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A Signal-processing Framework for
Image Relighting

Ha Q. Nguyen

Abstract—This report reviews, in light of signal processing,
the problem of relighting a Lambertian convex object with
distant light source, whose crucial task is the decomposition
of reflectance function into albedos (reflection coefficients) and
lighting, based on a set of images and the 3-D geometry of the
object from which the images were taken. A reflectance function
is the result of filtering a lighting with the half-cosine kernel
through a spherical convolution, that defines a linear rotation-
invariant system, an extension of LTI systems in classical signal
processing. This important observation maps the decomposition
of reflectance function to a deconvolution, which can be facilitated
in frequency-domain using spherical harmonics, an analogue of
Fourier basis. As the half-cosine kernel is highly compacted in
frequency-domain, reflectance functions are well approximated
by a low-dimensional linear subspace spanned by the first
few spherical harmonics. Therefore, the deconvolution problem
can be matricized into a simple-looking matrix factorization
problem. The formulation of relighting problem as a matrix
factorization is carefully rederived along with discussions about
spherical convolutions and spherical harmonics. Early theoretical
results from the author’s previous work on solving the matrix
factorization problem are also briefly reviewed. Experiments are
done on synthetic data to demonstrate the use of these results.

Index Terms—relighting, Lambertian surfaces, forward ren-
dering, inverse rendering, reflectance function, spherical con-
volution, linear rotation-invariant systems, spherical harmonics,
matrix factorization,

I. INTRODUCTION

A. Motivation and Literature Review

Image relighting is one of the core problems in photore-
alism, the field of creating, or technically, rendering images
that look indistinguishably from realistic ones. In relighting
problems, we are given a set of images of the same scene
under various lighting conditions, and the geometry of the
scene as well. Our task is to synthesize another image as if it
was obtained by shining the scene with a novel lighting.

Images of an object can be viewed as a reflectance function
that quantifies the amount of light reflected to the camera from
each point on the surface of the object. In general, reflectance
function is the result of the interaction between lighting,
reflection characteristic of the object (often described by the
BRDF - Bidirectional Reflectance Distribution Function) and
texture of the object. Consequently, the relighting problem
actually consists of two sub-problems: inverse rendering and
forward rendering. In the inverse rendering phase, the re-
flectance function is decomposed into lighting, BRDF and
texture; and in forward rendering phase, the recovered BRDF
and texture, together with a novel lighting are combined
into a novel reflectance function, resulting in a novel image.
Fig. 1 illustrates the inputs and outputs of forward and inverse

rendering algorithms. Both forward and inverse problems have
been researched extensively in the past few decades with a
large body of work (see [1], [2] for detailed discussions).
Most previous techniques (see, for example, [3]) can deal only
with highly controlled lighting conditions in which a single
point source is usually actively positioned. These methods
certainly cannot work in outdoor conditions when the lighting
can be arbitrarily complex, coming from various sources of
continuous distributions such as the skylight.

The difficulties of rendering under general, or uncontrolled
lighting are due to the lack of a discretized framework that can
efficiently describe reflectance function which has been previ-
ously interpreted as an integral. Ramamoorthi and Hanrahan in
their series of work [4]–[6] introduced a breakthrough signal-
processing framework for both forward and inverse rendering.
In this framework, reflectance function is treated simply as a
spherical convolution (sphere counterpart of circular convolu-
tion) of a lighting with the reflection kernel (BRDF multiplied
by a half-cosine). This allows us to relate reflectance function
to lighting and reflection kernel in terms of their spherical
harmonic expansions (sphere counterpart of Fourier series).
Transforming from space-domain to frequency-domain yields
two great advantages: (1) integrals are mapped to products
of coefficients; and (2) reflectance function can be well-
approximated by a few low-frequency terms (because reflec-
tion kernel often varies slowly.) Based on this framework,
Ramamoorthi and Hanrahan developed efficient algorithms
for both forward and inverse rendering. However, they only
considered homogeneous objects with no texture, and thus
ignored the local scalings of the reflection.

