
No d’ordre : 4449 ANNÉE 2011

THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l’Université Européenne de Bretagne

pour le grade de
DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Mention : (Informatique)
Ecole doctorale (Matisse)

présentée par

Václav Gassenbauer
préparée à l’unité de recherche UMR6074 IRISA

Institut de Recherche en Informatique et Systèmes Alèatoires
IFSIC

Illumination
Coherence for
Ligh Transport
Simulation

Thèse soutenue à Rennes
le 12 Décembre 2011
devant le jury composé de :
Mathias PAULIN
Professeur, Univ. Paul Sabatier / rapporteur

Nicolas HOLZSCHUCH
Dir. de Recherche, INRIA Rhône-Alpes / rapporteur

Jiří BITTNER
Chercheur, ČVUT in Prague / rapporteur

Jiří ŽÁRA
Professeur, ČVUT in Prague / examinateur

Pavel SLAVÍK
Professeur, ČVUT in Prague / examinateur

Rémi COZOT
Maître de Conférences, Univ. Rennes 1 / examinateur

Jaroslav KŘIVÁNEK
Maître de Conférences, MFF UK/directeur de thèse

Kadi BOUATOUCH
Professeur, Univ. Rennes 1 / co-directeur de thèse

Abstract
Simulation of light transport in a scene is an essential task in realistic image

synthesis. However, an accurate simulation of light as it bounces in the scene is
time consuming. It has been shown that a key to speeding up light transport
simulation algorithms is to take advantage of the high degree of spatial, angular,
and temporal coherence. In this thesis we make three contributions in this area.

First, we propose spatial directional radiance caching (SDRC) for accelerating
the light transport simulation in scenes with glossy surfaces. The SDRC algorithm
takes advantage of the smoothness of shading on glossy surfaces by interpolating
the indirect illumination from a set of sparsely distributed radiance samples that
are both spatially and directionally close. We show that SDRC outperforms the
original radiance caching proposed by Křivánek et al. [KGPB05] and also the
Monte Carlo-based methods based on BRDF importance sampling.

In the next part of the thesis, we propose an efficient and accurate local
principal component analysis (LPCA) algorithm for dimensionality reduction and
data compression of large data sets. To achieve efficiency our new algorithm,
called SortCluster-LPCA, passes varying information from previous iteration to
the next, showing a speed up of up to 20. Improved accuracy is achieved through
better initial seeding of cluster centroids in LPCA, producing substantially better
data approximation.

Finally, we describe a work in progress focusing on the development of
an algorithm for interactive relighting of animation sequences with indirect
illumination. We formulate the relighting problem as a large 3D array expressing
light propagation in a scene over multiple frames. We suggest an adaptive
algorithm to make the pre-computation tractable exploiting coherence in light
transport. Since our approach has not been implemented yet we leave its
practical verification as a future work.

Keywords. Computer graphics, rendering, coherence, global illumination, light
transport simulation, radiance caching, principal component analysis, PCA, k-
means, precomputed radiance transfer, cinematic relighting.

i

Contents

List of figures v

1 Introduction 1
1.1 Global Illumination Problem . 1
1.2 Motivation . 3
1.3 Summary of Contributions . 5
1.4 Thesis Outline . 6

2 Spatial Directional Radiance Cache 9
2.1 Introduction . 9
2.2 Related Work . 11
2.3 Background: Radiance Caching . 12
2.4 Spatial Directional Radiance Caching 13

2.4.1 Motivation . 13
2.4.2 Overview . 14
2.4.3 New Record Computation 14
2.4.4 Incoming Radiance Interpolation 15
2.4.5 Outgoing Radiance Computation 18
2.4.6 Cache Record Density Control 18

2.5 Results . 19
2.6 Discussion and Limitations . 25
2.7 Conclusion . 27

3 Improving Performance and Accuracy of Local PCA 29
3.1 Introduction . 30
3.2 Related Work . 31
3.3 Preliminaries . 32

3.3.1 Problem definition . 32
3.3.2 Local Principal Component Analysis (LPCA) 32
3.3.3 SortMeans: Acceleration of k-means Clustering 33

3.4 SortClusters LPCA: Acceleration of General LPCA 34

iii

Contents

3.4.1 Distance Between Affine Subspaces and The Generalized Tri-
angle Inequality . 35

3.4.2 The SortClusters LPCA Algorithm 36
3.4.3 Efficient Evaluation of Inter-Subspace Distance 37

3.5 Cluster Initialization . 37
3.5.1 SortMeans++: Accelerated k-means++ 38

3.6 Results . 39
3.6.1 Compression of PRT data 39
3.6.2 BTF compression . 45

3.7 Conclusion . 45

4 Relighting of Animation Sequences 47
4.1 Introduction . 47
4.2 Related Work . 49
4.3 Overview of Our Contribution . 52
4.4 Tensor Exploration . 53

4.4.1 Definition of the Light Transfer Tensor 53
4.4.2 Exploring the Structure of the Light Transfer Tensor 55
4.4.3 Computation of the Light Transfer in View Samples 57

4.5 Wavelet-LPCA . 59
4.5.1 Classification to Nearest Affine Subspaces 60
4.5.2 Update of Affine Subspaces 62
4.5.3 Computation of the Sparse Points 66

4.6 Rendering . 67
4.7 Conclusion . 69

5 Conclusion and Future Work 71
5.1 Spatial Directional Radiance Caching 71
5.2 SortCluster-LPCA and SortMeans++ 72
5.3 Relighting of Animation Sequences. 73

Author’s Publications 75

Bibliography 85

iv

List of Figures

1.1 Global illumination effects . 2

2.1 Lazy evaluation scheme in the directional domain 13
2.2 Directional interpolation . 16
2.3 Cache record density control . 19
2.4 Equal-time comparison of the rendering quality achieved using the

MC, SHRC and SDRC algorithms 21
2.5 Renderings for different surface finish 22
2.6 Renderings of the chess scene . 24
2.7 Rendering time scalability . 26

3.1 Triangle inequality . 34
3.2 Example of point-cluster classification 35
3.3 Scenes used in our experiments . 40
3.4 Average computation time per one iteration of our SC-LPCA and orig-

inal LPCA . 41
3.5 Average number of distances evaluated by the compared algorithms

per one iteration of the classification. 41
3.6 Scalability with the number of clusters for the Dragon scene 42
3.7 Scalability with the Phong’s lobe exponent for the Dragon scene . . . 43
3.8 Latency and accuracy of initialization algorithms 44
3.9 BTF datasets used for testing our algorithm 45
3.10 Computation time for different BTF 46

4.1 Renderings of a scene with a hair ball relit using different configura-
tions of light sources . 48

4.2 Conceptual overview of our offline algorithm 54
4.3 Geometry of direct-to-indirect (DTI) light transfer 55
4.4 Local dimensionality of light transfer 58
4.5 Orthogonal projection of xw to subspace S 61
4.6 Process of learning of the first eigenvector for a set of 2D vectors

drawn from a Gaussian distribution 66
4.7 Calculation of indirect lighting at view sample v 69

v

1Introduction

Contents
1.1 Global Illumination Problem . 1
1.2 Motivation . 3
1.3 Summary of Contributions . 5
1.4 Thesis Outline . 6

Let us imagine we are observing some objects in the real world and let us
have an accurate virtual model of these objects represented in a computer. One
of the important problems in the field of computer graphics is to generate an
image of the virtual objects so that the difference between a photograph of the
reality and the computer-generated image is not noticeable. Generating such
photorealistic images is called Realistic Image Synthesis and has a number of
applications. One of the main applications of realistic image synthesis is the
film industry. More and more movies contain miscellaneous visual effects which
are impossible or very expensive to produce in a traditional way. Photorealism is
required to provide the illusion of watching the real world. In architecture one can
design the interior or exterior of buildings and create photorealistic images of the
designs before the objects actually exist. Realistic image synthesis is also useful
for lighting design: Lights can be simulated in a virtual scene and then the final
lighting configuration can be used in the real world. We could continue giving
examples of other applications of realistic image synthesis. Generally realistic
image synthesis is used everywhere, where we need to provide the user with the
illusion of reality.

