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Introduction 
Image 

–  Image =  set of pixels 
– Synthesis ó  assign an 

intensity value (color) to 
each pixel 

–  Intensity depends on the 
used light sources, the 
location of the viewpoint 
and of the objects within the 
scene.  

 

pixel 

screen 



4 

What is Computer Graphics? 
 

3D models: 
– Scene = set of different kinds  

object

surfaces  wireframe solids

Planar surfaces Non-planar surfaces primitives operations
on volumes

polyhedron

solids

approximation
with facets

quad

parametric
algebraic

sphere cube
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What is Computer Graphics? 
 3D models: facets 

– object = {planar facets} 
– scenes = list of facets  
–  facet    = list of vertices  

FACETS 
VERTICES Vertex parameters 

Facet parameters 

facet 1 
facet 2 

facet n 
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Introduction 
The different processing: 
•  Geometric transformations. 
•  Clipping: Pyramidal view volume. 
•  Hidden surface removal. 
•  Cast shadows. 
•  Polygon filling. 
•  Transparent objects.  
•  Aliasing 
•  Texture mapping.  
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Introduction 
The Rendering Pipeline 

Transform 

Illuminate 

Transform 

Clip 

Project 

Rasterize 

Model & Camera 
Parameters Rendering Pipeline Framebuffer Display 

ModelàWorld 

WorldàCamera 
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Coordinate systems 
At least 3 coordinate systems: 
•  Word Coordinate System (o,x,y,z): in 

which is described the scene.  

z 

x 

y 

scene 

Impossibl
e 
d'afficher 
l'image. 
Votre 
ordinateu
r manque 
peut-être 

Impossible d'afficher l'image. Votre 
ordinateur manque peut-être de mémoire 
pour ouvrir l'image ou l'image est 
endommagée. Redémarrez l'ordinateur, puis 
ouvrez à nouveau le fichier. Si le x rouge est 
toujours affiché, vous devrez peut-être 
supprimer l'image avant de la réinsérer.

Impossible 
d'afficher 
l'image. 
Votre 
ordinateur 

Impossible d'afficher 
l'image. Votre ordinateur 
manque peut-être de 
mémoire pour ouvrir 
l'image ou l'image est 
endommagée. Redémarrez 
l'ordinateur, puis ouvrez à 
nouveau le fichier. Si le x 
rouge est toujours affiché, 
vous devrez peut-être 
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Coordinate systems 
•  View Coordinate System (oe,xe,ye,ze). 
•   z = depth axis.  
•  Screen Coordinate System: (os,xs,ys,zs) 

Ye 

Xe 

Ze, Zs 

Ys 

Xs 
Os 

Oe 

eye 

screen 
Impossibl
e 
d'afficher 
l'image. 
Votre 
ordinateu
r manque 
peut-être 

Impossible d'afficher l'image. Votre 
ordinateur manque peut-être de mémoire 
pour ouvrir l'image ou l'image est 
endommagée. Redémarrez l'ordinateur, puis 
ouvrez à nouveau le fichier. Si le x rouge est 
toujours affiché, vous devrez peut-être 
supprimer l'image avant de la réinsérer.

Impossible 
d'afficher 
l'image. 
Votre 
ordinateur 

Impossible d'afficher l'image. 
Votre ordinateur manque 
peut-être de mémoire pour 
ouvrir l'image ou l'image est 
endommagée. Redémarrez 
l'ordinateur, puis ouvrez à 
nouveau le fichier. Si le x 
rouge est toujours affiché, 
vous devrez peut-être 
supprimer l'image avant de 

x 
depth 
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Geometric transformations 
•  Interest: enlarge a scene,  translate it, rotate it for 

changing the viewpoint  (also called camera) .  
•  2 ways for expressing a transformation: 

 - with a matrix. 
 - by composing  transformations such as: 
  - translation 
  - Scaling  
  - rotation 
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Geometric transformations 
•  Translation 

