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Radiance Caching for Efficient Global Illumination
Computation

Jaroslav Křivánek, Pascal Gautron, Sumanta Pattanaik, and Kadi Bouatouch

Abstract— In this paper we present a ray tracing based
method for accelerated global illumination computation
in scenes with low-frequency glossy BRDFs. The method
is based on sparse sampling, caching, and interpolating
radiance on glossy surfaces. In particular we extend the
irradiance caching scheme proposed by Ward et al. [1]
to cache and interpolate directional incoming radiance
instead of irradiance. The incoming radiance at a point
is represented by a vector of coefficients with respect to a
spherical or hemispherical basis. The surfaces suitable for
interpolation are selected automatically according to the
roughness of their BRDF. We also propose a novel method
for computing translational radiance gradient at a point.

Index Terms— Global illumination, ray tracing, spheri-
cal harmonics, directional distribution.

I. INTRODUCTION

MONTE Carlo ray tracing is the method of choice
for computing images of complex environments

with global illumination [2]. It produces high quality
images, handles general lighting phenomena and scene
descriptions, and scales well with the scene size. Even
for the radiosity method, high quality images are created
by the final gathering, often making use of Monte Carlo
(MC) ray tracing [3].

MC ray tracing is, however, expensive when it comes
to computing indirect illumination on surfaces with low
frequency BRDFs (bi-directional reflectance distribution
functions). Low-frequency BRDFs are wide and there-
fore too many rays have to be traced to get a reasonably
precise estimate of the outgoing radiance at a point.
Fortunately, there is a high degree of coherence in the
outgoing radiance field on those surfaces [1], [4]–[6],
which demonstrates itself as a smooth indirect illumi-
nation. The coherence of radiance can be exploited by
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interpolation [1], [7] to obtain a significant performance
gain.

Our goal is to accelerate global illumination compu-
tation in the presence of surfaces with low-frequency
glossy BRDFs in the context of MC ray tracing. We
achieve it by sparse sampling, caching, and interpolating
radiance on those surfaces. In particular we extend Ward
et al.’s irradiance caching scheme [1], [8] to glossy
surfaces. Irradiance caching is based on the observation
that reflected radiance on diffuse surfaces due to indirect
illumination changes very slowly with position. This
can be, however, generalized for all surfaces with low-
frequency BRDFs, even if they are glossy. Motivated by
this observation, we extend Ward et al.’s work to cache
and interpolate the directional incident radiance instead
of the irradiance. This provides the necessary informa-
tion for the illumination integral evaluation (Eq. 1) in
the presence of a glossy BRDF and allows for radiance
caching and interpolation on glossy surfaces. We dub the
new method radiance caching.

The incoming radiance at a point is represented by
spherical or hemispherical harmonics (HSH, see Ap-
pendix I) and radiance interpolation reduces to inter-
polating the HSH coefficients. The illumination integral
evaluation reduces to a dot product of the interpolated
incoming radiance coefficients and the coefficients of the
BRDF representation. The dot product is fast to compute
and saves many BRDF evaluations that would have to
be used in MC importance sampling.

We enhance the interpolation quality by the use of
translational gradients. We propose novel methods for
computing gradients that are more general than the
method of Ward and Heckbert [8].

Radiance caching shares all the advantages of the
original Ward’s work. Computation is concentrated in
visible parts of the scene; no restrictions are imposed
on the scene geometry; implementation and integration
with a ray tracer is easy. Our approach can be directly
used with any measured BRDF represented by spherical
or hemispherical harmonics.

This paper extends the initial description of radiance
caching given in [9]. The main contributions of this
paper are extension of the irradiance caching algorithm



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

to support glossy surfaces, an automatic method for
selecting BRDFs for which radiance caching is suitable,
new methods for computing translational radiance gra-
dient at a point, and integration of radiance caching in a
distribution ray tracer.

The rest of the paper is organized as follows. Sec-
tion II summarizes the related work. Section III gives
an overview of how radiance caching works and how
it is integrated in a distribution ray tracer. Section IV
details different aspect of radiance caching. Section V
presents the results. Section VI discusses various topics
not covered in the algorithm description. Section VII
concludes the paper and summarizes our ideas for future
work.

II. RELATED WORK

a) Interpolation: Interpolation can be used in
global illumination whenever there is a certain level of
smoothness in the radiometric quantity being computed.
All radiosity methods use interpolation in the form
of surface discretization. They adapt to the irradiance
smoothness by adaptive geometry subdivision, e.g. [10]–
[12]

In the context of MC ray tracing many approaches
have been proposed for screen space interpolation [5],
[13]–[15]. The goal of these methods is to display an ap-
proximate solution quickly, possibly at interactive frame
rates. However, they do not accelerate the computation
of the final high quality solution, which is the objective
of our work. Object space interpolation has also been
used for the purpose of interactive previewing [16],
[17]. Sparse sampling and interpolation for high quality
rendering was used in [7] and [1]. The approach of Bala
et al. [7] is suitable only for deterministic ray tracing.
Ward et al. [1] use interpolation only for diffuse surfaces.
Our approach extends this work to support caching and
interpolation of the directional incoming radiance on
glossy surfaces.

b) Caching Directional Distributions: Caching the
directional representation of radiometric quantities has
been used to extend the radiosity method to support
glossy surfaces, e.g. [18]–[25].