1.1 Global Illumination Problem
The input of any realistic image synthesis system is a complete description of
a virtual world. It consists of the objects’ geometry, the material properties of
those objects, and the geometry and emission characteristics of light sources. In
order to create an image of the virtual world we need to calculate the amount

1

Introduction

(a) Color bleeding (b) Refraction

(c) Caustic (d) Glossy reflections

Figure 1.1 – Global illumination effects. Images (a), (b), (c) were borrowed
from [KG09], and (d) is our photograph of Walt Disney Concert Hall in Los
Angeles.

of light entering a virtual camera which is positioned in the scene. Light enters
the camera directly from the light sources but also indirectly as it is reflected
or refracted off the objects in the scene. The effects of light as it bounces in
the scene are referred to as global illumination (GI); this is the main objective of
realistic image synthesis. Some examples of global illuminated scenes are given
in Figure 1.1.

2

Motivation

The fundamental mathematical foundation for realistic image synthesis is the
rendering equation [Kaj86]. The rendering equation describes the energy balance
in the scene. One approach to solve the rendering equation is the finite element
method that the radiosity algorithms are based on [CW93, SP94]. The radiosity
algorithms have been shown to be very efficient, especially for relatively simple
scenes with diffuse surfaces. For complex environments with a lot of materials
with different reflectance functions, however, radiosity algorithms are impractical
in terms of memory space and computation time.

Other approaches to solve the rendering equation are based on Monte Carlo
methods. Instead of solving the rendering equation directly they calculate it
in an explicit form: they expand the equation into an infinite series of finite-
dimensional integrals that can be evaluated numerically. The pioneering work
in solving the finite-dimensional integrals using Monte Carlo was distributed ray
tracing [CPC84] and path tracing [Kaj86], as well as the follow-up algorithms
like bi-directional path tracing [LW93, VG97], etc. Such methods are general and
robust. But it can take hours to generate artifact-free images.

The main source of inefficiency of above Monte Carlo algorithms is that
they reuse no (or just very little) information about the contributions of pre-
viously calculated light paths, essentially ignoring any coherence of light trans-
port in the scene. To speed up the global illumination calculation other al-
gorithms trade generality of provided solution for restrictions imposed on the
scene configuration and/or make use the coherence of light transfer in the
scene [WRC88, KGPB05, GBP07, HPB07]. Irradiance and radiance caching al-
gorithms [WRC88, KGPB05] are efficient methods for solving global illumination
in scenes with diffuse and low-gloss surfaces, respectively, using the observation
that indirect lighting changes slowly over surfaces. Another observation is that
lighting changes smoothly whenever the camera and/or objects in the scene move
slowly [GBP07, HPB07].

Mathematical foundation for light transport coherence was presented
in [DHS+05, MSRB07, PML+09]. These works how that light transport has
a high degree of coherence over directional, spatial, and temporal domains. As
suggested in these works, the use of light transfer coherence can play the key role
in further acceleration of global illumination algorithms. In this thesis we focus
on the very goal of speeding-up global illumination algorithms by exploiting the
coherence of light transfer in the scene.

1.2 Motivation
A huge amount of calculation must be performed to provide a high-quality image
with global illumination. To reduce the amount of calculation it is customary

3

Introduction

to simplify the problem in an application-specific manner. In this thesis we
develop three algorithms of different applications making use of light transfer
coherence for efficient calculation of GI: one for general computation of GI on
glossy surfaces, another for the acceleration of local principal component analysis
(LPCA) used for compression of large data matrices in precomputed radiance
transfer (PRT) [SKS02, SHHS03] and image databases of Bi-directional texture
function (BTF) [FH09], and the last one which is a work in progress extending
PRT for animation sequences. In the following, we shortly introduce these three
applications, before summarizing our contributions.

Efficient Algorithm for Global Illumination on Shiny Surfaces. As we
mentioned above, computing full global illumination in virtual scenes is very time-
consuming. Monte Carlo importance sampling [Coo86, LF97, LRR04], Metropolis
light transport [VG97] or photon mapping [Jen01] are examples of very general
techniques for solving GI. Irradiance caching [WRC88] delivers fast GI solution
in scenes with diffuse surfaces. Radiance caching [KGPB05] includes the support
for caching in the scenes with low-glossy surfaces. But effective algorithms for
computing GI on shiny surfaces are missing. We focus on generalizing caching
approaches to shiny surfaces. We propose a novel efficient algorithm that we call
spatial directional radiance caching (SDRC), for computing GI effects on these
surfaces. We use both spatial and angular coherence of light transport in the
scene to make our algorithm efficient.

Improving performance and accuracy of Local PCA. Precomputed ra-
diance transfer (PRT) [SKS02] and image databases of Bi-directional texture
function (BTF) [MMK03, FH09] are the main applications where the local prin-
cipal component analysis (LPCA) [KL97] is largely used. PRT refers to a group
of methods used for interactive relighting of a virtual scene with GI effects while
dynamically changing some parameters of the scene. The original PRT applica-
tion was used for image relighting of a scene lit by an environment map. In the
many follow-up papers [SHHS03, LSSS04, NRH03, FPJY07, HR10] the PRT has
been improved, lifting some restrictions on the scene configuration. The PRT
methods have been shown to be very popular for lighting design in cinematogra-
phy [KAMJ05, HPB06]. They have also been used in computer games because of
their ability to deliver GI effects at real-time frame rates. To achieve these goals,
PRT techniques precompute and compress light transfer in the scene expressed
as a large transfer matrix. Precomputation and compression of the light transfer
matrix, however, is very time-consuming and is the serious bottlenecks of PRT
methods. Huang and Ramamoorthi [HR10] address the slow precomputation
of light transfer matrix by exploiting spatial and angular coherence of the light

4

Summary of Contributions

transfer. Nevertheless they still use the slow LPCA for the light transfer matrix
compression. Our goal is to accelerate the LPCA by exploiting the coherence in
the compressed data.

Precomputed Radiance Transfer for Animation Sequences. Our last
application also deals with PRT. Instead of relighting in static scenes we focus
on relighting animation sequences with GI. Some existing works deal with re-
lighting for articulated characters [NSK+07, FPJY07] but these approaches do
not scale to the requirements needed for our application domain, the cinematic
lighting design: they mostly deal with simple characters and deliver less accurate
GI. On the other hand we aim at robust cinematic system for relighting in com-
plex scenes while providing a high-quality rendering of the animation sequence.
We believe that animation relighting would be extremely useful in computer cin-
ematography. A designer will be able to design lighting in any frame of the
animation sequence while having the possibility to play back the whole sequence
with the updated lighting. Technically we build on the idea of direct-to-indirect
light transfer [HPB06] but instead of precomputing light transfer for one frame
we precompute it for the entire animation sequence. We develop an efficient al-
gorithm to make the calculation efficient by leveraging directional, spatial, and
temporal coherence of light transport.

1.3 Summary of Contributions
The contributions of this thesis are efficient methods for realistic image synthesis
in three different applications. Our main contributions are the following:

Spatial Directional Radiance Caching (SDRC). We present a new ap-
proach for accelerated global illumination computation in scenes with glossy
surfaces. Our algorithm combines BRDF importance sampling with the sparse
illumination computation used in the (ir)radiance caching algorithm proposed
by [WRC88, KGPB05]. To make this approach feasible, we extend the idea of
lazy illumination evaluation used by these approaches—query the cache, perform
interpolation if possible, otherwise compute a new illumination value and store
it in the cache for later reuse—from the spatial to the directional domain. Using
importance sampling allows us to apply caching not only on low-gloss but also
on shiny materials with high-frequency BRDFs, for which the previous caching
algorithms break down.