T (tx,ty,tz ) =

1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1
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•  Scaling 
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Geometric transformations 
•  Rotation  

–  One axis and one angle 
–  Expression: matrix 

•  Also composition of rotation around each axis of 
the coordinate system 
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Geometric transformations 
•  Rotations around axes 
 

–  X 
 
 
–  Y 

–  Z 

Ry(θ ) =

cosθ 0 sinθ 0
0 1 0 0

− sinθ 0 cosθ 0
0 0 0 1
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Rx(θ) =

1 0 0 0
0 cosθ − sinθ 0
0 sinθ cosθ 0
0 0 0 1
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Geometric transformations 
•  Rotation around an axis : the sub-matrix A 

is orthogonal : At*A = I 
 

R11 R12 R13 0  

R21 R22 R23 0  

R31 R32 R33 0  

  0     0     0   1 0          0          0       1 
0 

0 

 0 
sub  

matrix A  

(3*3) 
=  R = 
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Geometric transformations 
•  Position the objects one with 

respect to the others 
–  the vase is on the commode 

•  Modeling without accounting for the 
final position	





16 

Geometric transformations 
•  Scene graph 

Node  

Group 

Transformation 

Object  

Geometry Appearance  
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Geometric transformations 

Group 
Root 

Transform 
Commode 

Transform 
Vase 

Transform 
Flower 



18 

Geometric transformations 
Group 
Root 

Transform 
Commode 

Transform 
Vase 

Transform 
Flower 
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Geometric transformations for 
rendering 

Projections 
•  Plane projection = transformation which 

associates a screen point with a scene point  
•  It is defined by: 

–  a centre of projection 
–  a projection plane 

•  Two types : perspective and parallel 
Imp

P 

Oe 

P' 
P 

P' Ze, Zs 

Oe 
 To infinity 

Ze, Zs 
screen 

Perspective projection   Parallel projection  
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Geometric transformations for 
rendering 

•  P'(xp, yp, d) = projection of P(x, y, z) 
•  d = focal distance 
•  We get: 
            yp = d * y / z     et   xp = d * x / z 

Ye 

Oe 

Xe 

Ze, Zs 

P 
P' 

screen 
d 

1  0  0  0  
0  1  0  0  
0  0  1 1/d  
0  0  0  0 

Mper  = 
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Geometric transformations for 
rendering 

Homogeneous coordinates 
 
•  Homo. Coord. : (X, Y, Z, W) = (x, y, z, 1) * Mper 
•  We get:   (X, Y, Z, W) = (x, y, z, z / d) 
•  Perspective projection of P : 
 (X/W, Y/W, Z/W, 1) = (xp, yp, zp, 1) = (x * d / z, y * d / z, d, 1) 

Ye 

Oe 

Xe 

Ze, Zs 

P 
P' 

screen 
d 

1  0  0  0  
0  1  0  0  
0  0  1 1/d  
0  0  0  0 

Mper  = 



22 

Geometric transformations for 
rendering 

Clipping 
– Visible objects: inside the view pyramid 
– Made up of 6 planes 
– Objects whose only a part lies whin the 

pyramid are clipped by the 6 planes 
 

Imp
ossi
ble 
d'a
ffich
er 
l'im
age. 
Votr
e 
ordi
nate
ur 
man
que 
peut
-

Impossible d'afficher l'image. Votre 
ordinateur manque peut-être de 
mémoire pour ouvrir l'image ou 
l'image est endommagée. 
Redémarrez l'ordinateur, puis 

Ye 

Xe 

Ze 

b 

b View pyramid 
screen 

P 
P' 
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Geometric transformations 
for rendering 

Clipping 
–  Visible objects: inside the view pyramid 
–  Made up of 6 planes 
–  Objects whose only a part lies whin the pyramid are 

clipped by the 6 planes 
P Ye 

Xe 

Ze 

screen 
(front plane) 

(back plane) 
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Choosing the camera 
parameters 

•  Resolution :     Resx x Resy  (Nbr of columns) x (Nbre of rows)  
     COP = Center Of Projection  (observer). 

