
1

Basic Computer Graphics

Kadi Bouatouch
IRISA

Email: kadi@irisa.fr

2

Summary

1.  Introduction
2.  Coordinate systems
3.  Geometric transformations
4.  Geometric transformations for display
5.  Choosing the camera parameters
6.  Hidden surface removal
7.  Lighting : Shading
8.  Cast Shadows
9.  Textures

3

Introduction
Image

–  Image = set of pixels
– Synthesis ó assign an

intensity value (color) to
each pixel

–  Intensity depends on the
used light sources, the
location of the viewpoint
and of the objects within the
scene.

pixel

screen

4

What is Computer Graphics?

3D models:
– Scene = set of different kinds

object

surfaces wireframe solids

Planar surfaces Non-planar surfaces primitives operations
on volumes

polyhedron

solids

approximation
with facets

quad

parametric
algebraic

sphere cube

5

What is Computer Graphics?
 3D models: facets

– object = {planar facets}
– scenes = list of facets
–  facet = list of vertices

FACETS
VERTICES Vertex parameters

Facet parameters

facet 1
facet 2

facet n

6

Introduction
The different processing:
•  Geometric transformations.
•  Clipping: Pyramidal view volume.
•  Hidden surface removal.
•  Cast shadows.
•  Polygon filling.
•  Transparent objects.
•  Aliasing
•  Texture mapping.

7

Introduction
The Rendering Pipeline

Transform

Illuminate

Transform

Clip

Project

Rasterize

Model & Camera
Parameters Rendering Pipeline Framebuffer Display

ModelàWorld

WorldàCamera

8

Coordinate systems
At least 3 coordinate systems:
•  Word Coordinate System (o,x,y,z): in

which is described the scene.

z

x

y

scene

Impossibl
e
d'afficher
l'image.
Votre
ordinateu
r manque
peut-être

Impossible d'afficher l'image. Votre
ordinateur manque peut-être de mémoire
pour ouvrir l'image ou l'image est
endommagée. Redémarrez l'ordinateur, puis
ouvrez à nouveau le fichier. Si le x rouge est
toujours affiché, vous devrez peut-être
supprimer l'image avant de la réinsérer.

Impossible
d'afficher
l'image.
Votre
ordinateur

Impossible d'afficher
l'image. Votre ordinateur
manque peut-être de
mémoire pour ouvrir
l'image ou l'image est
endommagée. Redémarrez
l'ordinateur, puis ouvrez à
nouveau le fichier. Si le x
rouge est toujours affiché,
vous devrez peut-être

9

Coordinate systems
•  View Coordinate System (oe,xe,ye,ze).
•  z = depth axis.
•  Screen Coordinate System: (os,xs,ys,zs)

Ye

Xe

Ze, Zs

Ys

Xs
Os

Oe

eye

screen
Impossibl
e
d'afficher
l'image.
Votre
ordinateu
r manque
peut-être

Impossible d'afficher l'image. Votre
ordinateur manque peut-être de mémoire
pour ouvrir l'image ou l'image est
endommagée. Redémarrez l'ordinateur, puis
ouvrez à nouveau le fichier. Si le x rouge est
toujours affiché, vous devrez peut-être
supprimer l'image avant de la réinsérer.

Impossible
d'afficher
l'image.
Votre
ordinateur

Impossible d'afficher l'image.
Votre ordinateur manque
peut-être de mémoire pour
ouvrir l'image ou l'image est
endommagée. Redémarrez
l'ordinateur, puis ouvrez à
nouveau le fichier. Si le x
rouge est toujours affiché,
vous devrez peut-être
supprimer l'image avant de

x
depth

10

Geometric transformations
•  Interest: enlarge a scene, translate it, rotate it for

changing the viewpoint (also called camera) .
•  2 ways for expressing a transformation:

 - with a matrix.
 - by composing transformations such as:
 - translation
 - Scaling
 - rotation

11

Geometric transformations
•  Translation

T (tx,ty,tz) =

1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

!