Improving Performance and Accuracy of Local PCA (LPCA). The
LPCA [KL97] is one of the very popular and successful data compression tech-

5

Introduction

niques used for compression of large data sets, like light transfer matrices in
pre-computed radiance transfer [SKS02, SHHS03] or of Bi-directional texture
functions [FH09]. The main disadvantage of LPCA is the slow computation with
often somewhat inaccurate result, which is a bottleneck in practical applications.
We propose a new algorithm that significantly improves the efficiency and the
accuracy of the LPCA. To achieve the efficiency we take the advantage of the
information gathered in one stage of the LPCA and pass it to the next stage. To
improve the approximation accuracy, we propose a fast initialization algorithm
whose result is passed as an initial input to the LPCA. We show that our initial-
ization algorithm produces substantially more accurate data compression with a
higher compression ratio.

Precomputed Radiance Transfer for Animation Sequences. Several re-
lighting systems for lighting design in computer cinematography have been
proposed, mostly based on precomputed radiance transfer [KAMJ05, HPB06,
KTHS06, LZT+08]. They are restricted, however, for relighting of static scenes.
We have been working on extending these systems to support for relighting of an-
imated sequences where objects deformation and the camera path will be known
in advance. We use a large transfer tensor (3D array) to describe the light trans-
fer over multiple frames. We maximize the use of coherence contained in the light
transfer to make calculation of the light transfer tensor feasible. We show how
the local principal component analysis (LPCA) can be combined with non-linear
wavelet approximation [Mal08] to speed-up compression while preserving good
approximation accuracy.

1.4 Thesis Outline
The thesis is divided into five chapters. This chapter introduced the aim of
realistic image synthesis, presented the motivation for our objective—exploiting
coherence of light transport for accelerating image synthesis algorithms—and
summarized our contributions.

Our contributions are concerned with different applications. Instead of giving
a chapter for the background and the state-of-the-art, we decided to provide this
information separately within each chapter describing the specific application.
Chapter 2 presents spatial directional radiance caching, a novel algorithm for ac-
celerated global illumination computation in scenes with shiny surfaces, provides
some results of our implementation, and compares them to the results of previ-
ous methods. Chapter 3 describes local principal component analysis (LPCA)
as a popular technique used for the compression of radiance transfer matrices
in precomputed radiance transfer (PRT), proposes a novel efficient algorithm for

6

Thesis Outline

accelerating the LPCA, and also presents a fast algorithm initializing the LPCA.
Chapter 4 describes a work in progress focusing on the development of an inter-
active algorithm for cinematic relighting of animated sequences with predefined
camera motions. Chapter 5 concludes the thesis, giving some ideas for future
work.

7

2Spatial Directional Radiance Cache

Contents
2.1 Introduction . 9
2.2 Related Work . 11
2.3 Background: Radiance Caching . 12
2.4 Spatial Directional Radiance Caching 13

2.4.1 Motivation . 13
2.4.2 Overview . 14
2.4.3 New Record Computation . 14
2.4.4 Incoming Radiance Interpolation 15
2.4.5 Outgoing Radiance Computation 18
2.4.6 Cache Record Density Control 18

2.5 Results . 19
2.6 Discussion and Limitations . 25
2.7 Conclusion . 27

In this chapter we describe a new approach for accelerated global illumination
computation in scenes with glossy surfaces. We borrow the idea of lazy illumi-
nation evaluation used in the irradiance cache [WRC88] and extend it from the
spatial to directional domain. We verify our algorithm on several testing scenes
containing materials of a wide range of supported BRDF. The work described in
this chapter was published in [GK08, GKB09].

2.1 Introduction
Global illumination (GI) effects constitute an important aspect of generating
realistic images for applications spanning film production, video games, indus-
trial design or architecture. Many algorithms for simulating GI effects have been

9

Spatial Directional Radiance Cache

proposed, however, these methods are very time-consuming for general environ-
ments. Therefore, full global illumination solution is often restricted to a simpler
case, such as ambient occlusion or predominantly diffuse indirect illumination,
for which efficient algorithms are known [WRC88, WABG06, HPB07]. In this
paper, we focus on a more difficult case of indirect illumination on surfaces with
arbitrary material properties, coming from both diffuse and glossy objects. We
refer to those effects as directional indirect illumination.

Monte Carlo (MC) ray tracing algorithms are almost exclusively used for ren-
dering scenes with directional indirect effects. Unfortunately variance of MC
estimators gives rise to image noise that decreases only with the square-root of
the number of samples. Therefore, research in computer graphics has focused on
variance reduction techniques, of which the most widely accepted is importance
sampling [PH04, CAE08, CAM08]. Other acceleration techniques trade efficiency
for bias in the resulting solution. Some of these techniques calculate illumination
only at several locations in the scene exactly. The resulting image is then gener-
ated using a reconstruction function from these points. The pioneering work in
this area was the irradiance caching algorithm [WRC88], the extensions of which
include radiance caching on glossy surfaces with low-frequency BRDFs [KGPB05]
and in participating media [JDZJ08].

In this paper, we propose an algorithm that combines the sparse computa-
tion of indirect illumination used in radiance caching with the variance reduction
offered by BRDF importance sampling. The main idea is to extend the sparse
illumination evaluation from the spatial to the directional domain: The indirect
radiance at a point in a direction is evaluated by interpolating radiance samples
from neighboring directions and locations. Using this strategy we obtain an al-
gorithm that has the following advantages: (1) exploits spatial and directional
illumination coherence, (2) ensures a smooth integration of the view-dependent
BRDFs through interpolation in both these domains, (3) avoids conversion of the
scene BRDFs into a special-purpose representation, such as spherical harmon-
ics [KGPB05], thereby making the algorithm more flexible, (4) gains efficiency
by exploiting BRDF importance sampling.

The proposed algorithm computes the first bounce of indirect illumination
on glossy surfaces. Multiple bounces can be added e.g. by the use of photon
mapping [Jen01]. The algorithm can be used as a part of a full solution to
global illumination computation. Diffuse inter-reflections could be handled using
irradiance caching, highly specular reflections by classical MC sampling methods,
while the reflections on glossy surfaces could be computed using our algorithm.

The remainder of this chapter is organized as follows. Section 2.2 summarizes
the prior work, Section 2.3 reviews the radiance caching algorithm, Section 2.4

10

Related Work

describes our algorithm while Section 2.5 provides its evaluation. The algorithm
is discussed in Section 2.6 and Section 2.7 concludes the chapter.

2.2 Related Work

Our algorithm is a variant of illumination caching techniques. The seminal work
in this area is irradiance caching [WRC88], that accelerates global illumination
computation on diffuse surfaces. Indirect illumination is computed by interpo-
lating previous irradiance values if these are available. If none of the previously
cached irradiance values can be used, a new one is computed by sampling the
hemisphere and cached. Ward and Heckbert [WH92] propose to use the transla-
tion and rotation gradient to improve the quality of interpolation. Tabellion and
Lamorlette [TL04] use irradiance caching combined with an approximate lighting
model in cinematic lighting. Brouillat et al. [BGB08] propose to use a photon
map [Jen01] for fast construction of a coarse approximation of irradiance cache.
Arikan et al. [AFO05] speed up irradiance caching by decomposing illumination
into near and distant terms. The above mentioned methods work for only diffuse
illumination while radiance caching proposed by Křivánek et al. [KGPB05] is de-
signed for the use on glossy surfaces with low-frequency BRDFs. The goal of our
work is to modify radiance caching in such a way that caching can be applied for
higher-frequency BRDFs.

Other extensions of the (ir)radiance caching algorithms include the support for
caching in dynamic environments [GBP07]. Instead of building (ir)radiance cache
for each frame from scratch, they reuse and update existing records for several
frames. Gautron et al. [GKBP05] also propose speeding up irradiance caching
using the graphic accelerator by reformulating the algorithm to better fit the
GPU architecture. Jarosz et al. [JDZJ08] extend the radiance caching algorithm
to cache lighting in participating media. Later they reformulated the gradient
computation to accounts for changes of occlusion [JZJ08]. These extensions show
the potential of the caching methods for faithfully rendering global illumination
effects.