 VRP  = View Reference Point (targetetted point). 
     VPN  = View Point Normal (screen normal). 
     VUP  = View Up Vector  
     d       =  focal distance 

2
Re

Resy
h 2  l      d 2) /  (tg h sx∗=∗= α

 

 h 
l 

y 

x 

Ecran 

  

COP   

Screen   

α   h   

d   

  

Z   

Y   

VUP   

VRP   
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Introduction: Rasterization 

Transform 

Illuminate 

Transform 

Clip 

Project 

Rasterize 

Model & Camera 
Parameters Rendering Pipeline Framebuffer Display 

ModelàWorld 

WorldàCamera 
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Rasterizing: Polygons 
•  In interactive graphics, polygons rule the world 
•  Two main reasons: 

–  Lowest common denominator for surfaces 
•  Can represent any surface with arbitrary accuracy 
•  Splines, mathematical functions, volumetric isosurfaces… 

–  Mathematical simplicity lends itself to simple, 
regular rendering algorithms 

•  Like those we’re about to discuss…  
•  Such algorithms embed well in hardware 
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Rasterizing: Polygons 

•  Triangle is the minimal unit  
of a polygon 
– All polygons can be broken 

up into triangles 
– Triangles are guaranteed to 

be: 
•  Planar 
•  Convex 
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Rasterizing: Triangulation 

•  Convex polygons easily  
triangulated (Delaunay) 

•  Concave polygons present  
a challenge 
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Rasterizing Triangles 

•  Interactive graphics hardware commonly 
uses edge walking or edge equation 
techniques for rasterizing triangles 



30 

Rasterization: Edge Walking 

•  Basic idea:  
– Draw edges vertically 

•  Interpolate colors down edges 

– Fill in horizontal spans for each  
scanline 

•  At each scanline, interpolate  
edge colors across span 
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Rasterization: Edge Walking 

•  Order three triangle vertices in x and y 
–  Find middle point in y dimension and compute if it is to 

the left or right of polygon.  Also could be flat top or flat 
bottom triangle 

•  We know where left and right edges are. 
–  Proceed from top scanline downwards 
–  Fill each span 
–  Until breakpoint or bottom vertex is reached 
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Rasterization: Edge Equations 

•  An edge equation is simply the equation of the line 
defining that edge 
–  Q: What is the implicit equation of a line? 
–  A: Ax + By + C = 0 
–  Q: Given a point (x,y), what does plugging x & y into 

this equation tell us? 
–  A: Whether the point is: 

•  On the line: Ax + By + C = 0  
•  “Above” the line: Ax + By + C > 0  
•  “Below” the line: Ax + By + C < 0  
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Rasterization: Edge Equations 

•  Edge equations thus define two half-
spaces: 
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Rasterization: Edge Equations 

•  And a triangle can be defined as the 
intersection of three positive half-spaces: 

A1x + B1y + C1 < 0 A1x + B1y + C1 > 0 
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Rasterization: Edge Equations 

•  So…simply turn on those pixels for which 
all edge equations evaluate to > 0: 

+ + + 
- 

- 
- 
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Rasterization: Using Edge 
Equations 

•  Which pixels: compute min,max 
bounding box 

•  Edge equations: compute from vertices 
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Rasterization: Edge Equations: 
Code 

•  Basic structure of code: 
– Setup: compute edge equations, bounding box 
–  (Outer loop) For each scanline in bounding 

box...  
–  (Inner loop)  …check each pixel on scanline, 

evaluating edge equations and drawing the 
pixel if all three are positive 
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Hidden Surface Removal 
Z-buffering 

Transform 

Illuminate 

Transform 

Clip 

Project 

Rasterize 

Model & Camera 
Parameters Rendering Pipeline Framebuffer Display 

ModelàWorld 

WorldàCamera 

Z-buffering 
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Hidden Surface Removal 
Back Face Culling & Clipping 