Directional distribution caching has also been used in
the context of MC ray tracing [6], [26], [27]. In those
papers, the incoming radiance at a point is represented by
keeping the list of radiance samples used for hemisphere
sampling. Slusallek et al. [6] and Kato [26] use reprojec-
tion of the samples for improved interpolation. Tawara
et al. [27] selectively update the sample list in time to
exploit temporal coherence. Slusallek et al. and Tawara
et al. mention the suitability of their representation for
accelerating rendering with glossy surfaces. The papers

discuss only the diffuse case, though. Storing light par-
ticles in the scene can also be thought of as caching the
directional distribution, since the incoming direction is
usually retained with the particle [28], [29].

c) Spherical Function Representation: A suitable
representation of functions on a (hemi)sphere is neces-
sary for incoming radiance caching. Piecewise constant
representation [6], [24], [26], [27] is simple but prone
to aliasing and usually very memory demanding. Unless
higher order wavelets are used, even wavelet represen-
tation [21]–[23], [25], [30] does not remove the aliasing
problems. But with higher order wavelets the mathemat-
ics becomes complicated and hence discourages their
use.

Spherical Harmonics [18], [20], [31]–[37] remove the
aliasing problem and are efficient for representation
of low-frequency functions. However, representation of
sharp functions require large number of coefficients and
ringing artifacts might appear. Hemispherical harmonics
[9] are better suited for representing functions on a hemi-
sphere. Basis functions very similar to spherical harmon-
ics are Zernike polynomials [38], [39] and hemispherical
harmonics of Makhotkin [40]. Unlike for spherical har-
monics, the rotation matrices are not available for these
basis functions. We choose spherical and hemispherical
harmonics for their good anti-aliasing properties, low
storage cost and ease of use.

d) Illumination Gradient Computation: Arvo [41]
computes the Jacobian of the vector irradiance at a
point due to partially occluded polygonal emitters of
constant radiosity. Holzschuch and Sillion [42] handle
polygonal emitters with arbitrary radiosity. Ward and
Heckbert [8] compute irradiance gradient at a point using
the information from stochastic hemisphere sampling.
Our gradient computation is also based on hemisphere
sampling. We use gradients to improve the smoothness
of the radiance interpolation. One of the algorithms
that we use for gradient computation was independently
developed by Annen et al. [43].

e) Irradiance Caching: Ward et al. [1] propose
irradiance caching as a means of computing indirect dif-
fuse inter-reflections in a distribution ray tracer [2]. They
exploit the smoothness of the indirect illumination by
sampling the irradiance sparsely over surfaces, caching
the results and interpolating them.

For each ray hitting a surface, the irradiance cache is
queried. If one or more irradiance records are available,
the irradiance is interpolated. Otherwise a new irradiance
record is computed by sampling the hemisphere and is
added to the cache. In this way, the cache gets filled
lazily, progressively in a view dependent manner. As it
gets filled, more and more irradiance computations can
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be carried out by interpolation. Ward uses an octree for
storing the irradiance records. In [8] the interpolation
quality is improved by the use of irradiance gradients.

We retain the basic structure of the original algorithm,
but each record stores the incoming radiance function
over the hemisphere. This allows interpolation to be
applied to glossy surfaces.

III. ALGORITHM OVERVIEW

Radiance caching is a part of a distributed ray tracing
approach to global illumination. Rays are cast from the
camera into the scene through pixels. At every ray-
surface intersection, the outgoing (reflected) radiance has
to be computed by evaluating the illumination integral:

L(θo, φo) =

=

∫ 2π

0

∫ π/2

0
Li(θi, φi)f(θi, φi, θo, φo) cos θi sin θidθidφi,

(1)
where L is the outgoing radiance, Li is the incoming
radiance and f is the BRDF. The integral is split into
parts and each of them is solved by a different technique:

• Direct illumination uses deterministic method for
point light sources and area sampling for area light
sources [44].

• Perfect specular reflections/refractions are solved by
tracing a single deterministic secondary ray.

• Ward’s irradiance caching computes the indirect
diffuse term for purely diffuse surfaces.

• Two different techniques may be used for glossy
surfaces.
Low-frequency BRDF. Our radiance caching com-

putes the indirect glossy and diffuse terms.
High-frequency BRDF. MC importance sampling

computes the indirect glossy term and irradiance
caching computes the indirect diffuse term.

Radiance caching is not used for high frequency
BRDFs since many HSH coefficients would be needed.
High-frequency BRDFs are also well localized and im-
portance sampling provides good accuracy with few
secondary rays. The distinction between low- and high-
frequency BRDF is done automatically as described in
Section IV-A. Steps of the rendering algorithm related
to radiance caching are shown in Figure 1.

The i-th radiance cache record contains:

• position pi,
• local coordinate frame (ui,vi,ni),
• HSH coefficient vector Λi representing the incom-

ing radiance,
• two derivative vectors ∂Λi

∂x and ∂Λi

∂y representing the
translational gradient,

// preprocessing - BRDF conversion
for (every surface in the scene) do

if (surface suitable for radiance caching) then
Compute and store the HSH representation of the surface’s
BRDF.

end if
end for

// rendering with radiance caching
for (every ray-surface intersection p) do

Retrieve the HSH representation of the BRDF at p.
if ( HSH representation of the BRDF not available) then

// high-frequency BRDF
MC importance sampling computes the indirect glossy term.
Irradiance caching computes the indirect diffuse term.

else
// low-frequency BRDF; use radiance caching
if ( radiance cache records exist near p ) then

Compute the HSH coefficients of the incident radiance at
p by gradient based interpolation.

else
Compute incident radiance at p by sampling the hemi-
sphere above p.
Compute HSH coefficients of the incoming radiance.
Compute the translational gradient of the coefficients.
Store the new radiance record in the radiance cache.

end if
Compute the outgoing radiance at p as the dot product of
the coefficient vector of the incoming radiance and that of
the BRDF.

end if
end for

Fig. 1. Outline of the radiance caching algorithm.