The idea of reusing partial results of illumination computation is not limited
to the caching approaches. For example, photon mapping proposed by Jensen
[Jen01] and instant radiosity proposed by Keller [Kel97] reuse the same set of
paths initiated from light sources for all image pixels. Approaches for reusing
camera-paths and bidirectional paths have also been proposed [BSH02, HDMS03,
CSH08]. Other techniques [PBSP08, VP08, LW95] reuse the information gathered
during illumination sampling to build an importance function to be used at other
locations.

11

Spatial Directional Radiance Cache

2.3 Background: Radiance Caching
Radiance caching [KGPB05] is based on the observation that indirect illumination
tends to change slowly on glossy surfaces. Therefore, it can be computed only
at some points, stored in a cache, and later reused for fast interpolation. This
approach can significantly speed up the computation.

Whenever indirect illumination needs to be computed at a point p, the cache
is queried for nearby records (i.e. the cached illumination values) available for
interpolation, formally defined by the set:

S(p) =
{
i | ws

i (p) > 1
a

}
, (2.1)

where a is a user defined maximum interpolation error. The greater the value of
a, the more allowance for interpolation. The spatial weight ws

i (p) determines the
contribution of the i-th record to illumination at a given point p with normal n.
It is given by:

ws
i (p) =

(
‖ p− pi ‖

Ri

+
√

1− n · ni

)−1

, (2.2)

where Ri is the harmonic mean distance to the objects visible from the i-th
record’s location pi, and ni is the normal at pi.

If the set S(p) is empty, i.e. no records in the vicinity of p have been found,
it is necessary to compute a new record. The full hemisphere above p is sampled
and the directional incoming radiance is approximated by a vector of spherical
harmonics coefficients Λi. A SH approximation of ∂Λi

∂x
and ∂Λi

∂y
, the derivatives

of Λi with respect to translation along the local x and y axes, is also computed.
These vectors are stored as a new record in the radiance cache.

If S(p) is not empty, the total outgoing radiance is computed by spatial
interpolation of the contributions Lout

i (p, ωout) due to the records in S(p):

Lout(p, ωout) =
∑

i∈S(p) w
s
i (p) ·Lout

i (p, ωout)∑
i∈S(p) w

s
i (p)

The contribution of the i-th radiance record is given by:

Lout
i (p, ωout) = Ri

(
Λi + dx

∂Λi

∂x
+ dy

∂Λi

∂y

)
· C(p, ωout),

where Ri is a rotation matrix used to align coordinate frames at pi and p, dx

and dy is the displacement from pi to p in the local coordinate frame of record i.
Finally, C(p, ωout) is the vector of SH coefficient representing the BRDF lobe at
p for the outgoing direction ωout.

12

Spatial Directional Radiance Caching

p2

p

p1

Figure 2.1 – Lazy evaluation scheme in the directional domain. Our goal is
to compute the outgoing radiance at point p. Suppose that there are two cache
records at points p1 and p2 close to p, that store the incoming radiance samples
with high density around the BRDF peaks. The incoming radiance at p may
be obtained by merging the information in the records at p1 and p2. If, after
the merging, some parts of the hemisphere still do not have high enough sample
density, additional rays are traced.

2.4 Spatial Directional Radiance Caching

2.4.1 Motivation
The major limitation of radiance caching consists in the uniform sampling of full
hemisphere used to estimate incoming radiance. With uniform sampling, the rays
traced outside the lobe of a glossy BRDF produce wasted effort. Nonetheless, the
use of spherical harmonics in radiance caching necessitates a uniform sampling
pattern.

To avoid unnecessary computation for shiny glossy surfaces, our algorithm
employs BRDF importance sampling when a new cache record is created. Doing
so, however, requires to keep track of the sample density on the hemisphere of the
cached records, so that they can be reused at other locations, where the BRDF
lobe may be slightly different. We approach this issue by extending the radi-
ance caching’s lazy evaluation scheme from the spatial to the directional domain,
adding directional samples on the fly as needed. Figure 2.1 illustrates our lazy
evaluation procedure. Using this approach, we are able to handle shiny materi-
als for which the original radiance caching would not be efficient. As an added
benefit, there is no need to convert the BRDFs into the SH basis.

13

Spatial Directional Radiance Cache

Since we use non-uniform sampling to create cache records, we need a repre-
sentation for the incoming radiance that offers directional localization. This is
why spherical harmonics are not an option. Wavelets do offer localization but
the rotation Ri is a limiting factor. Although it can be made relatively fast by
pre-computing the rotation matrices [WNLH06], the memory requirements for a
reasonable directional resolution (256 × 256 or more) render this approach im-
practical. Furthermore, adding new radiance samples to existing records is not
simple. Our choice is, therefore, to retain the individual radiance samples and
organize them in a kd-tree for fast access.

2.4.2 Overview
Our algorithm is based on the following caching scheme. To compute outgoing
radiance at a point p, we search for nearby records available for interpolation
in the spatial cache. If no records are available we create a new cache record as
follows. We generate random directions using BRDF importance sampling, com-
pute incoming radiance for each direction by ray tracing, project these directions
onto a 2D domain, D, and build a kd-tree over the radiance samples. We call
this kd-tree the L-tree. We store the entire L-tree in the spatial cache as a single
record. Given the L-tree, we then continue the computation as though the spatial
cache query succeeded.

If there are one or more L-trees available close to p, we interpolate their
contributions. We generate random directions using BRDF importance sampling
as before. But instead of computing the incoming radiance for these directions
by ray tracing, we try to find close radiance samples stored in the L-trees for each
direction and possibly reuse it. If no suitable radiance sample is available for a
direction, we shoot a ray to obtain a new radiance sample and update an existing
L-tree. Finally, the outgoing radiance is computed as a weighted average of the
radiance samples from the individual L-trees. The pseudo-code for our spatial
directional radiance caching is given in Algorithm 1.

2.4.3 New Record Computation
To create a new spatial record, we first generate N random directions using
BRDF importance sampling and compute incoming radiance for each direction
by ray tracing. We then map these samples from the sphere to the domain D
using paraboloid mapping [HS98] which has low distortion and fast analytical
transform. We construct a kd-tree over the radiance samples mapped to D. To
keep the memory requirements low, we quantize sample position inside D to 2
bytes (resolution of 256 × 256) and use Ward’s RGBE format to represent the

14

Spatial Directional Radiance Caching

Algorithm 1 Spatial directional radiance caching
S ← LookUpSpatial(p, n) ;
if (S is empty) then

[ωin
j]Nj=1 ← SampleBRDF(p, ωout, N);

foreach ωin
j do compute Lin(p, ωin

j) using ray tracing;
L-tree ← build kd-tree over [ωin

j]Nj=1;
Store L-tree in spatial cache;
S ← {L-tree};

end
[ωin

j]Mj=1 ← SampleBRDF(p, ωout, M);
foreach ωin

j do
foreach i in S do

Ti ← LookUpDirectional(ωin
j);

end
if (∪Ti is empty) then

Choose L-treeu ∈ S for updating;
if (no suitable L-tree exists) continue;
Lin(p, ωin

j)← TraceRay(p, ωin
j);

Insert Lin(p, ωin
j) into L-treeu;

end
L̃in(p, ωin

j) ← InterpolateRadiance([Ti]i∈S);
Update L̃out(p, ωout);

end

incoming radiance. Together with 2 bytes for bookkeeping information, each L-
tree node takes 8 bytes. The record computation is completed by inserting the
whole L-tree into the spatial cache organized as an octree [WRC88].

The number of rays N used for creating a new record is derived from the num-
ber of directions M used to compute the outgoing radiance during interpolation.
If N is too low (N < 8M), the query to the contributing L-trees often fails and
triggers many L-tree updates, negatively affecting performance. The number of
L-tree updates stops decreasing for N > 16M . A good compromise that works
well in our scenes is to use N ≈ 12M .