•  Back Face Culling 
– Simple test 

•  Normal: N 
•  View direction: V 
•  Dot produit: V·N 

•  Clipping 
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Hidden Surface Removal 
 Z-buffering 

•  Real-time 
 

–  Z-Buffer (Catmull in 1974) 
•  Depth memory for each pixel 

–  Two 2D arrays 
•  Frame buffer for intensities (colors):   FB [i] [j] 
•  Z-buffer for depths  (z coordinate)        ZB [i] [j] 

–  Facets (triangles) are processed without any ordering 
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Hidden Surface Removal 
 Z-buffering 

algorithm Z-Buffer () 
begin 

 for (for pixels i,j do) 
   FB [i][j] ← back plane’s color ; ZB [i][j] ← z (back plane) 
 endfor 
 for (all facets) do 
   for (all pixels within the projection of the facet) do 

                      compute_intensity_and_z for all pixels using interpolation 
    if (zFrontPlane ≤ z of polygone at point i,j ≤ ZB [i][j]) then 
     ZB [i][j] ← z of facet at pixel (i,j)  
     FB [i][j] ← color of facet at (i,j) 
    endif 
   endfor 
  endfor 

end 
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Lighting 
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Lighting 

Transform 

Illuminate 

Transform 

Clip 

Project 

Rasterize 

Model & Camera 
Parameters Rendering Pipeline Framebuffer Display 

ModelàWorld 

WorldàCamera 

Interpolative 
Shading 

Lighting vertices 
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Lighting: Illumination 

•  How do we compute radiance for a sample 
ray? 

Angel Figure 6.2 
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Lighting: Goal 

•  Must derive computer models for ... 
– Emission at light sources 
– Scattering at surfaces 
– Reception at the camera 

•  Desirable features … 
– Concise 
– Efficient to compute 
– “Accurate” 
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Lighting: Overview 

•  Direct (Local) Illumination 
– Emission at light sources 
– Scattering at surfaces 

•  Global illumination 
– Shadows 
– Refractions 
–  Inter-object reflections 

Direct Illumination"
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Lighting: Modeling Light Sources 

•  IL(x,y,z,θ,φ,λ) ...  
– describes the intensity of energy,  
–  leaving a light source, … 
– arriving at location(x,y,z), ... 
–  from direction (θ,φ), ... 
– with wavelength λ	



(x,y,z)"

Light"
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Lighting: Ambient Light Sources 
•  Objects not directly lit are typically still visible 

–  e.g., the ceiling in this room, undersides of desks 

•  This is the result of indirect illumination from emitters, 
bouncing off intermediate surfaces 

•  Too expensive to calculate (in real time), so we use a 
hack called an ambient light source 
–  No spatial or directional characteristics; illuminates all 

surfaces equally 
–  Amount reflected depends on surface properties 
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Lighting: Ambient Light Sources 

•  For each sampled wavelength (R, G, B), 
the ambient light reflected from a surface 
depends on 
– The surface properties, kambient  
– The intensity, Iambient, of the ambient light 

source (constant for all points on all surfaces ) 
•  Ireflected = kambient Iambient 
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Lighting: Ambient Light Sources 

•  A scene lit only with an ambient light 
source: Light Position 

Not Important 

Viewer Position 
Not Important 

Surface Angle 
Not Important 
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Lighting: Ambient Term 

This is a total hack (avoids complexity of global illumination)! 