Basri and Jacobs in an independent work [7] discovered
a similar result for the special case of Lambertian surfaces
whose BRDF is a constant. Here, reflectance function is the
spherical convolution of a lighting with the half-cosine kernel,
then scaled by albedos (reflection coefficients that characterize
the surface texture). As a sequel, it has been shown in [7] that
any reflectance function (of a Lambertian convex object with
distant light source1) can be well-approximated by its first nine
spherical harmonic coefficients. In other words, reflectance
functions live close to a 9-dimensional linear subspace spanned
by first 9 spherical harmonics. Basri et. al. in the subsequent
work [8] matricized this important observation and mapped
the forward rendering to a matrix multiplication, and inverse
rendering to a matrix factorization. In this formulation, the
main task of relighting problem is to factorize the image matrix
formed by known images into a product of a diagonal albedo

1We will elaborate on these assumptions later on.
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Fig. 1. (Reproduced from [1, Fig. 1.1]) Illustration of the two phases in image relighting.

matrix, the known spherical harmonic matrix, and a lighting
matrix. A heuristic SVD-based algorithm was proposed in [8]
to solve this factorization problem by simply picking the
matrix of right-singular vectors scaled by square roots of
singular values of the image matrix as a lighting matrix.
However, no rigorous justification for the method has been
done and the well-posedness of the factorization has not been
addressed.

The forthcoming paper [9] is an effort to fix the shortcom-
ings of [8] for rigorous solving of the matrix factorization
problem. By means of subspace methods, it can give answers
to the two main questions: (1) when does the factorization have
unique solution; and (2) if unique, what is the exact solution
of the factorization.

B. Organization and Contributions

The remainder of this report is organized as follows. Sec. II
reviews some basic background of reflection equation and
spherical harmonic expansion. Sec. III formulates the inverse
rendering as a matrix factorization and discusses the well-
posedness of the problem as well as factorization algorithms
based on vector space methods. Sec. IV presents some nu-
merical experiments on the proposed algorithms. Sec. V draws
some concluding remarks and suggests a list of potential future
work.

The contributions of the report are

• review of [5], [7] and [9];
• providing algebraically abstract view of spherical convo-

lutions;
• proof for Proposition 1 (stated without proof in [5]);
• implementations of the methods in [9].

II. BACKGROUND

This section provides a framework to relate reflectance
function to lighting and reflection kernel in space-domain
as a spherical convolution. The relation is then transformed
into frequency-domain via spherical harmonic expansions. The
material is adapted from [1] and [7].

A. Reflection as Convolution

Throughout this report, we impose the following commonly
used assumptions in interactive graphics and computer vision.
A1 Curved Surfaces: characterized by surface normals.
A2 Lambertian: same reflection for every viewing angle.
A3 Convex Objects: no shadowing or inter-reflection.
A4 Distant Illumination: same lighting function everywhere.

We start with the 2-D case to illustrate the key concepts and
ideas and then generalize the formula for the 3-D case without
taking care of technical details.

1) 2-D Case: Under assumptions A2 and A3, the reflected
radiance depends only on a single location on the surface. In
particular, consider a point p on the surface with corresponding
surface normal np = [1, α] in some global polar coordinates
system (np always exists by assumption A1). If there is only
one distant light source whose direction is given by the unit
vector [1, θ], the reflection equation is given by the Lambert’s
cosine law

B(p) = ρ(p)L(θ) cos θ′, (1)

where B(p) is the reflectance function (reflected radiance at
location p); θ′ is the incident angle; ρ(p) is the albedo at
point p (a constant independent of θ′); and L(θ) is the lighting
function (illumination at angle θ that is independent of location
p by assumption A4). It is important to emphasize that θ′ is the
local angular coordinate, i.e., the angle between the lighting
vector and the (changing) surface normal np, whereas θ is the
global angular coordinate (see Fig. 2 for an illustration.)

Now consider the general case when the distant lighting
comes with continuous incident angles θ′ varying from −π/2
to π/2. The illumination L also varies with θ, and so the
reflection equation must be written in integral form

B(p) = ρ(p)

∫ π/2

−π/2

L(θ) cos θ′ dθ′ (2)

= ρ(p)

∫ π

−π

L(θ)K(θ′) dθ′, (3)

where the Lambertian kernel K(θ′) is defined as the half-
cosine function: K(θ′) = max(cos θ′, 0). Since the global and
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Fig. 2. (Modified from [1, Fig. 2.1]) Global and local coordinates for 2-D
case. By nature, lightings are given in global coordinates, whereas incident
angles are in local coordinates with respect to the surface normal np.

local angular coordinates are related by a circular shift: θ =
α+ θ′, (3) can be expressed as a circular convolution

B(p) = ρ(p)

∫ π

−π

L(θ)K(θ − α) dθ (4)

= ρ(p)(L~K)(α). (5)

The circular convolution is one of the main topics in
classical signal processing [10], as it characterizes a linear
time-invariant (LTI) system with finite (or periodic) impulse
response. This kind of filtering can be mapped to a multipli-
cation of Fourier series coefficients in frequency-domain. The
underlying reason for this efficient mapping is that sinusoids
form an orthonormal basis of eigensignals for LTI systems.