"

$

%

&
&
&
& ⎥

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000
000
000
000

),,(
z

y

x

zyx s
s

s

sssS

•  Scaling

12

Geometric transformations
•  Rotation

–  One axis and one angle
–  Expression: matrix

•  Also composition of rotation around each axis of
the coordinate system

13

Geometric transformations
•  Rotations around axes

–  X

–  Y

–  Z

Ry(θ) =

cosθ 0 sinθ 0
0 1 0 0

− sinθ 0 cosθ 0
0 0 0 1

$

%
%
%
%

&

'

(
(
(
(

Rx(θ) =

1 0 0 0
0 cosθ − sinθ 0
0 sinθ cosθ 0
0 0 0 1

$

%
%
%
%

&

'

(
(
(
(

Rz (θ) =

cosθ − sinθ 0 0
sinθ cosθ 0 0
0 0 1 0
0 0 0 1

$

%
%
%
%

&

'

(
(
(
(

14

Geometric transformations
•  Rotation around an axis : the sub-matrix A

is orthogonal : At*A = I

R11 R12 R13 0

R21 R22 R23 0

R31 R32 R33 0

 0 0 0 1 0 0 0 1
0

0

 0
sub

matrix A

(3*3)
= R =

15

Geometric transformations
•  Position the objects one with

respect to the others
–  the vase is on the commode

•  Modeling without accounting for the
final position	

16

Geometric transformations
•  Scene graph

Node

Group

Transformation

Object

Geometry Appearance

17

Geometric transformations

Group
Root

Transform
Commode

Transform
Vase

Transform
Flower

18

Geometric transformations
Group
Root

Transform
Commode

Transform
Vase

Transform
Flower

19

Geometric transformations for
rendering

Projections
•  Plane projection = transformation which

associates a screen point with a scene point
•  It is defined by:

–  a centre of projection
–  a projection plane

•  Two types : perspective and parallel
Imp

P

Oe

P'
P

P' Ze, Zs

Oe
 To infinity

Ze, Zs
screen

Perspective projection Parallel projection

20

Geometric transformations for
rendering

•  P'(xp, yp, d) = projection of P(x, y, z)
•  d = focal distance
•  We get:
 yp = d * y / z et xp = d * x / z

Ye

Oe

Xe

Ze, Zs

P
P'

screen
d

1 0 0 0
0 1 0 0
0 0 1 1/d
0 0 0 0

Mper =

21

Geometric transformations for
rendering

Homogeneous coordinates

•  Homo. Coord. : (X, Y, Z, W) = (x, y, z, 1) * Mper
•  We get: (X, Y, Z, W) = (x, y, z, z / d)
•  Perspective projection of P :
 (X/W, Y/W, Z/W, 1) = (xp, yp, zp, 1) = (x * d / z, y * d / z, d, 1)

Ye

Oe

Xe

Ze, Zs

P
P'

screen
d

1 0 0 0
0 1 0 0
0 0 1 1/d
0 0 0 0

Mper =

22

Geometric transformations for
rendering

Clipping
– Visible objects: inside the view pyramid
– Made up of 6 planes
– Objects whose only a part lies whin the

pyramid are clipped by the 6 planes

Imp
ossi
ble
d'a
ffich
er
l'im
age.
Votr
e
ordi
nate
ur
man
que
peut
-

Impossible d'afficher l'image. Votre
ordinateur manque peut-être de
mémoire pour ouvrir l'image ou
l'image est endommagée.
Redémarrez l'ordinateur, puis

Ye

Xe

Ze

b

b View pyramid
screen

P
P'

23

Geometric transformations
for rendering

Clipping
–  Visible objects: inside the view pyramid
–  Made up of 6 planes
–  Objects whose only a part lies whin the pyramid are

clipped by the 6 planes
P Ye

Xe

Ze

screen
(front plane)

(back plane)

24

Choosing the camera
parameters

•  Resolution : Resx x Resy (Nbr of columns) x (Nbre of rows)
 COP = Center Of Projection (observer).