• harmonic mean distance Ri of objects visible
from pi.

In the rest of the paper Λ denotes a HSH coefficient
vector and λm

l denotes the coefficients, that is Λ =
{λm

l }.
Each record stores an incident radiance function which

can be reused for different viewpoints. The records are
stored in an octree as described by Ward et al. [1].

IV. RADIANCE CACHING DETAILS

A. BRDF Representation

We precompute the HSH representation of surface
BRDFs using the method of Kautz et al. [35] which we
briefly describe here.

We discretize the hemisphere of outgoing directions.
For each discrete outgoing direction (θo, φo) we use HSH
to represent the BRDF values over the hemisphere of
incoming directions (i.e. one HSH coefficient vector per
one discretized (θo, φo)). The n-th order representation
of a cosine weighted1 BRDF f(θo,φo) for an outgoing

1All BRDFs are premultiplied by the cosine term cos θi of the illu-
mination integral (Eq. 1) before computing the HSH representation.
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direction (θo, φo) is

f(θo,φo)(θi, φi) ≈
n∑

l=0

l∑

m=−l

cm
l (θo, φo)H

m
l (θi, φi) , (2)

where

cm
l (θo, φo) =

=

∫ 2π

0

∫ π/2

0
f(θo, φo, θi, φi)H

m
l (θi, φi) sin θidθidφi.

(3)

Hm
l are the hemispherical harmonics basis functions

(Appendix I). We sample the outgoing hemisphere for
(θo, φo) using the parabolic parametrization proposed by
Heidrich and Seidel [45].

f) Adaptive BRDF Representation: BRDFs are con-
verted to HSH before the rendering starts. For each
outgoing direction, the representation of f(θo,φo) uses
the minimum order n sufficient for not exceeding the
user specified maximum error. The error is measured as
described in [33]. If no order n < nmax is sufficient for
the specified error, the HSH representation is discarded:
radiance caching will not be used for that BRDF and that
outgoing direction. After applying this procedure, only
low-frequency BRDFs are represented using HSH and
radiance caching is used for them. nmax is user specified;
we use nmax = 10 for our examples. The aim is to have
nmax such that a BRDF is classified as low-frequency if
and only if radiance caching is more efficient than MC
importance sampling. The required HSH order may vary
significantly with the outgoing direction, higher order
(more coefficients) is usually required for grazing angles
(see Figure 2).

B. Incoming Radiance Computation

Whenever interpolation is not possible at p because
none of the radiance cache records meet the error crite-
rion (Section IV-D), a new record has to be computed
and stored in the cache.

We represent the incoming radiance function Li at a
point p by a vector of HSH coefficients Λ = {λm

l }:

Li(θ, φ) ≈
n∑

l=0

l∑

m=−l

λm
l Hm

l (θ, φ), (4)

where n is the order of HSH representation. The rep-
resentation coefficients λm

l for an known, analytical Li

would be computed with the integral

λm
l =

∫ 2π

0

∫ π/2

0
Li(θ, φ)Hm

l (θ, φ) sin θdθdφ. (5)

Our knowledge of Li is based only on sampling (ray
casting). Hence, we compute λm

l by a MC quadrature

Fig. 2. Adaptive BRDF representation for (a) Phong BRDF with
exponent h = 15 and (b) anisotropic Ward BRDF [46] with kd =
0, ks = 1, αx = 0.6, αy = 0.25. The color disks represent
BRDF error for different outgoing directions (θo, φo). Directions are
mapped on the disk with the parabolic parametrization. (One can
imagine the disks as looking at the hemisphere from the top.) The
graphs represent one scanline from the disk images (i.e. fixed y and
varying x component of the outgoing direction). Adaptive BRDF
representation (columns 2 and 4) chooses the minimum number of
coefficients sufficient for not exceeding the user specified maximum
error (here 5%). For the Ward BRDF, radiance caching is not used
for some directions, since the error would be too high. Hemispherical
harmonics (columns 3 and 4) give lower errors or fewer coefficients
than spherical harmonics (columns 1 and 2).

with uniform sampling of the hemisphere of incoming
directions:

λm
l =

2π

N

N∑

k=1

Li(θk, φk)H
m
l (θk, φk), (6)

where Li(θk, φk) is the incoming radiance coming from
the sampled direction (θk, φk) and N is the number of
sampled directions. Direct light source contribution is
excluded from Li. We use a fixed number N of directions
but adaptive hemisphere sampling [47], [48] is desirable.

The HSH order n for the incoming radiance represen-
tation is equal to the order of the BRDF representation
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at p. This cuts off high frequencies from the incoming
radiance. The approach is justified by the fact that a
low-frequency BRDF acts as a low-pass filter on the
incoming radiance [34].

C. Translational Gradient Computation

The coefficients λm
l of the HSH projection of the

incoming radiance at a point are computed with Eq. (6).
We want to compute the translational gradient ∇λm

l for
each λm

l , i.e. the rate of change of λm
l with a differential

displacement of the sampling point p on the surface.
We will use the gradient to improve the interpolation
smoothness.