2) 3-D Case: Suppose now the surface normal is given
by np = [1, α, β] in some global spherical coordinates (see
Fig. 3). Similarly to (3), the reflection equation in 3-D is given
by

B(p) = ρ(p)

∫ π

0

∫ 2π

0

L(θ, φ)K(θ′) sin θ′ dθ′ dφ′, (6)

where the integral is now taken over the surface of the unit
sphere. The global and local angular coordinates are now
related by a 3-D rotation (or we can say, a spherical shift). This
relation is specified by the following result, that was stated
in [5] without a proof.

Proposition 1: Let Rα,β = Rz(β)Ry(α), where Ry(α) and
Rz(β) are respectively the matrices of rotations about y-axis
by α, and about z-axis by β. Then we have

[1, θ, φ]Tc = Rα,β · [1, θ′, φ′]Tc , (7)

where the subscript c is added to a vector in spherical
coordinates to denote its corresponding Cartesian coordinates.

Proof: See Appendix A.
With the aid of Proposition 1, we obtain a 3-D analogue of

(4)

B(p) = ρ(p)

∫ π

0

∫ 2π

0

L(θ, φ)K(R−1
α,β(θ, φ)) sin θ dθ dφ,

(8)

with the understanding that R−1
α,β(θ, φ) are angular coordinates

of the rotation R−1
α,β acted on the unit vector [1, θ, φ]. The

Fig. 3. (Reproduced from [1, Fig. 2.2]) Global and local coordinates for
3-D case. The angular γ is used for anisotropic case and is irrelevant in the
scope of this report.

double integral of (8), in the same manner as 2-D, can be
viewed as a spherical convolution in which we integrate with
respect to 3-D rotations (or spherical shifts). Letting ~s denote
the spherical convolution, we can write (8) in a more compact
form

B(p) = ρ(p)(L~s K)(α, β). (9)

This spherical convolution naturally defines a linear
rotation-invariant (LRI) system with impulse response K(θ).
From an abstract viewpoint, this is a generalized notion in
which linear systems are invariant to actions of some algebraic
group. Particularly, it is the groups of time-shifts for LTI and
3-D rotations for LRI systems.

B. Spherical Harmonics as Basis

Now we want to look at the convolution (9) in frequency-
domain because the energy of the Lambertian kernel K is
compressed in low frequencies. As a sphere counterpart of
Fourier basis, the spherical harmonics {Sm,n}m≥0,|n|≤m form
an orthonormal basis for functions on the unit sphere

Sm,n(θ, φ) = Nm,n · Pm,n(cos θ) e
jnφ, (10)

where j =
√
−1, Nm,n is the normalized term, and Pm,n(·)

is the associated Legendre function.2 The first nine spherical
harmonics are plotted in Fig. 4 for illustration.

Every function F (θ, φ) on the unit sphere has a spherical
harmonic expansion

F (θ, φ) =

∞∑
m=0

m∑
n=−m

fm,nSm,n(θ, φ), (11)

where the harmonic coefficients fm,n are given by

fm,n =

∫ π

0

∫ 2π

0

F (θ, φ)S∗
m,n(θ, φ) sin θ dθ dφ. (12)

The feature that really makes spherical harmonics similar
to Fourier basis on the circle is that they are eigensignals of
LRI systems. This is stated by a special case of the celebrated
Funk-Hecke theorem [7].

2See [7] for specific formulae of Pm,n(·) and Nm,n.
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Fig. 4. (Reproduced from [1, Fig. 2.3]) Plot of the first nine spherical
harmonics. On top are the corresponding formulae (ignoring normalized
terms) of the harmonics in terms of Cartesian coordinates, i.e. [x, y, z] =
[sin θ cosφ, sin θ sinφ, cos θ]. Green color denotes positive values whereas
blue color denotes negative ones.