2.4.4 Incoming Radiance Interpolation
To compute outgoing radiance at point p we start by querying the spatial cache.
The definition of the set S(p) of records used for interpolation and their spatial

15

Spatial Directional Radiance Cache

Found

Not found

L-tree(pi)

p

pi

Figure 2.2 – Directional interpolation. We generateM directions ωin
j by BRDF

sampling at p. The directions are mapped to points inD. For each point ωin
j (blue

dots) we find directionally close radiance samples (green dots) in the contributing
L-trees. These radiance samples are used for interpolation. The directions for
which no radiance samples are found yield ray tracing and L-tree update.

weights are borrowed from the original radiance caching algorithm, see Equations
(2.1) and (2.2). If the set S(p) is empty, we compute a new record as described
above and insert it into S(p).

In the next step we generateM random directions ωin
j using BRDF importance

sampling at p. We map these directions to D and for each direction ωin
j we

collect nearby radiance samples stored in the contributing records’ L-trees. These
samples are used for the directional interpolation.

Given a direction ωin
j and an L-tree i, we use a range query to collect nearby

radiance samples stored in the L-tree as shown in Figure 2.2. The query radius
rd(ωin

j) is given by:

rd(ωin
j) = min

rmax,
1

2π
1

M
√
p(ωin

j)

 ,
where p(ωin

j) is the probability density of the BRDF sampling in direction ωin
j . The

radius is designed to adapt both to the number of rays M and to the reflectance
properties at p. In particular, the radius will be smaller when the pdf value is
high, i.e. around the peak of the BRDF lobe. We use a ceiling of rmax = 0.15 to
avoid errors when the pdf value is very small. The collected radiance samples are
formally defined by the set Ti(ωin

j):

Ti(ωin
j) =

{
k | wd

ik(ωin
j) > 0

}
,

The upper bar denotes the paraboloid mapping from the sphere to D, i.e. ω is ω
mapped to D. The directional weight wd

ik(ωin
j) of the k-th radiance sample in the

16

Spatial Directional Radiance Caching

i-th L-tree with respect to ωin
j is defined as:

wd
ik(ωin

j) = max
0, 1−

‖ωin
ik − ωin

j ‖
2

rd(ωin
j)2

 ,

where ωin
ik is the coordinate of the k-th radiance sample in the i-th L-tree.

All the collected radiance samples in sets Ti(ωin
j) from all the contributing

L-trees participate in the directional interpolation. Suppose we have two con-
tributing L-trees. The first one is spatially close to p but the radiance sample
found in it lies almost by the edge of the directional search radius. The second
one has exactly the opposite property, i.e. it is spatially far from p but the radi-
ance sample found is incident with the direction sample. For proper evaluation
of both these cases it is necessary to find a relationship that correlates between
the spatial and the directional weights. We use the following weighted sum:

L̃in(p, ωin
j) =

∑
i∈S

∑
k∈Ti

ws
i (p)wd

ik(ωin
j)Lin

ik∑
i∈S

∑
k∈Ti

ws
i (p)wd

ik(ωin
j)

where Lin
ik is the k-th radiance sample stored in the i-th L-tree and L̃in(p, ωin

j) is
the interpolated incoming radiance.

If, however, no radiance sample close to ωin
j was found in any L-tree, a new

radiance sample is computed using ray tracing. A question arises how to choose
the ray origin and update the contributing L-trees. The first option is to place the
ray origin at the interpolation location p. However, such a sample cannot be used
to update the contributing L-trees since that could potentially lead to its reuse at
a too distant spatial location. Instead, one could create a new L-tree at p with all
the added radiance samples. However, this approach generates many new L-trees
with only a few radiance samples and the interpolation becomes inefficient.

The second option, which we use in our algorithm, is to place the ray origin
at the location of one of the L-trees. The L-tree is selected randomly from
among the contributing L-trees for which ωin

j is above their tangent plane. The
computed radiance sample is then inserted into the selected L-tree. A simple
implementation of the insertions turned out to be the most efficient one: We
keep a buffer of added radiance samples; when it is full, the tree is rebuilt. If
no L-tree can be used for update, which occurs very rarely, we reject the sample
ωin. We have opted for the second technique since it distributes the additional
radiance samples well among the existing L-trees.

17

Spatial Directional Radiance Cache

2.4.5 Outgoing Radiance Computation
The interpolated incoming radiances L̃in(p, ωin

j) calculated for each ωin
j are used to

compute the outgoing radiance L̃out(p, ωout). The value of L̃out(p, ωout) at a point
p in the direction ωout is computed using the following Monte Carlo estimator:

L̃out(p, ωout) = 1
M

M∑
j=1

L̃in(p, ωin
j)fr(p, ωin

j , ω
out) cos θin

j

p(ωin
j) (2.3)

where fr(p, ωin
j , ω

out) is the BRDF at p and θin
j is the angle between the surface

normal at p and ωin
j .

2.4.6 Cache Record Density Control
For faithful reconstruction of indirect illumination, the distribution of the records
should be proportional to its change rate. In the original irradiance cache algo-
rithm the rate of change is estimated based on the information about surrounding
geometry obtained during hemisphere sampling [WRC88]. Estimating the rate
of change of indirect illumination for glossy surfaces is more difficult, though,
since it should take into account the reflectance properties and the viewing direc-
tion. The formula is difficult to derive even for the simplest reflectance models.
Instead, our interpolation criterion is based on the original formulas for diffuse
surfaces with the addition of the following heuristics.

While creating a new cache record, we estimate the derivatives of outgoing
radiance with translation, ~∇xL̃

out(p, ωout) and ~∇yL̃
out(p, ωout). The derivatives

are used for clamping the harmonic mean distance Ri of the new record, similar
to regular irradiance caching [KG09]:

if 4i > 1/Ri, then Ri := 1/4i,

where

4i =

√
‖ ~∇xL̃out(p, ωout) ‖2 + ‖ ~∇yL̃out(p, ωout) ‖2

L̃out(p, ωout)
.

This heuristic automatically decreases the radius of the cache record where indi-
rect illumination changes quickly. Although the method is formally not correct,
it gives plausible results in practice as shown in Figure 2.3.

Finite differences are used to estimate the derivatives of outgoing radiance.
For each incoming radiance sample, we displace the ray origin along local x and y
coordinate axes, update the ray direction, and re-evaluate the BRDF. We use the
updated BRDF values to compute the approximation of the outgoing radiance

18

Results

(a) No heuristic (b) With heuristic (c) Reference image

(d) No heuristic zoom out (1.08k recs) (e) With heuristic zoom out (1.43 recs)

Figure 2.3 – Cache record density control. The top images, from left to right,
show (a) rendering of a simple scene using our algorithm without detection of high
changes of indirect illumination (no heuristic), (b) rendering with the detection
of high changes (with heuristic) and (c) a reference image. The images in the
bottom row show the distribution of cache records with and without the gradient-
based record density heuristic. Note the higher density of cache records in places
with large changes of indirect illumination.

at the displaced positions. For the sake of simplicity we assume the incoming
radiance does not change with the displacement (which may not be true if the
contributing surface itself is glossy [JZJ08]).

2.5 Results
We compare our algorithm (spatial directional radiance caching, SDRC) with the
original radiance caching algorithm as described in [KBPv06] (spherical harmon-
ics radiance caching, SHRC) and Monte Carlo importance sampling (MC). The
algorithms were implemented as plug-ins in the PBRT ray tracer [PH04]. All
images were rendered on a Mac-Book Pro with Intel Core 2 Duo 2.40GHz (using
one core). No optimizations using the GPU were used.

Images generated by the compared algorithms exhibit artifacts of very dif-
ferent kinds. Images generated using MC contain high-frequency noise. On the
other hand, SHRC suffers from low-frequency error which can be seen as splotches

19

Spatial Directional Radiance Cache

in the image. The SDRC exhibits both types of errors in lesser amplitude. As
a result of the different nature of the errors, it is difficult to compare rendering
times needed to obtain images of the same visual quality. Instead, we compare
the image quality obtained by the algorithms for equal-time computation. For
each image we show RMS error, although this error measure may not be quite
meaningful in terms of visual quality.