Our original intent was to build on the gradient
computation of Ward and Heckbert [8] since the form of
Equation (6) is similar to Ward and Heckbert’s formula
for computing irradiance (Equation (2) in [8]). The
difference is in the choice of the probability density
for the hemisphere sampling: we use uniform density
whereas Ward and Heckbert use cosine density. An-
other difference is the weighting function for incoming
radiance samples: we use Hm

l (θ, φ) while no weight
is used in [8]. We did not succeed in extending Ward
and Heckbert’s gradient computation to handle our case
since their method tightly couples the cosine probability
density and the weighting.

Instead, we have developed two new methods for
computing translational gradient ∇λm

l . The first, nu-
merical, displaces the center of the hemisphere. The
second, analytic, is based on differentiating the terms
of Eq. (6). In both cases we compute the gradient
∇λm

l =
[

∂λm

l

∂x ,
∂λm

l

∂y , 0
]

by computing the partial deriva-
tives ∂λm

l /∂x and ∂λm
l /∂y. The gradient is defined in

the local coordinate frame at the point p. The derivative
with respect to z is not computed since we assume
displacement only in the tangent plane. We compute
the translational gradients simultaneously with the com-
putation of the coefficients λm

l during the hemisphere
sampling.

1) Numerical Gradient Computation: To compute the
derivative ∂λm

l /∂x numerically, we displace the point p,
along the local X axis, by ∆x to p′ (Figure 3). For each
Monte Carlo sample Li(θk, φk) we:

1) Compute the new direction (θ′k, φ
′

k) at p′ as
(θ′k, φ

′

k) = qk−p
′

r′

k

. Here qk is the point hit by
the ray from p in direction (θk, φk) and r′k =
‖qk − p′‖. We will also denote rk = ‖qk − p‖.
See Figure 3 for the various terms used here.

2) Compute the solid angle Ω′

k associated with the
new direction (θ′k, φ

′

k). The solid angle Ωk associ-
ated with each direction in Equation (6) is uniform

and equal to 2π/N . With the displacement of the
point p, the solid angles no longer remain uniform.
The change in solid angle is due to the change in
distance rk = ‖qk − p‖ and orientation of the
surface at qk, as seen from the hemisphere center
p or p′. The solid angle before the displacement
is

Ωk = ∆Ak
cos ξk

r2
k

=
2π

N
,

where ξk is the angle between the surface normal
at qk and the vector from qk to p. The area
∆Ak = 2π

N
r2

k

cos ξk

is the part of the environment
visible through Ωk. It does not change with the
displacement because we assume that the environ-
ment visible from p and p′ is the same. After the
displacement the solid angle subtended by ∆Ak

becomes

Ω′

k = ∆Ak
cos ξ′k
r′2k

=
2π

N

r2
k

r′2k

cos ξ′k
cos ξk

.

We now estimate the coefficient λm
l

′ at p′ as

λm
l

′ =
2π

N

N∑

k=1

r2
k

r′2k

cos ξ′k
cos ξk

Li(θk, φk) Hm
l

(
θ′k, φ

′

k

)
,

and finally we compute ∂λm
l /∂x as

∂λm
l

∂x
=

λm
l

′ − λm
l

∆x
.

The computation of ∂λm
l /∂y proceeds in a similar

way. This completes the numerical estimation of the
translational gradient ∇λm

l at the point of interest.

Fig. 3. Gradient computation by displacing the hemisphere center
from p to p′ ((a) before and (b) after the displacement). The
quantities changing with the displacement are (shown in red): sample
ray direction (θk, φk), the solid angle Ωk associated with this sample,
and the angle ξk between the sample direction and the surface normal
at the hit point qk. Neither the hit point qk nor the area ∆Ak visible
through Ωk change with the displacement.
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2) Analytic Gradient Computation: We rewrite Equa-
tion (6) as

λm
l =

N∑

k=1

ΩkLi(θk, φk)H
m
l (θk, φk), (7)

with Ωk = 2π
N for uniform hemisphere sampling. We

have seen that Ωk does not remain constant with dis-
placement of p and therefore it has to be included in the
sum and differentiated. The notation in this section is as
above.

The partial derivative ∂λm
l /∂x is computed by differ-

entiating the terms of the sum in Eq. (7)

∂λm
l

∂x
=

N∑

k=1

∂

∂x

(
ΩkLi(θk, φk)H

m
l (θk, φk)

)
=

=
N∑

k=1

Li(θk, φk)

(
∂Ωk

∂x
Hm

l (θk, φk) + Ωk
∂Hm

l (θk, φk)

∂x

)

(8)
The derivative of the basis function is

∂Hm
l (θk, φk)

∂x
=

∂θk

∂x

∂Hm
l (θk, φk)

∂θk
+

∂φk

∂x

∂Hm
l (θk, φk)

∂φk
,

(9)
with [49]

∂θk/∂x =− cos θk cos φk/rk,

∂φk/∂x = sin φk/(rk sin θk). (10)

Those derivatives with respect to y would be

∂θk/∂y =− cos θk sin φk/rk,

∂φk/∂y =− cosφk/(rk sin θk). (11)

Derivatives ∂Hm
l /∂θk and ∂Hm

l /∂φk are given in the
Appendix II.

