a new progressive texture map
(PTM) format that encodes the mipmap levels of a tex-
ture map into a compact and progressive way. In order to
manage these PTMs to visualize architectural 3D scenes,
we make use of a space subdivision and a visibility com-
putation algorithm that are performed in a preprocessing
step. In addition to this preprocessings, we precompute
a metric which is used during the navigation to select
the texture mipmap levels to be downloaded and those to
be added/removed to/from the graphics hardware memory.
Thanks to these mechanisms, we generate and visualize
scalable databases for architectural 3D scenes that contains
high resolution texture maps. The visualisation system we
propose is based on a client/server architecture and allows
the transmission and the visualization of 3D scenes using
either a remote server connected via low bandwidth net-
works or a local server. In addition our system automati-
cally adapts to the power of the client machine.

KEY WORDS
Textures, Walkthrough, Streaming

1 Introduction

Thanks to high performance graphics hardware, texture
mapping has become a standard use to increase realism
and visual quality of real-time 3D applications. Neverthe-
less, most common applications such as games or 3D for
the web systems always use 3D scenes that are scaled to
fit the actual hardware performances. Web 3D applications
is an excellent illustration. One can never know how pow-
erful the client’s hardware and how fast the network will
be. The most commonly used solution is to propose sev-
eral rendering qualities to the end user which has to choose
one before downloading the 3D scene data (geometry and
texture maps). Another solution consists in using progres-
sive transmission of data. Such a solution allows the end
user to visualize at first a low quality representation of the
downloaded content while downloading the additional data
needed to refine this representation. When downloading an
image, the end user always wants the image to be of high-
est quality. Conversely, when the user moves rapidly in a

3D model he does not need high resolution texture maps all
the time. Finally, depending on the user graphics hardware
and on the network bandwidth, the highest resolution and
the number of texture maps that are used in a 3D model
are variable parameters. By using progressive texture maps
and a precomputed metric to select the requested and ap-
propriate resolution for texture mipmaps [10], we propose
an efficient and scalable system which aims at generating
and visualizing remote highly textured 3D scenes.

2 Redated works

Progressive image transmission has been studied by many
authors, and many different solutions have been devel-
oped. Many of today image compression methods propose
progressive transmission mechanisms, including row in-
terlacing (GIF), scan-based progressive encoding (JPEG),
and hierarchical progressive encoding (Zerotree [6] or
SPIHT [5]). S3 texture compression (S3TC) provides good
compression ratio for texture maps (6:1) and recent graph-
ics hardware are able to decompress these texture maps on
the fly. Thus, this compression scheme is usefull to re-
duce the AGP bus transfers as well as the requested graph-
ics hardware memory when using high resolution texture
maps. Although these last techniques are very power-
ful for image compression and transmission, they are not
(most of time) lossless and not specialized to handle tex-
ture mipmaps.

The progressive transmission of textures becomes in-
teresting if we are able to select and download only the
mipmap levels needed to produce the best visual represen-
tation for a given viewpoint. In their streaming system [7]
Teler et al. propose to use the number of pixels (called
pixel coverage from now on) that the projection of an ob-
ject’s bounding rectangle takes on the screen, as a metric
to select its requested visual quality. With this solution,
some objects can be inside the view frustum but occluded
by some other objects (occluders). Therefore, occluded ob-
jects might have large pixel coverages whereas they are not
visible. In his method [2], Dumont applies a two pass al-
gorithm to update the texture mipmap levels in the graphic
hardware. The result of the first rendering pass is analysed
to compute the pixel coverage of each visible object that is

then used to update the texture mipmap levels used during
the second rendering pass. This algorithm copes well with
the problem of occluded objects and provides the best vi-
sual quality. On the other hand, using a two pass algorithm
and scanning the frame buffer entails many computations
that can drastically reduce the frame rate.

To cope with the problem of occluded objects, a vis-
ibility preprocessing [1, 8, 9, 4] between a set of cells that
subdivide the architectural model can be performed. At the
end of the process, the model is subdivided into a set of
cells that matches its rooms and cell-to-cell visibility rela-
tionships are stored into each cell. An other advantage of
this method is that during remote navigation, only the view-
cell (the cell that contains the viewpoint) and its potentially
visible set of cells (PVS) need to be transmitted through the
network to construct the client’s visual representation. Fur-
thermore, this kind of scene structuration allows to perform
data prefetching and memory management [3].