Theorem 1 (Funk-Hecke): Let K(θ) be a bounded inte-
grable function on [0, π], and Sm,n(θ, φ) is a spherical har-
monic, then

Sm,n ~s K =

√
4π

2m+ 1
kmSm,n, (13)

where {km}m≥0 are spherical harmonic coefficients of K(θ).
Back to our goal of transforming (9) into frequency-domain,

let the harmonic coefficients of L(θ, φ), K(θ) and L~sK be
{ℓm,n}m≥0,|n|≤m, {km}m≥0, and {bm,n}m≥0,|n|≤m, respec-
tively. It is an immediate consequence of Thm. 1 that

bm,n =

√
4π

2m+ 1
kmℓm,n. (14)

It was also shown in [7] that the kernel K(θ) = max(cos θ, 0)
can be well-approximated using first M ′ terms in the spherical
harmonic expansion, for small M ′ (for instance, using M ′ = 3
preserves roughly 99% the energy of K(θ).) As a result, the
reflectance function can be approximated by

B(p) ≈ ρ(p)
M ′−1∑
m=0

m∑
n=−m

bm,nSm,n(α, β)

= ρ(p)
M∑

m=1

bmSm(α, β), (15)

where M = M ′2, and in (15) double index was converted to
single index using the relation (m,n) ↔ m2 +m+ n+ 1.

III. ALGORITHMS AND DERIVATIONS

A. Problem Formulation

Suppose we are given K images (this is a little abuse of
notation since K was before used for the kernel, but from now
on there is no need to worry about it.) These images are taken
from the same viewpoint of the same object under different
lighting conditions. Let N be the number of pixels in each
image. From (15), the intensity at pixel i of image j is

Bj(pi) ≈ ρ(pi)
M∑

m=1

bjmSm(αi, βi), (16)

for 1 ≤ i ≤ N, 1 ≤ j ≤ K, and npi
= [1, αi, βi].

We can put all equations given in (16) in a single matrix
form by defining matrices Y ∈ RN×K ;Φ ∈ DN (diagonal
matrix of size N ); S ∈ RN×M ; and X ∈ RM×K as follows

Y ij = Bj(pi); Φii = ρ(pi);

Sim = Sm(αi, βi); Xmj = bjm, (17)

for 1 ≤ i ≤ N, 1 ≤ j ≤ K, 1 ≤ m ≤ M , and M ij denotes
the entry of matrix M at row i and column j. With these
notations, (16) becomes

Y ≈ ΦSX, (18)

where Y ,Φ,S and X are called image, albedo, spherical
harmonic and lighting matrices, respectively.

For analytical purpose, we first assume the noiseless case
when the approximation in (18) is replaced with exact equation

Y = ΦSX, (19)

In light of Eq. (19), the inverse rendering problem becomes a
matrix factorization in which the image matrix Y ∈ RN×K

and spherical harmonic matrix S ∈ RN×M are known (can be
computed from given images and 3-D model of the object);
the albedo matrix Φ ∈ DN and lighting matrix X ∈ RM×K

are to be recovered. Once the albedo and lighting matrices are
reconstructed, say Φ̂ and X̂ , the forward rendering becomes
an obvious matrix multiplication

Y new = Φ̂SXnew,

where Y new corresponds to novel images under novel lightings
associated with matrix Xnew. As a sequel, the rest of this report
only focuses on the inverse rendering, or matrix factorization
problem. Before tackling the problem, we need a few further
assumptions.
A5 K ≥ M : the number of images is greater than the number

of spherical harmonics used in approximation.
A6 Eq. (19) always has a solution (Φ,X) ∈ DN

∗ × RM×K
full .

In assumption A6, DN
∗ denotes the set of all N×N diagonal

matrices with nonzero entries on the diagonal; and RM×K
full

denotes the set of all full-rank M × K matrices. Assuming
that Φ ∈ DN

∗ , or all albedos are nonzero, does not restrict
ourselves because if there are pixels corresponding to zero
albedo, we can mask them out of the equations. Also, the
assumption that X has full rank is reasonable and often made
in array signal processing [11, Chapter 3]. It essentially says
that the images are taken under diversified lighting conditions.

B. Well-posedness of the Factorization

The very first question one always asks when dealing with
an inverse problem is when the recovery is unique. This
subsection provides a necessary and sufficient condition on the
spherical harmonic matrix S such that the matrix factorization
(19) is unique up to some scaling factor. It is certainly the best
we can hope for since if (Φ,X) is a solution to (19) then so
is

(
αΦ, 1

αX
)
, for any scalar α ̸= 0. The condition can be

stated neatly by Thm. 2, with an introduction to a new notion
of matrix full rank.