Images were rendered with the global illumination effects up to the fourth
bounce indirect lighting. The first bounce was computed using the compared
algorithms while photon mapping was used for the higher recursion levels. Irra-
diance cache was used to compute diffuse indirect lighting. We used the following
default settings for the algorithms. In SHRC, we used spherical harmonics or-
der of 10. The maximum allowed caching error was set to a = 0.25 and the
number of rays for hemisphere sampling is set to ensure the same computation
time. In SDRC, the default maximum allowed error was a = 0.22. Both the
SHRC and SDRC used the neighbor clamping heuristic to improve spatial record
distribution [KBPv06].

The SHRC and SDRC algorithms render the image in two passes. The first
pass, rendered with one camera ray per pixel, populates the spatial cache. The
second pass then uses four camera rays per pixel to generate the image. The
approximation error a is increased 1.3 times in the second pass to improve the
smoothness of interpolated illumination.

Kettle scene. Figure 2.4 shows renderings of a glossy kettle in a diffuse box.
The kettle material is represented using anisotropic Ward’s BRDF [Wal05] with
the roughness of αx = 0.18 and αy = 0.09. The box walls are covered with a
diffuse texture. The scene is lit by an area light source.

Uniform hemisphere sampling is not efficient for glossy surfaces with a narrow
BRDF lobe. A lot of computation time can be saved using importance sampling
as we do in the SDRC. The saved time can be used to set a smaller value for
the allowed interpolation error for the SDRC, a = 0.17. Total number of records
generated by SHRC is 2530; for SDRC, it is 4670. Rendering using the SDRC
shows 1.58 times smaller RMS error than the SHRC and 1.26 times smaller than
MC. See table 2.1 for details.

Figure 2.5 shows the RMS error produced by the SHRC and the SDRC as a
function of the surface finish. For the sake of simplicity we use Phong’s BRDF
model instead of anisotropic one for the kettle material. We can see that the
SHRC works well for a low BRDF lobe exponent. Importance sampling has no
advantage compared with sampling the whole hemisphere. However, the bigger
the exponent, the bigger the RMS error of SHRC. Spherical harmonics are not

20

Results

(a) MC (b) SHRC

(c) SDRC (d) REF

Figure 2.4 – Equal-time comparison of the rendering quality achieved using
the MC, SHRC and SDRC algorithms. The images were rendered at a resolution
of 800 × 800 in approximately the same time, 398 seconds. Indirect lighting
computation on glossy surfaces up to the 4th bounce took approximately 171
seconds out of the total time. We can see that SDRC is able to faithfully simulate
glossy BRDF on the kettle while the SHRC provides a blurrier image. The image
rendered using MC exhibits a high noise level. Note that the walls of the Cornell
Box are diffuse only. The irradiance cache was used to compute the indirect
illumination term on them.

21

Spatial Directional Radiance Cache

8 16 24 32

S
H

R
C

S
D

R
C

R
E

F

Specular exponent [-]

(a) Visual example of the the RMS dependency for the lobe exponent

 4

 5

 6

 7

 8

 9

 10

 11

 5 10 15 20 25 30 35

R
M

S
[%

]

specular exponent [-]

SHRC
SDRC

(b) RMS dependency on the Phong’s lobe exponent

Figure 2.5 – Renderings for different surface finish. The image in 2.5b shows the
RMS dependency on the Phong’s lobe exponent. The SHRC is suitable for the
indirect term computation up to the lobe exponent of 16. For higher exponents, it
blurs out the reflection thereby altering the material perception. Our algorithm,
on the other hand, provides a sharper image for higher lobe exponent. The
image in 2.5a shows a visual example of the RMS error dependency for the lobe
exponent. The details show a glossy reflection of the checkered walls on the
handle of the teapot lid in Figure 2.4.

22

Results

Scene Method #Sec rays/#Records#Rays/#AdditionalMemory RMSTimeTotal
pixel record rays error time

Teapot MC 62.6 - - - - 1.70 168 385
kettle SHRC 47.7 2.53k 4608 - 9.1M 2.13 174 391

SDRC 12.8 4.67k 512 101k 19.9M 1.35 171 388
Chess MC 90.7 - - - - 6.56 366 469
scene SHRC 54.0 16.0k 2244 - 57.6M 10.25 369 472

SDRC 22.2 26.1k 512 306k 109.5M 5.50 360 463
Flamin- MC 41.6 - - - - 3.23 416 625

gos SHRC 26.5 14.7k 1986 - 52.9M 4.98 407 616
SDRC 11.0 22.2k 512 638k 96.2M 2.73 410 619

Table 2.1 – Rendering settings and statistics for the example scenes. The
columns list the number of secondary rays traced per pixel, the number of spatial
records generated, the number of rays traced to create a new cache record, the
number of rays traced to update the L-trees and the memory requirements. The
rightmost section of the table shows the RMS error, the time spent on the indirect
term computation on glossy surfaces and the total rendering time. The difference
between ‘Time’ and ‘Total time’ consists of the photon map construction, primary
ray casting, direct lighting computation and the irradiance caching on diffuse
surfaces.

able to approximate a narrow BRDF lobe accurately. In this case, it is preferable
to use the SDRC for the exponent higher than 16.

Chess scene. Figure 2.6 shows the renderings of the chess scene. White chess
pieces are represented using Ward’s BRDF model with the roughness of αx = 0.10
and αy = 0.16. Black ones are represented using Phong’s BRDF model with the
lobe exponent of 30. The chessboard is represented using the same model with
the lobe exponent of 14. The scene is lit by 5 spot lights and by an environment
map of the sky.

The chess scene presents a challenge for the SHRC because of a lot of glossy
and curved surfaces. On such surfaces, cache records cannot be reused at many
pixels. In addition, the interpolation of the cache record require the costly ro-
tation. See table 2.1 for the rendering settings and the number of the records
generated by the caching algorithms. Note that the rendering using the SDRC
shows 1.86 times smaller the RMS error than SHRC and 1.19 times smaller than
MC.

Flamingos. Figure 2.7 shows renderings of a scene with glossy flamingos. The
flamingos are represented using the Ward’s BRDF model with the roughness in
the range of 0.08 to 0.20. Other surfaces are purely diffuse. Table 2.2 shows
the scalability of the rendering time to the number of directional rays N used.

23

Spatial Directional Radiance Cache

(MC) (SHRC)

(SDRC) (REF)

(MC) (SHRC) (SDRC) (REF)

Figure 2.6 – Renderings of the chess scene. Images were rendered at a resolu-
tion of 1024 × 768 in approximately the same time, 468 seconds. The indirect
term computation on glossy surfaces took 365 seconds. Note the sharper glossy
reflection of black pieces on the white chess piece in the details. Chess pieces
courtesy of Toshiya Hachisuka.

24

Discussion and Limitations

The rendering time spent for indirect lighting computation on glossy surfaces is
directly proportional to N .

N 32 64 128 256 512
SDRC Time 43 75 150 273 410

RMS 5.48 4.85 3.88 3.19 2.81
MC Time 50 77 156 266 416

RMS 8.71 7.32 5.00 3.76 3.23
Table 2.2 – Rendering time scalability. The rows list the number of directional
samples used, rendering time spent for indirect lighting computation on glossy
surfaces and the RMS error for both the SDRC and MC algorithms.

2.6 Discussion and Limitations
View dependency. Unlike in the original radiance caching, the cache records
generated by our algorithm contain useful information only within some parts of
the hemisphere—they are view-dependent. Hence, it may seem problematic to
reuse them for rendering new views of the scene. However, since new radiance
samples are added to the L-trees on the fly as needed, our algorithm behaves in
a view-independent manner overall.

Interpolation. The idea of sparse illumination computation and interpolation
is based on the assumption that indirect illumination changes slowly on surfaces.
However, as the shininess of the reflections goes up, this assumption is less valid.
For sharp reflections, Monte Carlo importance sampling performs better than our
algorithm.

Gradients. In irradiance and radiance caching, the use of rotation and trans-
lation gradients of the incoming illumination significantly improves the interpo-
lation quality. The rotation gradient is not necessary in our algorithm due to the
way we access individual radiance samples. We have implemented the transla-
tion gradient according to [KGPB05]. However, the gradient-based interpolation
becomes fairly involved. In our scenes, the computational overhead did not pay
for the image quality improvement, which is why we decided against the use of
translation gradients. Instead, we generate the image in two passes. Increasing
the allowed interpolation error a in the second pass generates a smoothed image
even without the use of gradients.