 VRP = View Reference Point (targetetted point).
 VPN = View Point Normal (screen normal).
 VUP = View Up Vector
 d = focal distance

2
Re

Resy
h 2 l d 2) / (tg h sx∗=∗= α

 h
l

y

x

Ecran

COP

Screen

α h

d

Z

Y

VUP

VRP

25

Introduction: Rasterization

Transform

Illuminate

Transform

Clip

Project

Rasterize

Model & Camera
Parameters Rendering Pipeline Framebuffer Display

ModelàWorld

WorldàCamera

26

Rasterizing: Polygons
•  In interactive graphics, polygons rule the world
•  Two main reasons:

–  Lowest common denominator for surfaces
•  Can represent any surface with arbitrary accuracy
•  Splines, mathematical functions, volumetric isosurfaces…

–  Mathematical simplicity lends itself to simple,
regular rendering algorithms

•  Like those we’re about to discuss…
•  Such algorithms embed well in hardware

27

Rasterizing: Polygons

•  Triangle is the minimal unit
of a polygon
– All polygons can be broken

up into triangles
– Triangles are guaranteed to

be:
•  Planar
•  Convex

28

Rasterizing: Triangulation

•  Convex polygons easily
triangulated (Delaunay)

•  Concave polygons present
a challenge

29

Rasterizing Triangles

•  Interactive graphics hardware commonly
uses edge walking or edge equation
techniques for rasterizing triangles

30

Rasterization: Edge Walking

•  Basic idea:
– Draw edges vertically

•  Interpolate colors down edges

– Fill in horizontal spans for each
scanline

•  At each scanline, interpolate
edge colors across span

31

Rasterization: Edge Walking

•  Order three triangle vertices in x and y
–  Find middle point in y dimension and compute if it is to

the left or right of polygon. Also could be flat top or flat
bottom triangle

•  We know where left and right edges are.
–  Proceed from top scanline downwards
–  Fill each span
–  Until breakpoint or bottom vertex is reached

32

Rasterization: Edge Equations

•  An edge equation is simply the equation of the line
defining that edge
–  Q: What is the implicit equation of a line?
–  A: Ax + By + C = 0
–  Q: Given a point (x,y), what does plugging x & y into

this equation tell us?
–  A: Whether the point is:

•  On the line: Ax + By + C = 0
•  “Above” the line: Ax + By + C > 0
•  “Below” the line: Ax + By + C < 0

33

Rasterization: Edge Equations

•  Edge equations thus define two half-
spaces:

34

Rasterization: Edge Equations

•  And a triangle can be defined as the
intersection of three positive half-spaces:

A1x + B1y + C1 < 0 A1x + B1y + C1 > 0

35

Rasterization: Edge Equations

•  So…simply turn on those pixels for which
all edge equations evaluate to > 0:

+ + +
-

-
-

36

Rasterization: Using Edge
Equations

•  Which pixels: compute min,max
bounding box

•  Edge equations: compute from vertices

37

Rasterization: Edge Equations:
Code

•  Basic structure of code:
– Setup: compute edge equations, bounding box
–  (Outer loop) For each scanline in bounding

box...
–  (Inner loop) …check each pixel on scanline,

evaluating edge equations and drawing the
pixel if all three are positive

38

Hidden Surface Removal
Z-buffering

Transform

Illuminate

Transform

Clip

Project

Rasterize

Model & Camera
Parameters Rendering Pipeline Framebuffer Display

ModelàWorld

WorldàCamera

Z-buffering

39

Hidden Surface Removal
Back Face Culling & Clipping

•  Back Face Culling
– Simple test

•  Normal: N
•  View direction: V
•  Dot produit: V·N

•  Clipping

40

Hidden Surface Removal
 Z-buffering

•  Real-time

–  Z-Buffer (Catmull in 1974)
•  Depth memory for each pixel

–  Two 2D arrays
•  Frame buffer for intensities (colors): FB [i] [j]
•  Z-buffer for depths (z coordinate) ZB [i] [j]

–  Facets (triangles) are processed without any ordering

41

Hidden Surface Removal
 Z-buffering

algorithm Z-Buffer ()
begin

 for (for pixels i,j do)
 FB [i][j] ← back plane’s color ; ZB [i][j] ← z (back plane)
 endfor
 for (all facets) do
 for (all pixels within the projection of the facet) do

 compute_intensity_and_z for all pixels using interpolation
 if (zFrontPlane ≤ z of polygone at point i,j ≤ ZB [i][j]) then
 ZB [i][j] ← z of facet at pixel (i,j)
 FB [i][j] ← color of facet at (i,j)
 endif
 endfor
 endfor

end

42

Lighting

43

Lighting

Transform

Illuminate

Transform

Clip

Project

Rasterize

Model & Camera
Parameters Rendering Pipeline Framebuffer Display

ModelàWorld

WorldàCamera

Interpolative
Shading

Lighting vertices

44

Lighting: Illumination

•  How do we compute radiance for a sample
ray?