Definition 1: A tall matrix S ∈ RN×M
full (N > M) with no

zero rows is said to have nonseparable full rank if there do not
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Fig. 5. Illustration of the two different notions of full rank for M = 2, N = 4
and S = [s1, s2, s3, s4]T .

exist nonempty disjoint sets N1 and N2 such that N1 ∪N2 =
N and rank(SN1) + rank(SN2) = M .

Here, SJ denotes the submatrix of S with rows indexed
by a subset J of N ∆

= {1, 2, . . . , N}. In words, a matrix has
nonseparable full rank if it has full column rank and we can
not separate its rows into two groups with ranks add up to the
rank of the matrix. That justifies the term “nonseparable full
rank.” Fig. 5 illustrates the notion of nonseparable full rank in
comparison with regular full rank.

Theorem 2: Equation (19) has no solutions in DN×RM×K

other than
(
αΦ, 1

αX
)
, for some scalar α ̸= 0, if and only if

S has nonseparable full rank.
Proof: See [9].

C. Factorization Algorithms

This subsection is to answer the second question of how to
solve the matrix factorization problem given that it has unique
solution, or S has nonseparable full rank by Thm 2. Note that
since S has full column rank, once Φ is known, X can be
uniquely recovered by

X = S†(Φ−1Y ), (20)

where S† = (STS)−1ST is the psedo-inverse of S. There-
fore, we can focus on finding Φ which has a diagonal structure.
In the noiseless case, an SVD-based algorithm is proposed to
exactly recover Φ. In the noisy case, it is modified into an
optimization-based algorithm to find an estimate of Φ.

1) SVD-based Algorithm: The algorithm is based on the
following result.

Theorem 3: Φ = diag(φ) is a solution to Equation (19) if
and only if z = φ⊙−1 is a nontrivial solution to(

(I − SS†)⊙ (Y Y T )
)
z = 0, (21)

where ⊙ denotes element-wise operators.
Proof: See [9].

Interestingly, the matrix (I − SS†) is a reminiscence of
the projected gradient descent method used in Frost beam-
former [12]. It is nothing but a projection on to the null space
of ST [11], and is used to force a vector to be in the range
space of S. Thm. 3 naturally gives rise to Algorithm 1 in which
we solve (21) for z by picking the eigenvector associated
with the smallest eigenvalue of the positive definite matrix
(I − SS†)⊙ (Y Y T ).

Algorithm 1 SVD-based Recovery of Φ
Inputs: Y ,S

Output: Estimate Φ̂

1. Let M = (I − SS†)⊙ (Y Y T ).
2. Compute the eigenvalue decomposition of M .
3. Let z∗ be the eigenvector associated

with the smallest eigenvalue of M .
4. Return Φ̂ = diag((z∗1)

−1, . . . , (z∗N )−1).

The following corollary is very useful in checking whether a
matrix S has nonseparable full rank. It can be deduced directly
from Thm. 2 and Thm. 3 by setting Φ = IN and X = IM .

Corollary 1: A matrix S ∈ RN×M has nonseparable full
rank if and only if

rank
(
(I − SS†)⊙ (SST )

)
= N − 1.

We conclude this subsection by giving a few comments
on this result. Without identifying the nonseparable full rank
with the uniqueness of the corresponding matrix factorization,
we can hardly see the connection between Definition 1 and
Corollary 1. When fixing M and growing N , checking if an
N×M matrix has nonseparable full rank using the brute-force
approach (i.e., computing the rank of every submatrix) would
be exponentially complex. However, Corollary 1 provides a
much more efficient indirect way to do so, in which only the
rank of an N ×N matrix needs to be computed, resulting in
a polynomial complexity.

2) Optimization-based Algorithm: Since Φ is an albedo
matrix, its diagonal entries must be all positive. It follows
that the vector z = (φ−1

1 , . . . , φ−1
N ) must be positive as well.

If the proposed model is perfect then Φ (and therefore z) is
unique (provided that S has nonseparable full rank), and we
do not need to worry about the positivity of z. However, it can
never be the case due to approximation error, model mismatch,
measurement error, etc. Equation (19) should therefore be
modified as

Y +W = ΦSX, (22)

where W is a white noise with standard deviation σnoise.
Consequently, the matrix M in Algorithm 1 is modified as

M = (I − SS†)⊙ ((Y +W )(Y +W )T ). (23)

Now the smallest eigenvalue of M may be different from zero,
and we can not guarantee that its corresponding eigenvector
has all positive entries. Therefore the positivity of z should
be incorporated into the recovery.

