Introduction to Computer Graphics

Kadi Bouatouch IRISA Email: kadi.bouatouch@irisa.fr

What is Computer Graphics?

Computer graphics deals with:

- Geometric modeling: creating mathematical models of 2D and 3D objects.
- Rendering: producing images given these models.
- Animation: defining/representing time dependent behavior of objects.

Applications

- Simulators (flight, driving)
- Mechanical CAD (Computer Aided Design)
- Architectural visualization
- Virtual reality Virtual reality
- Advertising

📕 I R I S A

Applications

- Computer games
- Special effects
- Computer art

- Education
- Scientific visualization
- Medical imaging

What is Computer Graphics?

- Computer graphics deals with:
 - Geometric modeling : creating mathematical models of 2D and 3D objects.
 - Rendering: producing images given these models.
 - Animation: defining/representing time dependent behavior of objects.

Rendering Engine

Modeling

- From a concept (or a real object) to a geometric model representable on a computer.
- Example: a sphere can be described by four real numbers: (x,y,z,r).
- Example: a polygon can be described by listing the coordinates of its vertices.

Modeling

How to represent more complex shapes?

- Polygon meshes: a large collection of polygonal facets, connected with each other.
- Free Free-form surfaces: using low-degree polynomial functions.
- CSG: construct a shape by applying boolean operations on primitive shapes.

Modeling: polygonal facets

- Facets sharing vertices
- Avoids data duplication

Modeling: Sweeping, revolution

• Extrusion

Revolution

CSG Objects

- Description of complex shapes
- Definition
 - Object = set of points
 - Object = sphere, cylinder, cone, box, ...
 - Object = Obj1 bop Obj2
 - bop = union, intersection, difference

Modeling: CSG examples

Union

Intersection

• Difference

Modeling: CSG examples

• Binary tree :

Modeling: Parametric Surfaces

- Free form curves and surfaces
- Defined with control points

Modeling: Parametric Surfaces

Tensor product of parametric curves, functions of u and v.

Surfaces splines

IKISA

Rendering

 Given a scene and viewing parameters, produce an image = a 2D array of pixels.

Rendering

Important sub-tasks:

- Scan conversion: Which pixels in the image are covered by each object?
- Visible surface algorithms: What is visible at each pixel of the image?
- Illumination and shading: What color should be assigned to each pixel?

Animation

- How to define complex time-dependent behavior of objects?
- Examples:
 - Automatic inbetweening (interpolation keyframes).
- Physically-based simulation.

Surface Appearance

- Surface: Appearance
 - What are the properties of material?
 - How the surface reacts to light?
 - In what direction and what part of the spectra is it reflecting?
 - Is it fuzzy?
 - Is the surface bumped like metal?
 - etc.

Summary

- How the image is created?
 - Put objects into the memory
 - Assign appearance and/or textures to their surfaces
 - Assign lights
 - Position camera(s)
 - Run the illumination algorithm: different techniques (scan conversion, ray tracing)
 - Display images

Context

- Image Processing: from images to images
- Computer Vision: from images to models
- Computer Graphics: from models to images

Examples of different effects

Wireframe model – Orthographic views

🚬 I R I S A

Perspective View

Depth Cue

Hidden Line Removal – add colour

Constant Shading - Ambient

Faceted Shading - Flat

Gouraud shading, no specular highlights

Specular highlights added

Phong shading

Texture mapping

Texture mapping

Reflections, shadows & Bump mapping