•  Represents reflection of all indirect 
illumination 
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Lighting: Directional Light Sources 

•  For a directional light source we make 
simplifying assumptions 
–  Direction is constant for all surfaces in the scene 
–  All rays of light from the source are parallel 

•  As if the source were infinitely far away  
from the surfaces in the scene 

•  A good approximation to sunlight 

•  The direction from a surface to the light source is 
important in lighting the surface 
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Lighting: Directional Light Sources 

•  The same scene lit with a directional and 
an ambient light source 
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Lighting: Point Light Sources 

•  A point light source emits light equally in 
all directions from a single point  

•  The direction to the light from a point on a 
surface thus differs for different points: 
– So we need to calculate a  

normalized vector to the light  
source for every point we light: 

p 

l 
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Lighting: Other Light Sources 

•  Spotlights are point sources whose 
intensity falls off directionally.   
– Requires color, point 

direction, falloff 
parameters 

– Supported by OpenGL 
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Lighting: Other Light Sources 

•  Area light sources define a 2-D emissive 
surface (usually a disc or polygon) 
– Good example: fluorescent light panels 

– Capable of generating soft shadows (why? ) 



57 

Lighting: Overview 

•  Direct (Local) Illumination 
– Emission at light sources 
– Scattering at surfaces 

•  Global illumination 
– Shadows 
– Refractions 
–  Inter-object reflections 

Direct Illumination"
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Lighting: Modeling Surface 
Reflectance 

•  Rs(θ,φ,γ,ψ,λ) ...  
– describes the amount of incident energy,  
– arriving from direction (θ,φ), ... 
–  leaving in direction (γ,ψ), … 
– with wavelength λ 

Surface 

(θ,φ) 

(γ,ψ) 
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Lighting: Empirical Models 

•  Ideally measure radiant energy for “all” 
combinations of incident angles  
– Too much storage 
– Difficult in practice 

Surface 

(θ,φ) 

(ψ,λ) 

λ	
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•  Ideal diffuse reflection 
–  An ideal diffuse reflector, at the microscopic level, 

is a very rough surface (real-world example: chalk)   
–  Because of these microscopic variations, an 

incoming ray of light is equally likely to be reflected 
in any direction over the hemisphere: 

–  What does the reflected intensity depend on?  

Lighting: The Physics of Reflection 
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Lighting: Diffuse Reflection 

•  How much light is reflected? 
– Depends on angle of incident light 

Surface 

θ	
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Lighting: Lambert’s Cosine Law 
•  Ideal diffuse surfaces reflect according to Lambert’s 

cosine law: 
 The energy reflected by a small portion of a surface from a 
light source in a given direction is proportional to the 
cosine of the angle between that direction and the surface 
normal 

•  These are often called Lambertian surfaces 
•  Note that the reflected intensity is independent of the 

viewing direction, but does depend on the surface 
orientation with regard to the light source 
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Lighting: Lambert’s Law 
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Lighting: Computing Diffuse 
Reflection 

•  The angle between the surface normal and 
the incoming light is the angle of incidence: 

•  Idiffuse = kd Ilight cos θ 
•  In practice we use vector arithmetic: 

•  Idiffuse = kd Ilight  (n • l) 

n l 

θ 
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Lighting: Diffuse Lighting Examples 

•  We need only consider angles from 0° to 
90° (Why?) 

•  A Lambertian sphere seen at several 
different lighting angles: 
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Lighting: Specular Reflection 
•  Shiny surfaces exhibit specular reflection 

–  Polished metal 
–  Glossy car finish 

•  A light shining on a specular surface causes a 
bright spot known as a specular highlight 

•  Where these highlights appear is a function of 
the viewer’s position, so specular reflectance is 
view dependent 
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Lighting: The Physics of Reflection 

•  At the microscopic level a specular 
reflecting surface is very smooth 

•  Thus rays of light are likely to bounce off 
the microgeometry in a mirror-like fashion 

•  The smoother the surface, the closer it 
becomes to a perfect mirror 
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Lighting: The Optics of Reflection 

•  Reflection follows Snell’s Laws: 
– The incoming ray and reflected ray lie in a 

plane with the surface normal 
– The angle that the reflected ray forms with the 

surface normal equals the angle formed by 
the incoming ray and the surface normal: 