Angel Figure 6.2

45

Lighting: Goal

•  Must derive computer models for ...
– Emission at light sources
– Scattering at surfaces
– Reception at the camera

•  Desirable features …
– Concise
– Efficient to compute
– “Accurate”

46

Lighting: Overview

•  Direct (Local) Illumination
– Emission at light sources
– Scattering at surfaces

•  Global illumination
– Shadows
– Refractions
–  Inter-object reflections

Direct Illumination"

47

Lighting: Modeling Light Sources

•  IL(x,y,z,θ,φ,λ) ...
– describes the intensity of energy,
–  leaving a light source, …
– arriving at location(x,y,z), ...
–  from direction (θ,φ), ...
– with wavelength λ	

(x,y,z)"

Light"

48

Lighting: Ambient Light Sources
•  Objects not directly lit are typically still visible

–  e.g., the ceiling in this room, undersides of desks

•  This is the result of indirect illumination from emitters,
bouncing off intermediate surfaces

•  Too expensive to calculate (in real time), so we use a
hack called an ambient light source
–  No spatial or directional characteristics; illuminates all

surfaces equally
–  Amount reflected depends on surface properties

49

Lighting: Ambient Light Sources

•  For each sampled wavelength (R, G, B),
the ambient light reflected from a surface
depends on
– The surface properties, kambient
– The intensity, Iambient, of the ambient light

source (constant for all points on all surfaces)
•  Ireflected = kambient Iambient

50

Lighting: Ambient Light Sources

•  A scene lit only with an ambient light
source: Light Position

Not Important

Viewer Position
Not Important

Surface Angle
Not Important

51

Lighting: Ambient Term

This is a total hack (avoids complexity of global illumination)!

•  Represents reflection of all indirect
illumination

52

Lighting: Directional Light Sources

•  For a directional light source we make
simplifying assumptions
–  Direction is constant for all surfaces in the scene
–  All rays of light from the source are parallel

•  As if the source were infinitely far away
from the surfaces in the scene

•  A good approximation to sunlight

•  The direction from a surface to the light source is
important in lighting the surface

53

Lighting: Directional Light Sources

•  The same scene lit with a directional and
an ambient light source

54

Lighting: Point Light Sources

•  A point light source emits light equally in
all directions from a single point

•  The direction to the light from a point on a
surface thus differs for different points:
– So we need to calculate a

normalized vector to the light
source for every point we light:

p

l

55

Lighting: Other Light Sources

•  Spotlights are point sources whose
intensity falls off directionally.
– Requires color, point

direction, falloff
parameters

– Supported by OpenGL

56

Lighting: Other Light Sources

•  Area light sources define a 2-D emissive
surface (usually a disc or polygon)
– Good example: fluorescent light panels

– Capable of generating soft shadows (why?)

57

Lighting: Overview

•  Direct (Local) Illumination
– Emission at light sources
– Scattering at surfaces

•  Global illumination
– Shadows
– Refractions
–  Inter-object reflections

Direct Illumination"

58

Lighting: Modeling Surface
Reflectance

•  Rs(θ,φ,γ,ψ,λ) ...
– describes the amount of incident energy,
– arriving from direction (θ,φ), ...
–  leaving in direction (γ,ψ), …
– with wavelength λ

Surface

(θ,φ)

(γ,ψ)

59

Lighting: Empirical Models

•  Ideally measure radiant energy for “all”
combinations of incident angles
– Too much storage
– Difficult in practice

Surface

(θ,φ)

(ψ,λ)

λ	

60

•  Ideal diffuse reflection
–  An ideal diffuse reflector, at the microscopic level,

is a very rough surface (real-world example: chalk)
–  Because of these microscopic variations, an

incoming ray of light is equally likely to be reflected
in any direction over the hemisphere:

–  What does the reflected intensity depend on?