The derivative of the solid angle Ωk is

∂Ωk

∂x
=

∂

∂x
∆Ak

cos ξk

r2
k

= ∆Ak
∂

∂x

cos ξk

r2
k

,

The area ∆Ak = 2π
N

r2

k

cos ξk

is the part of the environment
visible through Ωk. It does not change with the displace-
ment. The change of cos ξk/r

2
k with the displacement

of p is opposite to its change with the displacement of
qk = (qx, qy, qz), i.e.

∂

∂x

cos ξk

r2
k

= − ∂

∂qx

cos ξk

r2
k

.

The derivative ∂
∂qx

cos ξk

r2

k

can be computed with the as-
sumption that p lies at the origin because only the
relative position of p and qk matters (see Figure 4).

Fig. 4. Quantities in the computation of ∂
∂qx

cos ξk

r2

k

.

Since cos ξk = −nk·qk

rk

and rk = ‖qk‖ =
√

q2
k + q2

y + q2
z

we have
∂

∂qx

cos ξk

r2
k

=− ∂

∂qx

nxqx + nyqy + nzqz

(q2
x + q2

y + q2
z)

3/2

=−r2
knx − 3qx(nk · qk)

r5
k

=−rknx + 3qx cos ξk

r4
k

. (12)

Here nk = (nx, ny, nz) is the surface normal at qk.
Combining this result with ∆Ak = 2π

N
r2

k

cos ξk

, we get

∂Ωk

∂x
=

2π

N

rknx + 3qx cos ξk

r2
k cos ξk

. (13)

3) Discussion: For the derivation of both numerical
and analytic methods we assumed:

• The radiance Li(θk, φk) from the point qk incident
at p does not change with the displacement of p.

• Visibility of ∆Ak, the small area around qk, does
not change with the displacement of p.

Though none of these assumptions is necessarily valid in
all scenes, they are reasonable for small displacements.

The quantities changing with the displacement are:
• Direction (θk, φk) of the MC sample contributing

to the sum (6). As a consequence, the value of
Hm

l (θk, φk) changes too.
• The size of the solid angle Ωk through which the

contribution to the sum (6) is brought. The change
of Ωk is due to the change in distance rk and in the
apparent orientation of the surface ∆Ak around the
hit point qk.

The numerical and analytic methods are equivalent,
their results are indistinguishable. The numerical method
is easier to implement since we do not need to evaluate
the basis function derivatives. The analytic method is
numerically more stable near edges and corners and also
slightly faster to evaluate.

Plugging Equations (13) and (9) into (8) we get
the complete formula for ∂λm

l /∂x. The formulas for
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∂λm
l /∂y are similar; only Equation (10) must be re-

placed by Equation (11).
A similar gradient calculation was also proposed in

[29]. Their method disregards the change of Ωk and
hence does not give good results. The analytic method
was also independently developed by Annen et al. [43].

Fig. 5. Comparison of irradiance gradient computation. The scene
is a diffuse Cornell box; only first bounce indirect illumination is
computed. The color-coded images show the difference between
the gradient-based interpolation and the reference solution (10,000
samples per hemisphere at each pixel). RMS error of the images
is 0.125 for Ward’s method and 0.131 for our method. The graph
shows relative error of the interpolation along a single scanline as
compared to the reference solution. Ward’s method gives better results
when there are surfaces seen at very sharp grazing angles from the
sampling point. Otherwise our method gives slightly lower error.

4) Irradiance Gradient Computation: Note that both
of the methods we propose can be still used if Hm

l

is replaced by any other hemispherical function. We
also do not rely on uniform hemisphere sampling. Any
probability density p(θ, φ) can be used for sampling.
The only change is that the solid angle becomes Ωk =

1
Np(θk,φk) instead of Ωk = 2π

N used for the uniform
sampling.

As an example we compute the irradiance gradi-
ent ∇E with a cosine-weighted hemisphere sampling.
Hm

l (θ, φ) is replaced by cos θ, the probability density
of sampling in direction (θ, φ) is p(θ, φ) = cos θ

π and
therefore Ωk = π

N cos θk

. The resulting formula for the
analytic method is

∂E

∂x
=

N∑

k=1

Li(θk, φk)

(
∂Ωk

∂x
cos θk − π

N

sin θk

cos θk

∂θk

∂x

)

with
∂Ωk

∂x
=

π

N cos θk

rknx + 3qx cos ξk

r2
k cos ξk

.

We implemented this irradiance gradient computation
method and that of Ward and Heckbert and we compared
them on a sample scene (Figure 5). The results were
similar for both methods. Ward and Heckbert’s method
gives better results when there are surfaces seen at
very sharp grazing angles from the sampling point p.
Otherwise our method gives slightly smoother results.

Even though the quality of Ward and Heckbert’s
method is subtly superior to ours, our method provide
many advantages. It works with any sampling distribu-
tion and with any function used to weight the radiance
samples. The contribution of radiance samples to the
gradient is independent of each other and therefore
more easily amenable for parallelization or hardware
implementation. Our method also does not assume any
stratification of the hemisphere. This allows one to
use our gradient computation with different sampling
strategies, e.g. quasi Monte Carlo sampling.

D. Radiance Interpolation

When a ray hits a glossy surface with a low-frequency
BRDF, the radiance cache is queried for records available
for interpolation. If the query succeeds, the incoming
radiance stored with those records is interpolated as
described in this section.