3 Oveview

With our system several client machines can connect to
a server to visualize static 3D scenes stored in scalable
databases. The main goal of our system is to minimize
the transmission of texture map data from the server to
the client memory (RAM) and from client RAM to the
OpenGL graphics hardware. In order to allow the pro-
gressive transmission of the architectural scenes during the
visualisation process, they are first subdivided into cells
and a cell-to-cell visibility relationship is established using
Teller’s preprocessing method [9].

The texture maps of the original scene are then con-
verted into the progressive texture map (PTM) format we
present in Section 4. This file format encodes the mipmap
levels of a texture using a differential mechanism. Thus, the
mipmap levels can be transmitted separatelly starting from
the lowest mipmap resolution. Though storing the mipmap
levels of a square texture map entails an extra storage size
of more than 30% compared to the original texture map,
the differential method we propose increases the size of the
original map only by 6%.

Instead of computing the pixel coverage of each visi-
ble cell during the navigation [7, 2], our algorithm precom-
putes, for each cell, the average pixel coverage value of
each cell within its PVS. These values, valid for any view-
point lying in the convex hull of the cell for witch they are
computed, will be called ACHs (Average Coverage Hints).
We will see in section 5 how to precompute these ACHs
using an OpenGL graphics hardware.

In Section 6 we explain how our visualizer makes use
of the preprocessing results to download geometry and to
select the mipmap levels needed for the best visual repre-
sentation. We show how we manage these selected levels to
reduce the AGP transfers by filling the graphics hardware
memory in a way better than that of a classical LRU policy,
to minimize the network transfers and to optimize the client

RAM occupation. Finally, we present some results before
we conclude.

4 Progressive Texture Maps

As just explained, the aim of the PTM format we pro-
pose is to encode the mipmap representation of a texture
map in a compact way that allows the transmission of the
mipmaps, level by level. A first solution would be to en-
code the sequence of mipmap levels in a raw manner into
a single file. Although this method is simple, it entails
data redundancy. Actually, a texture map with a resolu-
tion of 1024x1024x24bits requires 3MB of memory space
whereas the associated mipmaps requires 4MB. The solu-
tion we propose consists in storing, for each level, only a
portion of this level, whereas the rest can be reconstructed
using few additional data and the level just below as seen
hereafter.

4.1 Floating point solution

-~
|—_2_ - r—- - - I__l_“__l—l
I 150 o1t 10,2 15,51 I 1o 110l
| |
d__ d__J| F d__ 2
hq
! ! 2 ! ! 2 [1
AT || I ||y 2|l fis y lo |l Tia
j: | E— | Ep— | I
12
r-- ___II__2_"___|
115 I3 13,2 I3 3| F
| |
' g2l g
R | T | LT | I 0 |
RENE | IRERE | IREET | IREE 1 10,0 4] | Ro
L — | I |
B e
lo lo

Figure 1. The three lower levels of a square PTM. For each
level, the dotted lines surrounds the pixels that are trans-
mitted from the server to the client (partial mipmap level)
and the bold lines surrounds the pixels that are computed
on the client side. F is the low-pass filter that transforms a
level n into a level n — 1.

In this section, we show how to reconstruct a mipmap
level n knowing % of its content (this fraction will be called
partial mipmap level) and its lower level n — 1. To compute
a mipmap level n — 1, we apply the 222 low pass filter £ to
level n for each color component. Figure 1 shows the three
lower mipmap levels of a square texture map.

(1)

The color component I}~ 1 of a texture pixel P ! of the
mipmap level level n — 1 is obtained using Equation (1),
Where I'; is the intensity of the color component of pixel

', of the mipmap level n having a width and a height

NN,
NSNS,

equal to /,, and h,, respectively.

) Vi,j € Z
Iﬁfl ~ 1 Z Lot jogm i< hp_1 Q)
0<i<1 J<ln-1

0<m<1

A partial mipmap level n contains the color components of
only three pixels (i.e. generated with the filter F) for each
of its 222 pixel blocks. The missing color component of
the fourth pixel of a pixel block can be computed using the
three generated color components of this block and that of
lower level n — 1, say Ii’fj‘l (see Equation (2)). In Figure 1,
the three generated color components are outlined with dot-
ted lines while the computed missing color components are
outlined with bold lines.