θ(l)ight = θ(r)eflection 
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Lighting: Specular Reflection 

•  Reflection is strongest near mirror angle 
– Examples: mirrors, metals 

N 

L R θ"θ"
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Lighting: Geometry of Reflection 

N 

L RN(L) 

θL θR 

θL=θR 



71 

Lighting: Geometry of Reflection 

N 

L RN(L) 

θL θR 

θL=θR 

cos(θi)N 

(N.L)N 
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Lighting: Geometry of Reflection 

N 

L RN(L) 

θL θR 

θL=θR 

2(N.L)N 
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Lighting: Geometry of Reflection 

N 

L RN(L) 

θ" θ"

θL=θR 

L 2(N.L)N 

θL θR 
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Lighting: Geometry of Reflection 

N 

L RN(L) 

θL θR 

θL=θR 

L 2(N.L)N 



75 

Lighting: Non-Ideal Specular 
Reflectance 

•  Snell’s law applies to perfect mirror-like surfaces, but 
aside from mirrors (and chrome) few surfaces exhibit 
perfect specularity 

•  How can we capture the “softer”  
reflections of surface that are glossy  
rather than mirror-like? 

•  One option: model the microgeometry of the surface and 
explicitly bounce rays off of it 

•  Or…  
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Lighting: Non-Ideal Specular 
Reflectance  

•  Hypothesis: most light reflects according to 
Snell’s Law 
– But because of microscopic surface variations, 

some light may be reflected in a direction 
slightly off the ideal reflected ray 

•  Hypothesis: as we move from the ideal 
reflected ray, some light is still reflected 

An Empirical Approximation 
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Lighting: Non-Ideal Specular 
Reflectance 

•  An illustration of this angular falloff: 

•  How might we model this falloff? 
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Lighting: Phong Lighting 

•  The most common lighting model in computer 
graphics was suggested by Phong: 

( ) shinyn
lightsspecular IkI φcos=

•  The nshiny term is a purely 
empirical constant that  
varies the rate of falloff 

•  Though this model has no  
physical basis, it works  
(sort of) in practice 

v 
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Lighting: Calculating Phong 
Lighting 

•  The cos term of Phong lighting can be 
computed using vector arithmetic: 

–  v is the unit vector towards the viewer 
–  r is the ideal reflectance direction   

( ) shinyn
lightsspecular rvIkI ⋅=

v 
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Lighting: Phong Examples 

•  These spheres illustrate the Phong model 
as l and nshiny are varied: 
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Lighting: Combining Everything 

•  Simple analytic model:  
– diffuse reflection + 
– specular reflection + 
– emission + 
– “ambient” 

Surface 
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Lighting: Combining Everything 

•  Simple analytic model:  
– diffuse reflection + 
– specular reflection + 
– emission + 
– “ambient” 

Surface 
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Lighting: OpenGL Reflectance 
Model 

•  Sum diffuse, specular, emission, and 
ambient 
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Lighting: The Final Combined 
Equation 

•  Single light source: 

L
n

SLDALAE IRVKILNKIKII )()( •+•++=

N 

L R 

V 

Viewer 
α"

θ"θ"
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Lighting: Final Combined Equation 

•  Multiple light sources: 

))()((∑ •+•++=
i i

n
iSiiDALAE IRVKILNKIKII

N 

L2 

V 

Viewer L1 
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Lighting: Examples 

• Paramètres : 
–  Kd =0.25 
–  Ks =0.75 
–  n=50.0 
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Lighting: Examples 

• Paramètres : 
–  Kd =0.25 
–  Ks =0.75 
–  n=200.0 
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Lighting: Examples 

• Paramètres : 
–  Kd =0.25 
–  Ks =0.75 
–  n=50.0 
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Lighting: Examples 

• Paramètres : 
–  Kd =0.25 
–  Ks =0.25 
–  n=50.0 
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Lighting: Examples 