Lighting: The Physics of Reflection

61

Lighting: Diffuse Reflection

•  How much light is reflected?
– Depends on angle of incident light

Surface

θ	

62

Lighting: Lambert’s Cosine Law
•  Ideal diffuse surfaces reflect according to Lambert’s

cosine law:
 The energy reflected by a small portion of a surface from a
light source in a given direction is proportional to the
cosine of the angle between that direction and the surface
normal

•  These are often called Lambertian surfaces
•  Note that the reflected intensity is independent of the

viewing direction, but does depend on the surface
orientation with regard to the light source

63

Lighting: Lambert’s Law

64

Lighting: Computing Diffuse
Reflection

•  The angle between the surface normal and
the incoming light is the angle of incidence:

•  Idiffuse = kd Ilight cos θ
•  In practice we use vector arithmetic:

•  Idiffuse = kd Ilight (n • l)

n l

θ

65

Lighting: Diffuse Lighting Examples

•  We need only consider angles from 0° to
90° (Why?)

•  A Lambertian sphere seen at several
different lighting angles:

66

Lighting: Specular Reflection
•  Shiny surfaces exhibit specular reflection

–  Polished metal
–  Glossy car finish

•  A light shining on a specular surface causes a
bright spot known as a specular highlight

•  Where these highlights appear is a function of
the viewer’s position, so specular reflectance is
view dependent

67

Lighting: The Physics of Reflection

•  At the microscopic level a specular
reflecting surface is very smooth

•  Thus rays of light are likely to bounce off
the microgeometry in a mirror-like fashion

•  The smoother the surface, the closer it
becomes to a perfect mirror

68

Lighting: The Optics of Reflection

•  Reflection follows Snell’s Laws:
– The incoming ray and reflected ray lie in a

plane with the surface normal
– The angle that the reflected ray forms with the

surface normal equals the angle formed by
the incoming ray and the surface normal:

θ(l)ight = θ(r)eflection

69

Lighting: Specular Reflection

•  Reflection is strongest near mirror angle
– Examples: mirrors, metals

N

L R θ"θ"

70

Lighting: Geometry of Reflection

N

L RN(L)

θL θR

θL=θR

71

Lighting: Geometry of Reflection

N

L RN(L)

θL θR

θL=θR

cos(θi)N

(N.L)N

72

Lighting: Geometry of Reflection

N

L RN(L)

θL θR

θL=θR

2(N.L)N

73

Lighting: Geometry of Reflection

N

L RN(L)

θ" θ"

θL=θR

L 2(N.L)N

θL θR

74

Lighting: Geometry of Reflection

N

L RN(L)

θL θR

θL=θR

L 2(N.L)N

75

Lighting: Non-Ideal Specular
Reflectance

•  Snell’s law applies to perfect mirror-like surfaces, but
aside from mirrors (and chrome) few surfaces exhibit
perfect specularity

•  How can we capture the “softer”
reflections of surface that are glossy
rather than mirror-like?

•  One option: model the microgeometry of the surface and
explicitly bounce rays off of it

•  Or…

76

Lighting: Non-Ideal Specular
Reflectance

•  Hypothesis: most light reflects according to
Snell’s Law
– But because of microscopic surface variations,

some light may be reflected in a direction
slightly off the ideal reflected ray

•  Hypothesis: as we move from the ideal
reflected ray, some light is still reflected

An Empirical Approximation

77

Lighting: Non-Ideal Specular
Reflectance

•  An illustration of this angular falloff:

•  How might we model this falloff?

78

Lighting: Phong Lighting

•  The most common lighting model in computer
graphics was suggested by Phong:

() shinyn
lightsspecular IkI φcos=

•  The nshiny term is a purely
empirical constant that
varies the rate of falloff

•  Though this model has no
physical basis, it works
(sort of) in practice

v

79

Lighting: Calculating Phong
Lighting

•  The cos term of Phong lighting can be
computed using vector arithmetic:

–  v is the unit vector towards the viewer
–  r is the ideal reflectance direction

() shinyn
lightsspecular rvIkI ⋅=

v

80

Lighting: Phong Examples

•  These spheres illustrate the Phong model
as l and nshiny are varied:

81

Lighting: Combining Everything

•  Simple analytic model:
– diffuse reflection +
– specular reflection +
– emission +
– “ambient”

Surface

82

Lighting: Combining Everything

•  Simple analytic model:
– diffuse reflection +
– specular reflection +
– emission +
– “ambient”