-1
Ioq oo =40 =10y jo—1l9 1 jo—1is jaga (2)
Vi,jEZL 7/<hn,—1 i<ln—1

Having the level n — 1 in the client memory, we only need
to download % of the level n, the rest can be computed at
the client side using Equation (2). Consequently, instead
of transmitting a 4M B texture, we only transmit 3M B,
which corresponds to the original size of the texture map.
This solution is optimal in floating point representation but
it introduces some residual errors when using integer rep-
resentation.

4.2 Integer solution

Usually, texture maps are encoded using 24 bits or 32 bits
per pixel and each color component has to be coded using
unsigned integers. However, in Equation (1), the division
by 4 generates a remainder r}'; ! ranging within the dis-
crete set {0, 1,1, 3 Itgenerates in Equation (2), a resid-
ual error 7! within the discrete set {0, 1,2,3}. There-
fore, when downloadmg the mipmap level n we also need
to download the residual errors for this level to reconstruct
the missing color components. In this way, the reconstruc-
tion of the level n is given by the modified Equation (2):

n _ n—1 n—1 n n n
{ Ii-2+1,j«2+1_4'1i,j +57J =1 2;-2*Ii-2+1,j«2*1i«2,j«2+1

Vi, jEZ i<hp_1 J<ln—1
3)

The following Section shows how we encode the partial
mipmap level and the residual errors into our PTM file for-
mat.

4.3 Compact representation

The residual error ¢}’ for a color component can be en-
coded using 2 bits. The division by 4 is done by shifting
the dividend value by 2 bits on the right and the 2 bits of
the remainder are retrieved using a logical mask. There-
fore, the algorithm for encoding-decoding is very fast, and
storing the errors increases the size of the texture file only
by 6%. Once the partial mipmap levels and the residual

errors tables are computed, they are written into a file in a
compact format which allows an optimized and progressive
access to this file.

The file first contains a header describing the resolu-
tion of the highest mipmap level, the number of compo-
nents per pixel and the number of mipmap levels. When
reading the file, one must compute the resolution for each
mipmap level using the header values. Note that the num-
ber of levels allows to encode a lowest mipmap level of any
resolution. If the lowest encoded level is not reduced to one
pixel, the lower mipmap levels are computed by the client
with the Equation (1) after having downloaded the lowest
level. After this short header, the lowest level is entirely
written into the file using a line major order. This level is
then followed by a set of groups, each one containing the
data needed to reconstruct one mipmap level. These groups
are written in the file starting with the lowest level and end-
ing with the highest one. Each group starts with the array
of residual errors needed to reconstruct the level, followed
by the array of color components that make up the partial
mipmap level. Each array of components is composed of
the partial pixel blocks written in a line major order to op-
timize memory access during the level reconstruction.

5 ACHSsPreprocessing

Recall that our architectural scenes are first subdivided into
a set of cells for which a cell-to-cell visibility relationship,
using Teller’s method [9]. For a given cell, the ACHSs values
associated with its potentially visible cells are cumputed
by summing a set of ACHs samples computed for different
points of the cell. An ACHs sample is computed in screen
space by rendering its potentially visible cells for six cam-
eras having the same center of projection (COP). The view
direction of each camera is perpendicular to one face of a
box. Such a box will be called rendering box from now
on. The COP shared by the six cameras is the center of the
rendering box and the FOV (field of view) of each camera
is equal to 90 degrees. The projection plane of a camera
is a face of the rendering box. In our implementation we
generally use height ACHs samples per cell whose COPs
are uniformelly distributed inside the cell.