• Paramètres : 
–  Kd =0.75 
–  Ks =0.25 
–  n=50.0 
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Lighting: interpolative shading 
•  Smooth D object representations: 

Quadrics superquadrics splines 
–  Computing surface normals can be 

very expensive 
•  Interpolative shading:  

–  approximate curved objects by 
polygonal meshes, 

–  compute a surface normal that varies 
smoothly from one face to the next 

–  computation can be very cheap 
Many objects are well approximated 
by polygonal meshes 

–  silhouettes are still polygonal 
•  Done: rasterization step 
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Lighting 

Transform 

Illuminate 

Transform 

Clip 

Project 

Rasterize 

Model & Camera 
Parameters Rendering Pipeline Framebuffer Display 

ModelàWorld 

WorldàCamera 

Interpolative 
Shading 

Lighting vertices 
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Lighting: interpolative shading 
Two kinds of interpolative shading 
 
•  Gouraud Shading: cheap but gives poor 

highlights. 
•  Phong Shading: slightly more expensive 

but gives excellent highlights. 
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Lighting: interpolative shading 
Vertex Normals 
•  All interpolative 

shading methods rely 
on vertex normals. 

•  A vertex normal is the 
average of the 
normals of all of the 
faces sharing that 
vertex. 
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Lighting: Gouraud Shading 
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Lighting  
Poor Highlights from Gouraud Sading 
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Lighting: Phong Shading 
Interpolate the normals instead 

of the RGB values. 
•  Compute normals at each 

vertex A B and C. 
•  Compute the normals at P1 

and P2 By interpolation using 
the normals from A and B 
and C and B. 

•  Compute the normal at P By 
interpolating the normals 
from P1 and P2. 

•  Compute RGB values at P 
Using Phong’s rule. 
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Lighting: Phong Shading 
Interpolating the normals 



99 

Cast Shadows 
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Cast Shadows: Shadow Map 
Two Z-buffers: one from the light source and 

another from the viewer 
 

  

Zl   

eye   

Front Plane  
Light   Back plane 

Light   

Source   

Z   B   
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Cast Shadows: Shadow Map 
•  Compute an image as seen by the point light source 
•  Compute an image as seen by the eye 
•  Let (X,Y,Z) be a point seen through a pixel (x,y) of the 

camera screen 
•  Let (Xl,Yl,Zl) be the coordinates of this point in the 

source coordinate system and (xl,yl) the coordinates of 
the associated pixel on the source’s screen 

•  If Zl > Z_Buffer_Light[xl][yl] then the point is shadowed 
•  Else the point is lit and we compute its intensity. 
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Texture Mapping 
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Introduction 
The Rendering Pipeline 

Transform 

Illuminate 

Transform 

Clip 

Project 

Rasterize 

Model & Camera 
Parameters Rendering Pipeline Framebuffer Display 

ModelàWorld 

WorldàCamera 

Texture 
mapping 

Vertex texture 
coordinates 
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Texture Mapping 
•  Texture = 2D Image (we do not consider 3D 

textures)  
•  Texture : represented by  a 2D array of RGB triplets 
•  Triplet: Color, Normal or any other thing 
•  Normalized texture space: (u,v), u et v ranging from 

0 to 1 
•  For a pixel P within the projected facet: compute its 

texture coordinates by interpolation 
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Texture Mapping 
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Texture Mapping 

•  Specify a texture coordinate (u,v) at each vertex 
•  Canonical texture coordinates (0,0) → (1,1) 
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Texture Mapping: Interpolation 

•  Specify a texture coordinate (u,v) at each vertex 
•  Interpolate the texture values of intersection  

points lying on the polygon using those of its 
vertices 
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Texture Mapping & Illumination 
•  Texture mapping can be used to alter some or all of the 

constants in the illumination equation: 
–  pixel color, diffuse color, alter the normal, …. 