Surface

83

Lighting: OpenGL Reflectance
Model

•  Sum diffuse, specular, emission, and
ambient

84

Lighting: The Final Combined
Equation

•  Single light source:

L
n

SLDALAE IRVKILNKIKII)()(•+•++=

N

L R

V

Viewer
α"

θ"θ"

85

Lighting: Final Combined Equation

•  Multiple light sources:

))()((∑ •+•++=
i i

n
iSiiDALAE IRVKILNKIKII

N

L2

V

Viewer L1

86

Lighting: Examples

• Paramètres :
–  Kd =0.25
–  Ks =0.75
–  n=50.0

87

Lighting: Examples

• Paramètres :
–  Kd =0.25
–  Ks =0.75
–  n=200.0

88

Lighting: Examples

• Paramètres :
–  Kd =0.25
–  Ks =0.75
–  n=50.0

89

Lighting: Examples

• Paramètres :
–  Kd =0.25
–  Ks =0.25
–  n=50.0

90

Lighting: Examples

• Paramètres :
–  Kd =0.75
–  Ks =0.25
–  n=50.0

91

Lighting: interpolative shading
•  Smooth D object representations:

Quadrics superquadrics splines
–  Computing surface normals can be

very expensive
•  Interpolative shading:

–  approximate curved objects by
polygonal meshes,

–  compute a surface normal that varies
smoothly from one face to the next

–  computation can be very cheap
Many objects are well approximated
by polygonal meshes

–  silhouettes are still polygonal
•  Done: rasterization step

92

Lighting

Transform

Illuminate

Transform

Clip

Project

Rasterize

Model & Camera
Parameters Rendering Pipeline Framebuffer Display

ModelàWorld

WorldàCamera

Interpolative
Shading

Lighting vertices

93

Lighting: interpolative shading
Two kinds of interpolative shading

•  Gouraud Shading: cheap but gives poor

highlights.
•  Phong Shading: slightly more expensive

but gives excellent highlights.

94

Lighting: interpolative shading
Vertex Normals
•  All interpolative

shading methods rely
on vertex normals.

•  A vertex normal is the
average of the
normals of all of the
faces sharing that
vertex.

95

Lighting: Gouraud Shading

96

Lighting
Poor Highlights from Gouraud Sading

97

Lighting: Phong Shading
Interpolate the normals instead

of the RGB values.
•  Compute normals at each

vertex A B and C.
•  Compute the normals at P1

and P2 By interpolation using
the normals from A and B
and C and B.

•  Compute the normal at P By
interpolating the normals
from P1 and P2.

•  Compute RGB values at P
Using Phong’s rule.

98

Lighting: Phong Shading
Interpolating the normals

99

Cast Shadows

100

Cast Shadows: Shadow Map
Two Z-buffers: one from the light source and

another from the viewer

Zl

eye

Front Plane
Light Back plane

Light

Source

Z B

101

Cast Shadows: Shadow Map
•  Compute an image as seen by the point light source
•  Compute an image as seen by the eye
•  Let (X,Y,Z) be a point seen through a pixel (x,y) of the

camera screen
•  Let (Xl,Yl,Zl) be the coordinates of this point in the

source coordinate system and (xl,yl) the coordinates of
the associated pixel on the source’s screen

•  If Zl > Z_Buffer_Light[xl][yl] then the point is shadowed
•  Else the point is lit and we compute its intensity.

102

Texture Mapping

103

Introduction
The Rendering Pipeline

Transform

Illuminate

Transform

Clip

Project

Rasterize

Model & Camera
Parameters Rendering Pipeline Framebuffer Display

ModelàWorld

WorldàCamera

Texture
mapping

Vertex texture
coordinates

104

Texture Mapping
•  Texture = 2D Image (we do not consider 3D

textures)
•  Texture : represented by a 2D array of RGB triplets
•  Triplet: Color, Normal or any other thing
•  Normalized texture space: (u,v), u et v ranging from

0 to 1
•  For a pixel P within the projected facet: compute its

texture coordinates by interpolation

105

Texture Mapping

106

Texture Mapping

•  Specify a texture coordinate (u,v) at each vertex
•  Canonical texture coordinates (0,0) → (1,1)

107

Texture Mapping: Interpolation

•  Specify a texture coordinate (u,v) at each vertex
•  Interpolate the texture values of intersection

points lying on the polygon using those of its
vertices

108

Texture Mapping & Illumination
•  Texture mapping can be used to alter some or all of the

constants in the illumination equation:
–  pixel color, diffuse color, alter the normal, ….