For each camera of the rendering boxes of a cell, all
the objects of its PVS are rendered. In order to accelerate
the rendering we use an OpenGL graphics hardware and we
perform a frustum culling on the bounding box of each ob-
ject. Each object is displayed with a unique color which is
assigned to the memory pointer pointing to its parent cell.
So the contents of the image directly gives the memory
pointers of all the cells visible from the COP of the associ-
ated camera. Then, for each camera C; (of the N, cameras
associated with a cell), we count the number of pixels IV;;
covered by each visible cell I;. The total number of pixels
Njetal covered by a visible cell I; is then:

Ntotal Z Nﬁj

Let N..;s be the number of visible cells for the V. cam-
eras. The total number of covered pixels N/2a] for the N
cameras is then:

Necelis
total __ total
Npia:els - E Nj
=1

The ACH (Average Coverage Hint), denoted AC H, asso-
ciated with each visible cell I; is computed as:

total

The properties of the ACH values are the following:

{ VJ S [LNnodes]aACHj € [07 1]
ZjE[laNnodes] ACH] - 1

6 Visualization

Once the visibility and ACHs computation step has been
achieved, the database is stored on the server using a root
file, a set of cell files and the set of PTM files. The root file
contains a set of viewpoints from which the navigation can
start and each viewpoint refer to the file url of the cell in
which it is placed. Each cell file contains the description of
one cell: its convex hull description, its child geometry, the
Url list of its adjacent and potentially visible cells and the
list of their associated ACHSs values.

At the begining of the navigation, the clients down-
loads the root file and select one of the proposed view-
points. Once selected, the cell associated with the view
point is downloaded as well as its potentially visible cells.
At this point, all the texture map nodes (PTM nodes) that
are used by a shape contained in one of the cells are reg-
istred in a table used to handle the resident nodes. A res-
ident node is a node that manipluates some data that are
stored in the OpenGL graphics hardware (i.e. texture maps
or display lists). When the user moves inside the scene, its
trajectory is extrapolated to find and prefetch the next vis-
ited cell. When the current cell changes, all the PTM nodes
that are not used any more are removed from the resident
nodes table and their associated mipmap levels are removed
from the graphics hardware memory. Then, the new PTM
nodes are added to this same table.

The rendering algorithm is divided into three consec-
utive steps. In the first step, the current cell PVS is ana-
lyzed to compute the set of visible objects. Each part of
this analysis is performed by the nodes themselves and is
implementented in their computeVS method that takes the
rendering options as parameters. When an object finds its
bounding box to be inside the view frustum, it registers
into a display table. In the second step, the refreshResi-
dent methods of the resident nodes are invoked so that they
can refresh the graphics hardware memory according to the
parameters computed during the scene graph analysis. Fi-
nally, in the third step, the display methods of the objects
stored into the rendering table are invoked to perform the
rendering.

6.1 Memory quota allocation

During the first step, a frustum culling is first performed
using the convex hulls of the cells within the PVS of the
current cell. The ACHs are then used to make the visible
cells share out the memory quota M ™™ that gives the to-
tal amount of graphics hardware memory that can be used
for storing the texture maps. The value for the M ™™ pa-
rameter is either user defined, or benchmarked for the given
graphics hardware. For each visible cell (including the cur-
rent cell), its ACH is normalized using the number of cells
that are visible. We compute the memory quota M[™<™ to
assign to each visible cell 4 using its normalized ACH de-
noted AC'H; as follows: M™™ = ACH, - M™*™. Each
visible cell shares out its quota among its child nodes that
use it to allow their child PTM nodes to select their best
suitable highest mipmap level, and returns M "¢7" which is
the exact amount of memory used to store all the mipmap
levels referred to by its child nodes. The quota of memory
available for the next visible cell is now Af™™ — M e,
This process is repeated for each visible cell, starting from
the cell having the highest ACH and ending with the one
having the lowest one.

6.2 PTM updates

Recall that the computeVS method of a PTM is invoked
by its parent object if this latter is visible. Since a PTM
node can be shared out among different objects, it does not
update its mipmap levels each time its computeVS method
is invoked. Instead, it saves the memory quota allocated
to it at each call to this method according to the follow-
ing rules. Each time the computeVSmethod is invoked, the
PTM node has to decide if it keeps or not the memory quota
Naioc, given as a parameter, to store its own mipmap lev-
els. Let L be the index of the current highest mipmap level
and N the current total amount of memory quota saved dur-
ing the previous calls to the computeVVSmethod of the PTM
node. If the level L+ 1 exists and its memory size S(L+1)
is higher than N+N .., the memory quota N, is added
to the current amount of memory N otherwise the unused
memory is returned to the parent node. If the level L + 1
does not exists, the same tests are performed using the cur-
rent highest mipmap level L.