•  Classical texturing: diffuse color kd changes over a 
surface and is given by a 2D texture which is an image 
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Bump Mapping 

•  Use textures to alter the surface normal 
– Does not change the actual shape of the 

surface 
– Just shaded as if it was a different shape 
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Bump Mapping 

•  Add more realism to synthetic images 
without adding a lot of geometry 
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Bump Mapping 
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Bump Mapping 
•  Normal of bumped surface, so-called perturbed 

normal: 
•  Derivation can be found in “Simulation of 

Wrinkled Surfaces” 
    James F. Blinn 
   SIGGRAPH ’78 Proceedings, pp. 286-292, 1978 
   (Pioneering paper...) 
•  Use texture to store either: 

–  perturbed normal map 
–  bump–map itself 
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Bump Mapping 
•  The light at each point depends on the normal at that 

point. 
•  Take a smooth surface and perturb it with a function B. 
•  But we don’t really perturb that surface (that is not 

displacement mapping). 
•  We modify the normals with the function B(u,v), 

measuring the displacement of the irregular surface 
compared to the ideal one. 

•  we are only shading it as if it was a different shape! This 
technique is called bump mapping.  

•  The texture map is treated as a single-valued height 
function.  

•  The value of the function is not actually used, just its 
partial derivatives. 
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Bump Mapping 
The partial derivatives tell how to alter the true surface 
normal at each point on the surface to make the object 
appear as if it was deformed by the height function. 
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Bump Mapping 
Choice of  function B(u,v) 
•  Blinn has proposed various techniques: 
•  B(u,v) defined analytically as a polynomial with 2 

variables or a Fourier serie (very expensive 
approach) 

•  B(u,v) defined by 2-entry table (poor results, 
requires large memory) 

•  B(u,v) defined by 2-entry table smaller and an 
interpolation is performed to find in-between 
values 
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Bump Mapping 

•  Treat the texture as a single- valued height 
function 

•  Compute the normal from the partial 
derivatives in the texture 
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Bump Mapping 

•  There are no bumps on the 
silhouette of a 

    bump-mapped object 
•  Bump maps don’t allow 

self-occlusion or self-
shadowing 

•  Problem solved with 
Displacement Mapping 
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Displacement Mapping 
•  Use the texture map to actually move the 

surface point along the normal to the intersected 
point. 

•  The geometry must be displaced before visibility 
is determined, which is different from bump 
mapping 
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Displacement Mapping 

• Compute intersection 
between ray and bounding 
volume 

• Result: points A and B 

• Height (or depth) is stored 
in a texture 

• Use a search technique for 
the first intersection point: 
here point 3 

Flat surface 

Bounding volume 
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•  A has a depth value of 0 and B has a depth value of 1.0. 

Displacement Mapping 

• At each step, compute the 
midpoint of the current interval 
and assign it the average depth 
and texture coordinates of the 
end points. (used to access the 
depth map). 

• If the stored depth is smaller 
than the computed value, the 
point along the ray is inside the 
height-field surface (point 1). 
• In this case it takes three 
iterations to find the intersection 
between the height-field and the 
ray 

• However, the binary search may lead to 
incorrect results if the viewing ray 
intersects the height-field surface more 
than once 
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• However, the binary search may lead to 
incorrect results if the viewing ray 
intersects the height-field surface more 
than once: 

Displacement Mapping 

• In this situation, since the 
value computed at 1 is less 
than the value taken from the 
height-field, the search will 
continue down. 

• In order to remedy this, the 
algorithm starts with a linear search 
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•  The technique can also handle surface self-shadowing: 

Displacement Mapping 

• We must decide if the light 
ray intersects the height-field 
surface between point C and 
the point where the viewing 
ray first hits the surface. 



125 

Displacement Mapping 
•  Image from: 
   Geometry Caching 

for 
   Ray-Tracing 

Displacement Maps 
•  by Matt Pharr and 

Pat Hanrahan. 
•  note the detailed 

shadows cast by the 
stones 
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Displacement Mapping 

•  Bump Mapping combined with texture 