•  Classical texturing: diffuse color kd changes over a
surface and is given by a 2D texture which is an image

() ()()∑
=

⋅+⋅××=
nbLum

i

n

isid
i

ilocal VRkLNk
d
ivisII

0
2

)(

109

Bump Mapping

•  Use textures to alter the surface normal
– Does not change the actual shape of the

surface
– Just shaded as if it was a different shape

110

Bump Mapping

•  Add more realism to synthetic images
without adding a lot of geometry

111

Bump Mapping

112

Bump Mapping
•  Normal of bumped surface, so-called perturbed

normal:
•  Derivation can be found in “Simulation of

Wrinkled Surfaces”
 James F. Blinn
 SIGGRAPH ’78 Proceedings, pp. 286-292, 1978
 (Pioneering paper...)
•  Use texture to store either:

–  perturbed normal map
–  bump–map itself

113

Bump Mapping
•  The light at each point depends on the normal at that

point.
•  Take a smooth surface and perturb it with a function B.
•  But we don’t really perturb that surface (that is not

displacement mapping).
•  We modify the normals with the function B(u,v),

measuring the displacement of the irregular surface
compared to the ideal one.

•  we are only shading it as if it was a different shape! This
technique is called bump mapping.

•  The texture map is treated as a single-valued height
function.

•  The value of the function is not actually used, just its
partial derivatives.

114

Bump Mapping
The partial derivatives tell how to alter the true surface
normal at each point on the surface to make the object
appear as if it was deformed by the height function.

115

116

117

Bump Mapping
Choice of function B(u,v)
•  Blinn has proposed various techniques:
•  B(u,v) defined analytically as a polynomial with 2

variables or a Fourier serie (very expensive
approach)

•  B(u,v) defined by 2-entry table (poor results,
requires large memory)

•  B(u,v) defined by 2-entry table smaller and an
interpolation is performed to find in-between
values

118

Bump Mapping

•  Treat the texture as a single- valued height
function

•  Compute the normal from the partial
derivatives in the texture

119

Bump Mapping

•  There are no bumps on the
silhouette of a

 bump-mapped object
•  Bump maps don’t allow

self-occlusion or self-
shadowing

•  Problem solved with
Displacement Mapping

120

Displacement Mapping
•  Use the texture map to actually move the

surface point along the normal to the intersected
point.

•  The geometry must be displaced before visibility
is determined, which is different from bump
mapping

121

Displacement Mapping

• Compute intersection
between ray and bounding
volume

• Result: points A and B

• Height (or depth) is stored
in a texture

• Use a search technique for
the first intersection point:
here point 3

Flat surface

Bounding volume

122

•  A has a depth value of 0 and B has a depth value of 1.0.

Displacement Mapping

• At each step, compute the
midpoint of the current interval
and assign it the average depth
and texture coordinates of the
end points. (used to access the
depth map).

• If the stored depth is smaller
than the computed value, the
point along the ray is inside the
height-field surface (point 1).
• In this case it takes three
iterations to find the intersection
between the height-field and the
ray

• However, the binary search may lead to
incorrect results if the viewing ray
intersects the height-field surface more
than once

123

• However, the binary search may lead to
incorrect results if the viewing ray
intersects the height-field surface more
than once:

Displacement Mapping

• In this situation, since the
value computed at 1 is less
than the value taken from the
height-field, the search will
continue down.

• In order to remedy this, the
algorithm starts with a linear search

124

•  The technique can also handle surface self-shadowing:

Displacement Mapping

• We must decide if the light
ray intersects the height-field
surface between point C and
the point where the viewing
ray first hits the surface.

125

Displacement Mapping
•  Image from:
 Geometry Caching

for
 Ray-Tracing

Displacement Maps
•  by Matt Pharr and

Pat Hanrahan.
•  note the detailed

shadows cast by the
stones

126

Displacement Mapping

•  Bump Mapping combined with texture