We first note that, finding the eigenvector corresponding
to the smallest eigenvalue of M is nothing but solving the
optimization problem

min ∥Mz∥2 s.t. ∥z∥2 = 1. (24)

Now we can adjust (24) by adding the positivity constraint

min ∥Mz∥2 s.t. ∥z∥2 = 1 and z ≥ 0. (25)
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Algorithm 2 Optimization-based Recovery of Φ
Inputs: Y ,S

Output: Estimate Φ̂

1. Let M = (I − SS†)⊙ (Y Y T ).
2. Let c = 1N×1.
3. Use a convex programming method to find z∗

that minimizes ∥Mz∥2 s.t. cTz = 1 , z ≥ 0.
4. Return Φ̂ = diag((z∗1)

−1, . . . , (z∗N )−1).

Fig. 6. Synthetic images of the same object under different lighting condtions.

Solving the optimization problem (25) is hard due to the
nonconvexity of the feasible set. To convexify the problem,
one can relax the constraint as

min ∥Mz∥2 s.t. cTz = 1 and z ≥ 0, (26)

where c = [1, 1, . . . , 1]T ∈ RN . Solving (26) is now easy
using some well-developed convex programming method. This
optimization-based algorithm to recover Φ is described in
Algorithm 2.

IV. EXPERIMENTAL METHODS AND RESULTS

Simulations are performed on a data set of K = 12 images
of the same object3 shown in Fig. 6 using MATLAB, with the
convex programming cvx provided by [13]. These images
were synthesized by first randomly generating the lighting
matrix X and then forming the product ΦSX , where Φ is the
ground truth for the albedos. The spherical harmonic matrix
S was computed from the 3-D model of the object using
(17), with M = 9. Using Corollary 1, we can easily verify
that S has nonseparable full rank. The size of each image is
340×512; excluding zero-albedo pixels results in N = 35983.
The albedo matrix Φ was recovered using Algorithm 2 under
various levels of noise (white Gaussian noise of different
variances was added to the images.) The reconstructions of
the albedos are visually shown in Fig. 7 in comparison with

3The 3-D model of the object is available at:
http://pages.cs.wisc.edu/ lizhang/courses/cs766-2008f/projects/phs/index.htm.
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(a) Ground truth (b) σnoise = 1, SNR = 34.7667
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(c) σnoise = 3, SNR = 25.3320 (d) σnoise = 5, SNR = 17.9326

Fig. 7. Recovered albedos with corresponding SNRs under various levels of
noise.

the ground truth. All of them were normalized to the same
range for comparison.

V. DISCUSSIONS AND CONCLUSIONS

We have studied the relighting problem of a Lambertian
convex object with distant light source. Under these assump-
tions, the reflectance functions live close to a low-dimensional
linear subspace spanned by the first few spherical harmonics.
The inverse rendering phase of relighting thus becomes a
factorization of the image matrix into albedo and lighting ma-
trices, given the spherical harmonic matrix. This factorization
problem is well-posed if and only if the spherical harmonic
matrix has nonseparable full rank, a stronger notion of full
rank. In the noiseless case, exact factorization (up to some
scale) can be done via an SVD-based algorithm. When the
noise is present, an optimization-based algorithm is proposed
with slight modifications. Simulations are performed only on
synthetic data but already suggest that the proposed algorithm
is quite sensitive to noise. Below is a list of potential work to
be done in the future research

• experiment on real data;
• analyze the effect of noise on the solution;
• design new algorithms that are more robust to noise;
• investigate how the lighting diversity affects the factor-

ization;
• map the nonseparable full rank of spherical harmonic

matrix to the geometry of the object.
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APPENDIX A
PROOF OF PROPOSITION 1

We only need to prove that the rotation Rα,β brings the
north-pole vector [1, 0, 0]T to the surface normal np =
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[1, α, β]T (in spherical coordinates). Indeed, by definition of
rotation matrices Rz(β) and Ry(α), we have

Ry(α) ·

10
0


c

=

 cosα 0 sinα
0 1 0

− sinα 0 cosα

 ·

00
1

 =

sinα0
cosα

 ,

and so

Rα,β ·

10
0


c

= Rz(β) ·Ry(α) ·

10
0


c

=

cosβ − sinβ 0
sinβ cosβ 0
0 0 1

 ·

sinα0
cosα


=

sinα cosβ
sinα sinβ

cosα

 =

1α
β


c

.

This coordinate transformation directly implies the proposi-
tion.
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