Then, during the resident node update, the refreshRes-
ident method uses the total amount of memory quota N
to add/remove a mipmap level into/from graphics hard-
ware memory or to download a new level. Let L,,,. be
the highest level already downloaded and L4 is the to-
tal number of levels that are stored on the server side. If
S(L+1)<NandL+1< Lygeand L+ 1 < Ligtar,
the level L+ 1 is added into the graphics hardware memory.
Else, if S(L) > N the level L is removed from the graphics
hardware memory. Else, if we are not downloading a level
and S(L+1) < Nand L+1 > Ly, and L+ 1 # Liotal,
a request for downloading the next level has to be sent.

In order to prevent the client from waiting a long time

for a high texture level when the network bandwidth is not
high enough, the user can set the parameter 6t,,,... that rep-
resents the maximum amount of time that should be used
to download a level. Using the result of network bandwidth
and latency analyzis performed for some recent download-
ings as well as the size of the requested level, the PTM
computes an estimation of the time needed to download the
requested level. If the estimated time is lower or equal to
Otmasz, the request is sent to the server, otherwise it is dis-
carded. Finally, two other parameters §tstatic and M e,
are used if the viewpoint is static for a given number of sec-
onds ¢4 Which is a user defined parameter. For exam-
ple, one can use M™¢™ = 4M Bytes, dtmaqr = 0, bsec,
Mmem = 16 M Bytes and 6t5iatc = 20sec to obtain a
good interactivity when moving the viewpoint and a good
quality when focusing on a given object.

7 Reaults

In this section we provide some results showing the per-
formances of our navigation system regarding the quality
of the network transmissions and interactivity during nav-
igation. In the following sections, the tests will be per-
formed using a museum model because of its low number
of polygons and its large amount (97.7MB) of high resolu-
tion (1024x1024) texture maps.

T
120 no limit -

100 56 Kbits'sec ———

% — ““‘/f\,,/ﬂ"' “\T\\‘g‘\
80 ||

g or

53 |

S g0l

2z [

g 40

& o

0 50 100 150 200 250 300
Time (seconds)
100 T T T T T

T T T
Using PTM textures

Fps
IS 3
———r
—

55 60 65 70 75 80 85 90 95 100
Time (seconds)

Figure 2. Top: PTM downloading quality and bandwidth
adaptation over the time. Simulations performed at three
different bandwidth limitations. Bottom: Frame rate over
time for walkthroughs of museum using high resolution
TGA texture maps and PTM texture maps. The tests were
performed at a rendering resolution of 1280x1024.

7.1 Transmission quality

In order to analyze the transmission quality, we have
recorded a walkthrough path on the client side. This path
passes through all the rooms of the museum model. Our
system allows to simulate a remote walkthrough, using this
path, at different bandwidths. During the simulation, for
each used texture map within the PVS of the current cell,
we count the amount of downloaded levels that we nor-
malize using the highest number of levels for these tex-
tures. This percentage is called the progressive download-
ing quality. The highest this value, the highest the pro-
gressive downloading quality. Figure 2 shows how the
progressive downloading quality evolve over time for the
walkthrough simulated at different bandwidths. The qual-
ity plot exhibits very low values at the begining of the walk-
through because the cells (and the geometry) downloading
requests are assigned priority higher than that of mipmap
level requests. Then, after this initialisation time we can see
that the quality increases rapidly up to a bound controlled
by the maximum download latency parameters dt,,,, and
gtstatic —On the quality plot corresponding to the simu-
lation with no bandwidth limitation, a quality of 100% is
reached when the viewpoint is static. We can see on the two
other plots that the quality also increases when the view-
point is static. Figure 3 shows three screen shots for a static
viewpoint at different times using a simulated bandwidth of
56K bits/s and one screen shot where texture maps are in
the highest resolution, using a local server. The framerate
was more than 29 fps instead of 2.7 f ps without using PTM
mechanism.