We use a weighted interpolation scheme similar to
the one proposed in [8] for interpolating the coefficient
vectors Λi = {λm

l,i} at any required surface point p. The
difference is that we replace the use of the rotational
gradient by applying a rotation to the coefficient vector
Λi of each cache record i used for interpolation at p.
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This aligns the coordinate frame at the position pi of
the cache record and the frame at p (see Figure 6). The
weight wi(p) of record i with respect to p is

wi(p) =

(‖p − pi‖
Ri

+
√

1 − n · ni

)−1

, (14)

where n is the surface normal at p, ni is the surface
normal at pi, and Ri is the harmonic mean distance to
objects visible from pi. The coefficient vector of the
interpolated radiance is computed as a weighted average:

Λ(p) =

∑

S

Ri

(
Λi + dx

∂Λi

∂x
+ dy

∂Λi

∂y

)
wi(p)

∑

S

wi(p)
, (15)

where the set S of radiance records used for interpolation
at p is defined as S = {i|wi(p) > 1/a} and a is a
user defined desired accuracy. The definition of the set S
effectively represents the criterion used to decide which
radiance cache records can be used for interpolation.
Derivatives ∂Λi/∂x and ∂Λi/∂y are the translational
gradient components and (dx, dy) are the displacements
of p−pi along the X and Y axes of the record i’s local
coordinate frame. Ri is the HSH rotation matrix [9] that
aligns the coordinate frame at pi with the frame at p.
It transforms the whole coefficient vector Λi after the
translational gradient has been applied.

Fig. 6. Rotation Ri has to align the coordinate frame at pi with
that at p before interpolation is possible.

E. Outgoing Radiance Computation

The result of the interpolation procedure or of the
hemisphere sampling is a vector of coefficients repre-
senting the incoming radiance at a point. The incoming
radiance has to be integrated against the BRDF to obtain
the outgoing radiance. In general the outgoing radiance
at a point p is computed by evaluating the illumination
integral (1). Since both the incoming radiance Li and
the BRDF f in the integral are represented as coefficient

Fig. 7. Two views of a Cornell box with glossy back wall rendered
using radiance caching (top) and MC importance sampling (bottom).
Time spent on radiance caching was 33.3 seconds (600 records) for
the left image and 13.8 seconds (164 additional records) for the right
image. The indirect glossy term for each of the two bottom images
was computed in 35 seconds using MC importance sampling with 12
reflected rays per pixel. Image resolution was 1280 × 1280.

vectors with respect to an orthonormal basis, the integral
evaluation reduces to the dot product [50]:

L(θo, φo) =
n−1∑

l=0

l∑

m=−l

λm
l fm

l (θo, φo).

λm
l is an interpolated incoming radiance coefficient and

fm
l (θo, φo) is a BRDF coefficient at p for the outgoing

direction (θo, φo). This computation saves many BRDF
evaluations.

V. RESULTS

Table I gives the breakdown of rendering times for the
the three scenes we used to test radiance caching (Cornell
box, Office Space, Flamingo). The timings were mea-
sured on a 2.2GHz Pentium 4 with 1GB RAM running
Windows XP; C++ code was compiled with Microsoft
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Cornell box
1280 × 1280

Office Space
1920 × 1299

Flamingo
1280 × 1280

Frame I Frame II Frame I Frame II Frame III
RC filling 28.7 9.2 106.7 63.5 53.2 63.9
RC interpolation 4.6 4.6 4.6 4.42 11.4 8.7
Total 82.9 68.7 155.0 108.0 101.0 104.0

TABLE I.

Timing breakdown for the test scenes. ’RC filling’ is the time spent on computing and adding radiance cache records. ’RC
interpolation’ is the time spent on looking up the existing radiance cache records and interpolating the radiance. ’Total’ is the
total rendering time. The difference between the total time and the time spent by radiance caching consists of primary ray casting,
direct lighting, specular reflections (in Office Space) and irradiance caching (in Flamingo). All times given in seconds.

Visual C++ 6.0. The resulting renderings are shown on
figures 7, 8 and 9, and also in the accompanying video.
The maximum HSH order for radiance caching was set
to n = 10, which corresponds to approx. 3.6 kB sized
radiance cache records.

We compare the solutions obtained by radiance
caching (RC) with Monte Carlo (MC) importance sam-
pling according to BRDF. The two rendering methods
exhibit errors of very different characteristics: high-
frequency noise for importance sampling (‘specks’ in
images) and low-frequency error in radiance caching
(uneven illumination gradients). It is therefore difficult to
compare rendering times needed to attain the same visual
quality. We have rather opted for using the image quality
obtained in the same time as the comparison criterion
between the two methods.

a) Cornell Box: Figure 7 shows renderings of
a Cornell box with glossy back wall (Phong BRDF,
exponent 22), taken from two viewpoints at resolution
1280 × 1280. Except for the back wall, all objects are
Lambertian. Only direct lighting and first bounce indirect
glossy lighting for the back wall were computed.

Images in the top row were computed using radiance
caching with N = 6000 rays cast to sample each
hemisphere. The indirect glossy term took 33.3 seconds
to compute for the left image; total rendering time was
82.9 sec (direct illumination uses 8 samples per pixel
to sample the area source). The number of RC records
was 600. The time spent on the indirect glossy term
computation in the right image was only 13.8 sec, since
the records from the left rendering were retained and
only 164 additional record were required.

The indirect glossy term for each of the two bottom
images was computed in 35 seconds using MC impor-
tance sampling with 12 reflected rays per pixel on a
glossy surface. Those rendering methods exhibit high
noise lever, whose perception is even amplified in the
temporal domain as shown in the video.