25

Spatial Directional Radiance Cache

(d)

(e)

(a) (b)

(c)

(f)

SDRC Monte Carlo

Figure 2.7 – Rendering time scalability. The images were rendered at a resolu-
tion of 1024× 768. Images on the left shows rendering quality of the SDRC for
the value of N set to N = 64, 128 and 256. Images on the right were rendered
using the MC in approximately the same time for the indirect term computation
on glossy surfaces, as the top images, 76, 153 and 269 seconds, respectively.

26

Conclusion

Supported materials. The original radiance caching algorithm is difficult to
use on spatially varying glossy surfaces since the scene BRDFs have to be pro-
jected onto the spherical harmonics basis. Our algorithm does not require any
special BRDF representation, although many sudden changes in material prop-
erties may reduce its efficiency due to frequent L-tree updates. Furthermore,
spatial directional caching relies on the availability of an efficient and effective
sampling procedure for the BRDFs—it cannot be used directly with measured
BRDF data without first fitting a model that can be sampled.

2.7 Conclusion
This chapter describes a new algorithm for indirect lighting computation on glossy
surfaces. The algorithm adopts the lazy illumination evaluation scheme used in
the irradiance and radiance caching algorithms and extends it from the spatial to
the directional domain. Explicit storage of directional incoming radiance samples
allows us to exploit BRDF importance sampling for noise reduction and still retain
the overall view-independent nature of the algorithm.

Our new caching algorithm outperforms the original radiance caching for
scenes with shiny surfaces, where radiance caching produces blurring of reflec-
tions or banding artifacts. Compared to Monte Carlo importance sampling, our
algorithm produces less noisy images in the same time. The main disadvantages of
our algorithm is a higher memory demand and potentially difficult parallelization
due to the continual updates of cache records.

In future work, we want to devise a more accurate interpolation criterion for
glossy surfaces. Not only should such a criterion adapt to the rate of change of the
indirect illumination but also to the surface reflectance properties. In addition we
would like to investigate the correlation of illumination coherence in the spatial
and directional domains and address flickering in animation rendering.

27

3Improving Performance and
Accuracy of Local PCA

Contents
3.1 Introduction . 30
3.2 Related Work . 31
3.3 Preliminaries . 32

3.3.1 Problem definition . 32
3.3.2 Local Principal Component Analysis (LPCA) 32
3.3.3 SortMeans: Acceleration of k-means Clustering 33

3.4 SortClusters LPCA: Acceleration of General LPCA 34
3.4.1 Distance Between Affine Subspaces and The Generalized Tri-

angle Inequality . 35
3.4.2 The SortClusters LPCA Algorithm 36
3.4.3 Efficient Evaluation of Inter-Subspace Distance 37

3.5 Cluster Initialization . 37
3.5.1 SortMeans++: Accelerated k-means++ 38

3.6 Results . 39
3.6.1 Compression of PRT data . 39
3.6.2 BTF compression . 45

3.7 Conclusion . 45

In this chapter we focus on improving the efficiency and accuracy of local
principal component analysis (LPCA) used for dimensionality reduction and data
compression of large data sets encountered in computer graphics. We tested our
approach for compression of radiance transfer matrices in precomputed radiance
transfer (PRT) and of bi-directional texture function (BTF) showing a speed-up
of 5 to 20 on the first data sets and lower on the second. The work described in
this chapter was published in [GKB11].

29

Improving Performance and Accuracy of Local PCA

3.1 Introduction

Precomputation-based and data-driven approaches have emerged in computer
graphics as important tools for improving rendering performance and increas-
ing image fidelity [Ram09, FH09]. Common to these techniques is the need to
compress large data sets consisting of high-dimensional data points. One of the
successful data compression approaches has been the so called local principal com-
ponent analysis (LPCA), also known as clustered PCA (CPCA) [KL97]. LPCA
was shown to be effective for compression of transfer matrices in pre-computed
radiance transfer [SKS02, SHHS03, HR10] or of Bidirectional texture function
(BTF) data sets [FH09, MMK03]. However, slow performance of the data com-
pression (often several hours for a single data set) is a serious bottleneck in the
data processing pipeline. For instance, though PRT may be a useful tool for
scene relighting, the long pre-computation times (including the data compres-
sion) may hinder its practical applicability. Quite surprisingly, performance of
data compression has been largely unaddressed in previous computer graphics
research. Huang and Ramamoorthi [HR10] do accelerate the transfer matrix pre-
computation, however, they still rely on the slow LPCA algorithm to compress
the resulting data set.

In this paper we improve both performance and data approximation accuracy
of the LPCA algorithm. Being a variant of k-means clustering, the bottleneck of
LPCA consists in the repeated classification of data points to the nearest clusters.
Due to the high data dimensionality, simple approaches such as spatial data in-
dexes [PM99, KMN+02] are ineffective at accelerating this process. Nonetheless,
we found that a significant speed-up can be achieved by taking advantage of the
information gathered as the algorithm progresses to eliminate some point-cluster
distance calculations that provably cannot change current point-cluster assign-
ment. Though this simple and effective idea (known as SortMeans) has been
previously used to accelerate k-means clustering [Phi02, Elk03], to our knowl-
edge our work is the first to investigate its use in computer graphics. Our main
contribution, however, consists in extending the SortMeans algorithm [Phi02]
from the simple k-means problem (where each cluster is represented by one mean
point) to the LPCA problem (where a cluster is represented by an affine sub-
space). In addition, we improve the approximation accuracy of LPCA by seeding
the clusters using the k-means++ algorithm [AV07]. To minimize the perfor-
mance impact of this advanced initialization, we apply a variant of SortMeans to
cut some of the unnecessary distance calculations. We present extensive measure-
ments of performance and approximation accuracy of the presented algorithms
for four radiance transfer matrices (similar to [HR10]) and three BTF data sets

30

Related Work

from the University of Bonn database. The speed-up of classification is 5 to 20
for the coherent transfer matrices and 1.2 to 1.6 for the complex BTF data. We
show that the k-means++ algorithm substantially improves the approximation
accuracy for the investigated data sets. Our results could be useful both in and
outside of computer graphics.

3.2 Related Work
LPCA in computer graphics. Local principal component analysis (LPCA)
was devised by Kambhatla and Leen [KL97] in the machine learning community.
It was introduced to computer graphics (under the name Clustered PCA) by
Sloan et al. [SHHS03] who used it for the compression of low-frequency light
transfer matrices in precomputed radiance transfer [SKS02]. LPCA was later used
for all-frequency light transfer on glossy surfaces [LSSS04, MSRB07, XJF+08,
HR10]. Mahajan et al. [MSRB07] adapt the clusters to optimize a rendering
performance metric, and use a hierarchical splitting algorithm instead of k-means-
based clustering. Huang and Ramamoorthi [HR10] achieve a substantial speed-up
of LPCA compression by reducing the size of the input data set. Our work, on
the other hand, focuses on the acceleration of the LPCA algorithm itself and
is complementary to their work. LPCA is also one of the most widely used
algorithms for BTF data compression because it provides both high compression
ratio and low approximation error [FH09, MMK03].

Acceleration of k-means and related methods. Despite a wide range
of LPCA applications, we are not aware of any work on improving the algo-
rithm’s performance. Most of the previous research has focused on the accel-
eration of the simpler k-means clustering. The idea is to reduce the number
of distance calculations when classifying data points to their nearest cluster.
Some works organize the data points in a spatial data structure such as kd-
tree [PM99, KMN+02, Moo00]. With the exception of [Moo00] these approaches
are effective only for low-dimensional data points. Other works are based on us-
ing the triangle inequality to avoid unnecessary point-cluster distance calculation.
Works of Hodgson [Hod88] and Phillips [Phi02] propose the use of an upper bound
on the distance between a data point and a cluster. Our algorithm is based on
their ideas, specifically on Phillips’ SortMeans algorithm. We generalize the al-
gorithm to the more complex LPCA problem. More recent works [Elk03, Ham10]
add the use of a lower bound on the point-cluster distance to make k-means clus-
tering even faster. The computation of the lower bound is, however, not trivial
in the case of LPCA, and we do not use it.