7.2 Interactivity

Recall that our system relies on two parameters A/ ™™ and
Mem respectively used to limit the texture memory quota
for the graphics hardware for a moving and a static view-
point respectively. To show that our system is capable of
rendering scenes with high resolution texture maps at an
interactive frame rate, we have simulated a walkthrough
using a path with many direction an rotation changes of
the viewpoint. Such a path introduces many transfers on
the AGP bus if the amount of texture maps is too high for
the graphics hardware used. For this test, the walkthrough
was performed twice for two different models. The first
model is the original museum scene with high resolution
TGA texture maps and the second one is the preprocessed
museum using PTM texture maps. To walk through the
second model, we did not use any network bandwidth limi-
tation and the memory bounds were setto M ™™ = 4M B
and M7 = 12M B which are the best parameters for
the Pentium 1V 1.7GHz, with a NVidia Quadro 2 Pro 64MB
we used for the tests. The first time, the walkthroughs are
simulated such that all the needed data are downloaded
with the maximum resolution and the TGA texture maps
are all loaded into the graphics hardware memory. Then,
the second time all the needed data for the walkthroughs

Figure 3. Screen shots from a static viewpoint placed in the museum at different times after the texture downloadings start. Top
left: 10s after, at 56 K'bits/s. Top right: 35s after, at 56 K bits/s. Bottom left: 1m20s after, at 56 K'bits/s. Bottom right: view
in the highest quality 3s after the texture downloadings start using a local server.

are kept into the main and graphics hardware memories.
Figure 2 shows the frame rate (fps) analysis for the second
time walkthroughs. The fps plots show that between 72
seconds and 83 seconds the frame rate for the walkthrough
using TGA texture maps is very low because of the AGP
bus bottleneck whereas the frame rate for the walkthrough
using PTM texture maps ranges beteween 20fps and 50fps.
Consequently, our system allows real time visualization of
scenes that could not be visualized in a usual manner.

8 Conclusion

In this paper we have described a system that allows to vi-
sualize large 3D scenes that can contain a large amount
of high resolution texture maps. To obtain such results
we have proposed a compact and progressive representa-
tion for texture maps that is fast to encode-decode unsing
integer arithmetic. The calculus of the ACHs values we
use to select the level of a PTMs to be downloaded and
uploaded into the graphics hardware memory is fast since
it is performed by the graphics hardware. Thanks to this
mechanism and a small set of parameters, we can ensure
an automatic adaptation to the network and to the client
machine performances. Our ACH based visualization sys-
tem is highly scalable, modular and can handle any kind of
texture maps.

References

[1] Airey, John M., John H. Rohlf, and Fredrick P. Brook. To-
ward image realism with interactive update rates in complex

virtual building environements. In Symposium on interac-
tive 3D graphics, pages 41-50, 1990.

[2] Reynald Dumont, Fabio Pellacini, and James A. Ferw-
erda. A perceptually-based texture caching algorithm for
hardware-based rendering. In Eurographics Workshop on
Rendering, 2001.

[3] Thomas A. Funkhouser. Database management for inter-
active display of large architectural models. In Graphics
Interface, 1996.

[4] Thomas A. Funkhouser, Carlos H. Squin, and Seth J. Teller.
Management of large amounts of data in interactive building
walkthroughs. In Symposium on Interactive 3D Graphics,
1992.

[5] A. Said and W.A. Pearlman. A new fast and efficient im-
age codec based on set partitionning in hierarchical trees.
In |EEE Trans. Circuits and Systems for Video Technology,
number 6(3), pages 243-250.

[6] J.M. Shapiro. Embedded image coding using zerotrees of
wavelet coefficients. In IEEE Trans. Sgnal Processing,
number 41(12), pages 3445-3462, 1993.

[7] E. Teler and D. Lischinski. Streaming of complex 3D scenes
for remote walkthroughs. In Computer Graphics Forum,
volume 20, pages 17-25, 2001.

[8] S. Teller and C. H. Squin. Visibility preprocessing for inter-
active walkthroughs. In ACM siggraph, pages 61-69, 1991.

[9] Seth Jared Teller and Carlo H. Sequin. Visibility computa-
tions in polyhedral environments. Technical report, Univer-
sity of California at Berkeley, 1992.

[10] Lance Williams. Pyramidal parametrics. In Proceedings
of the 10th annual conference on Computer graphics and
interactive techniques, pages 1-11, 1983.