The average time spent on radiance caching for a
180 frames long animation with the camera moving
between the position in the left and right images was
just 4.9 sec per frame. Most of this time is spent on
interpolation since only a few records are needed for
additional frames.

b) Office Space: Figure 8 shows three renderings of
the modified Office Space scene [51] with glossy desk
top and drawers (Ward BRDF with α = 0.15 for the
drawers and α = 0.25 for the desk top). Resolution of
these images was 1920 × 1299; the number of rays per
hemisphere was set to N = 6000. Only direct lighting
and first bounce indirect lighting for glossy and specular
surfaces were computed.

The top image shows the result of using radiance
caching to compute glossy reflection. The number of RC
records was 1282. Computation of the indirect glossy
term took 111.3 sec., total rendering time was 155 sec.

In the middle image, the glossy indirect lighting was
computed using MC importance sampling as described in
[46], with 35 reflected rays used on each visible glossy
pixel. The rendering time is the same as for radiance
caching.

For comparison, the bottom image shows the same
scene rendered without indirect glossy reflections what-
soever. The reflection on the drawers is obviously miss-
ing. The effect of indirect illumination on the desk top
is more subtle. Apart from the slight reflection of the
grey wall it demonstrates itself mainly by enlarging the
highlight due to the light coming from the lamp. A lot
of indirect lighting is due to the reflection of the light
emitted by the lamp from the lamp shade. This light
creates a high peak in the directional distribution of the
indirect light coming to the desk top. Both MC impor-
tance sampling and radiance caching have problems to
handle this situation correctly. Radiance caching shows
a slight variation of intensity near the border of the
highlight and MC importance sampling and introduces
the white specks that spoil the rendering quality.
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Radiance caching

MC sampling

No glossy reflections

Fig. 8. Modified Office Space scene with glossy desk top and draw-
ers. The indirect glossy reflections in the top image were computed
using radiance caching. 1282 records were used, the rendering time
was 155 seconds (rendering resolution was 1920×1299 pixels). The
middle image shows the same scene with indirect glossy reflections
computed by MC importance sampling rendered in the same time.
The bottom image shows the same scene rendered without indirect
glossy reflections.

Fig. 10. Time spent on radiance caching for the Flamingo animation
(see the accompanying video). Cached records are shared between the
frames.

c) Glossy Flamingo: Figure 9 shows 3 frames from
the Flamingo animation. The bird was assigned the
Phong BRDF (exponent 7) and all other surfaces are
purely diffuse. The rendering resolution was 1280 ×
1280 pixels. Full global illumination up to 4 bounces
was computed. Irradiance caching was used to compute
indirect lighting on diffuse surfaces.

First bounce indirect lighting on glossy surfaces for
the images in the top row was computed using radiance
caching, path tracing was used for deeper recursion
levels. Table I gives the rendering times for the three
images when rendered independently, without retaining
RC records from previous renderings. Figure 10 shows
the time spent on radiance caching in a 280 frames
long animation with camera moving between the shown
images (see the accompanying video).

The images in the bottom row use MC importance
sampling instead of radiance caching. The number of
reflected rays per pixel on a glossy surface is 12, 4, 6
respectively (from left to right) so that the rendering time
is the same as for radiance caching.

This scene is particularly challenging for radiance
caching since the object is curved. Costly alignment
is required before each interpolation and RC records
cannot be used for as many pixels as on a flat surface.
In the left image, the flamingo occupies only a small
part of the screen and therefore one does not take
advantage of radiance caching’s independence on image
resolution. The quality lead of radiance caching over MC
importance sampling can be seen only by a very close
inspection. However, in the other two images the noise
introduced by MC sampling is more obvious. Notice
also, that for the animation rendering the average time
for radiance caching is 15 seconds per frame. Rendering
the same animation with MC importance sampling with
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Fig. 9. Frames from the Flamingo animation rendered using radiance caching (top row) and MC importance sampling (bottom row).

2 reflected rays on a glossy pixel leads to 27 seconds
per frame spent on indirect glossy lighting computation
and the quality gain of radiance caching is considerable
(see video).

VI. DISCUSSION

d) The Rotation Loss: There is a loss of informa-
tion when radiances are interpolated on a curved surface
(Figure 11). It is due to the alignment (rotation Ri) of
the radiance records with the coordinate frame at the
interpolation point p.

A part of the radiance incident at pi should disappear
under the surface (marked ‘a’ in Fig. 11) and should not
contribute to the interpolated radiance at p. A part of
the radiance actually incident at p is not represented by
the radiance record at pi (marked ‘b’ in Fig. 11) and is
therefore missing in the interpolated radiance.

This problem is not due to using a hemispherical basis
for representing the incoming radiance, but due to the
fact the incident radiance at a surface point is a hemi-
spherical function. Using spherical harmonics instead of
HSH would not solve this problem. In practice the error
introduced by this problem is very small because the
difference between the normal at p and the normal at
any record used for interpolation at p is small. Note
also that this problem is present in the Ward’s irradiance
caching as well.

e) Global vs. Local Coordinates: Incoming radi-
ance at a point p can be represented either in the local
frame at p (i.e. aligned with the surface normal at p)

or in the global frame. This influences the way the
interpolation at p is performed:

• Incoming radiance in the global frame
for (each available record i at p) do

Update the interpolation sum.
end for
Align the interpolation result with the local frame
at p.
Compute the dot product.

• Incoming radiance in the local frame
for (each available record i at p) do

Align the local frame at pi with the local frame
at p.
Update the interpolation sum.

end for
Compute the dot product.

Fig. 11. Loss of information when radiances are interpolated on a
curved surface. A part of the radiance actually incident at pi should
disappear under the surface (marked ‘a’). A part of the radiance
incident at p is not represented by the radiance record at pi at all
(marked ‘b’).
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The final dot product between the BRDF coefficient
vector and the interpolated coefficient vector of the
incoming radiance is always carried out in the local
frame at p.

On curved surfaces, fewer alignment operations (rota-
tions) are needed if the incoming radiance is represented
in the global frame than if it is represented in the local
frame. On the other hand, if the incoming radiance
is represented in the local frame, no alignment (even
with the BRDF) is needed on flat surfaces. The best
performance (i.e. the lowest number of rotations) is
obtained if the incoming radiance is represented in the
local frame on flat surfaces and in the global frame
on curved surfaces. Note that full spherical function
representation (e.g. spherical harmonics) is needed to
represent the incoming radiance in the global frame.

f) Suitability of Hemispherical Harmonics: We use
(hemi)spherical harmonics since they are simple, com-
putationally efficient (manipulations of vectors of floats)
and avoid aliasing. The essential disadvantage is the
lack of directional localization. When we create a new
radiance cache record, the full hemisphere must be
sampled, whatever the incoming ray direction is. The
more directional the BRDF is, the more this approach
becomes wasteful. With a basis that localizes in direc-
tions, only the required part of the hemisphere need to be
sampled. For this purpose one can use piecewise constant
representation [6], [26], [27], but it would presumably
introduce too much aliasing. Spherical wavelets [30] are
probably a good choice. This is left for further inves-
tigation. Even though we have implemented radiance
caching using spherical and hemispherical harmonics
only, the approach should be valid with any other set
of basis function constructed in a similar way.

VII. CONCLUSION AND FUTURE WORK

We have presented radiance caching, a method for
accelerating computation of the indirect illumination on
surfaces with low-frequency glossy BRDFs. Radiance
caching is based on sparse sampling, caching, and inter-
polating incoming radiance on those surfaces. Radiance
is represented by spherical or hemispherical harmonics
in our approach. The interpolation quality is enhanced by
the use of translational gradients, for whose computation
we have presented two novel methods. We have also
presented an automatic criterion to decide for which
BRDFs radiance caching is suitable. We have shown on
several examples that this approach is more efficient than
pure Monte Carlo sampling at every surface point and
delivers images of superior quality.

In the future we would like to use adaptive hemisphere
sampling to compute the incoming radiance coefficients

[29], [48], [52], use a different representation for the
incoming radiance that localizes better in directions
and devise interpolation criteria better suited for glossy
surfaces. In the long term we also want to investigate the
relationship between the frequency content of a BRDF
and the suitability of interpolating radiance on surfaces
with that BRDF.
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APPENDIX I
HEMISPHERICAL HARMONICS

The hemispherical harmonics (HSH) basis functions are defined as

Hm
l (θ, φ) =





√
2K̃m

l cos(mφ)P m
l (2 cos θ − 1) if m > 0

√
2K̃m

l sin(−mφ)P−m
l (2 cos θ − 1) if m < 0

K̃0

l P 0

l (cos θ) if m = 0

where P m
l are the associated Legendre polynomials [53] and K̃m

l is
the following normalization value:

K̃m
l =

√
(2l + 1)(l − |m|)!

2π(l + |m|)! .

The definition domain is (θ, φ) ∈ [0, π/2] × [0, 2π), l ∈ {0, 1, . . .},
m = {−l, . . . , 0, . . . , l}. Further information on hemispherical
harmonics is given in [9].

APPENDIX II
SH AND HSH DERIVATIVES

Partial derivatives for spherical harmonics are:

∂Y m
l

∂θ
(θ, φ) =





−
√

2Km
l cos(mφ) sin(θ)

dP m

l

dx
(cos θ) if m > 0

−
√

2Km
l sin(−mφ) sin(θ)

dP
−m

l

dx
(cos θ) if m < 0

−K0

l sin(θ)
dP0

l

dx
(cos θ) if m = 0,

∂Y m
l

∂φ
(θ, φ) =

{
0 if m = 0

−mY −m
l (θ, φ) otherwise.

The derivative of the associated Legendre polynomials can be found
from the recurrence formula:

dP m
l

dx
(x) =





1

x2
−1

(
xlP m

l (x) − (m + l)P m
l−1(x)

)
if m < l

−(−1)mx(2m − 1)!!(1 − x2)
m

2
−1 if m = l,

where x!! is the double factorial (product of all odd integers less than
or equal to x).

The partial derivatives for hemispherical harmonics are:

∂Hm
l

∂θ
(θ, φ) =





−2
√

2K̃m
l cos(mφ) sin(θ)

dP m

l

dx
(2 cos θ − 1) if m > 0

−2
√

2K̃m
l sin(−mφ) sin(θ)

dP
−m

l

dx
(2 cos θ − 1) if m < 0

−2K̃0

l sin(θ)
dP0

l

dx
(2 cos θ − 1) if m = 0,

∂Hm
l

∂φ
(θ, φ) =

{
0 if m = 0

−mH−m
l (θ, φ) otherwise.