31

Improving Performance and Accuracy of Local PCA

Initialization of k-means. The k-means algorithm is prone to getting stuck in
local minima of the objective function thereby producing suboptimal clustering
results. Random restarts [KMN+02] partially alleviate the problem, however at
a high computational cost. More advanced initialization algorithms attempt to
seed the centroids close to the target clustering. The farthest-first heuristic [HS85]
tends to place the initial centroids on the outer hull of the space subtended by the
data points. The state-of-the-art k-means++ algorithm [AV07] achieves better
results by randomizing this process. In spite of using a more advanced heuristic for
choosing the first two centroids, the variant of k-means++ described by Ostrovsky
et al. [ORSS06] did not significantly improve the results in our experiments.

3.3 Preliminaries

3.3.1 Problem definition
We start by formally defining the data approximation problem that we address
in this work. Let the input data set X ⊂ V d be a subset of a d-dimensional linear
space V d with the dot product 〈· , · 〉, and let k and l be integers. The goal
is to choose k affine subspaces a1, . . . , ak ⊂ V d of dimension up to l, l < d such
that the following objective function is minimized:

φ =
∑
x∈X

k
min
j=1

d(x, aj).

Here d(x, a) is the distance of data point x ∈ X from affine subspace a. The
assignment of x to their nearest affine subspaces induces a clustering (partition)
of the data set X .

The distance d(x, a) is defined as [KL97]:

d(x, a) = ‖(x− µ(a))− xs‖, (3.1)

where µ(a) is the origin of a, dir(a) is its basis, and xs is the orthogonal projection
of (x− µ(a)) onto a:

xs =
l∑

i=1
〈x− µ(a), diri(a)〉 · diri(a). (3.2)

3.3.2 Local Principal Component Analysis (LPCA)
Finding the optimal solution of the above problem is NP-hard, even just for two
clusters of zero dimension [DFK+04]. To find an approximate solution, Kamb-
hatla and Leen [KL97] proposed the local principal component analysis (LPCA)

32

Preliminaries

algorithm as a modification of the classical k-means algorithm (which solves the
problem defined above in affine subspaces with dimension of l = 0). The LPCA
algorithm proceeds as follows. In the first step, initial centroids for the clusters
are selected. Each data point x ∈ X is assigned to the nearest (in terms of Eu-
clidean distance) cluster. In the second step, affine subspaces are found within
each cluster and are used as a low-dimensional approximation of the data points
assigned to it. Both steps are repeated several times. Then the dimension of the
affine subspaces is increased and the whole previous computation is performed
again until the desired dimension of the subspaces is reached [SHHS03].

Thanks to its simplicity, LPCA is one of the most widely used algorithms
in computer graphics for approximation of high-dimensional signals. How-
ever, LPCA is computationally demanding when used for classification of high-
dimensional points into a high number of clusters. The inefficiency comes from
the fact that no information is passed from one stage to another: the point clas-
sification computes distances to all PCA subspaces for each data point. Our
goal is to avoid unnecessary distance calculations by exploiting the information
computed in the previous iteration. Our accelerated algorithm produces exactly
the same clustering as the original LPCA algorithm, but more quickly.

3.3.3 SortMeans: Acceleration of k-means Clustering
Our algorithm is based on the SortMeans algorithm proposed by Phillips [Phi02]
for accelerating the k-means problem, which is an instance of the data approxima-
tion problem defined above, where the dimension of the affine subspaces is l = 0.
Phillips uses the triangular inequality to avoid unnecessary point-cluster distance
computations in the classification stage. For an arbitrary point x ∈ X and two
clusters ca and cb represented by their centroids µ(ca) and µ(cb), respectively, the
triangle inequality says

d(µ(ca), µ(cb)) ≤ d(x, µ(ca)) + d(x, µ(cb))

or, equivalently

d(x, µ(cb)) ≥ d(µ(ca), µ(cb))− d(x, µ(ca)),

where d(· , ·) is the Euclidean distance between two data points in V d.
Therefore if one knows that d(µ(ca), µ(cb)) ≥ 2d(x, µ(ca)), then d(x, µ(cb)) ≥
d(x, µ(ca)), e.g. the distance of x to cb cannot be lower than the one to ca and
the computation of d(x, µ(cb)) can be safely avoided, see Figure 3.1.

We briefly summarize the SortMeans algorithm [Phi02] built around this idea.
At the beginning of each iteration SortMeans precomputes two k × k matrices
(k is the number of clusters), a distance matrix D and a permutation matrix

33

Improving Performance and Accuracy of Local PCA

Figure 3.1 – Triangle inequality. A decision if x is closer to a cluster ca or cb

have to be made and let d(x, µ(ca)) and d(µ(ca)), µ(cb)) are known distances.
The triangle inequality says if d(µ(ca), µ(cb)) ≥ 2d(x, µ(ca)) then d(x, µ(cb)) ≥
d(x, µ(ca)), eliminating the need to calculate distance d(x, µ(cb)).

M. Elements of D are defined as D(i, j) = d(µ(ci), µ(cj)). Rows of M represent
permutations on the set of cluster indices such that µ(cM(i,j)) is the j-th nearest
centroid from µ(ci).

For each data point x ∈ X , which was assigned to ci in the previous itera-
tion, the algorithm iterates over all other clusters, keeping the minimal distance
found so far, denoted dmin (which is initially set to d(x, µ(ci))). Clusters are
iteratively processed in increasing order of their distances from µ(ci) using M.
If D(i,M(i, j)) ≥ d(x, µ(ci)) + dmin the nearest cluster has been already found
and the iteration is stopped. Otherwise the actual distance d(x, µ(cM(i,j))) is
computed. If d(x, µ(cM(i,j))) < dmin, cM(i,j) becomes the new nearest cluster and
dmin = d(x, µ(cM(i,j))) is the new best minimal distance. The computation above
is then repeated for the next nearest cluster cM(i,j+1) (if there is any, i.e. if j < k).
The process is illustrated in Figure 3.2.

The SortMeans algorithm was used for accelerating k-means clustering. In the
next section we use it as a basic building block for developing our new SortClusters
LPCA algorithm for accelerating the more general LPCA problem.

3.4 SortClusters LPCA: Acceleration of General
LPCA

In this section we develop our SortClusters LPCA algorithm as a generalization
of the SortMeans algorithm [Phi02] described above. Since clusters in LPCA are
defined by affine subspaces rather than just centroids, we need a definition of

34

SortClusters LPCA: Acceleration of General LPCA

Figure 3.2 – Example of point-cluster classification. Let x ∈ X be a data
point that was assigned to cluster ci in the previous iteration, and let µ(cM(i,1))
and µ(cM(i,2)) be the 1st and 2nd nearest clusters from ci. dmin is initialized to
d(x, µ(ci)). Inequality d(µ(ci), µ(cM(i,1)) ≥ d(x, µ(ci)) + dmin is checked. Since it
does not hold, the true distance d(x, µ(cM(i,1))) is computed. The distance is less
than dmin so cM(i,1) becomes the new nearest cluster and dmin ← d(x, µ(cM(i,1))).
In the second iteration d(µ(ci), µ(cM(i,2)) ≥ d(x, µ(ci)) + dmin is checked. The
inequality now holds and the classification ends.

distance between two subspaces. The subspace distance is then used to develop
a generalized triangle inequality for a data point and two affine subspaces. Such
a triangle inequality is in turn used in our SortClusters LPCA algorithm to avoid
unnecessary point-subspace distance calculations.

3.4.1 Distance Between Affine Subspaces and The General-
ized Triangle Inequality

Let aa, ab be arbitrary non-empty affine subspaces in V d. The distance between
aa and ab is defined as [DK92]:

d(aa, ab) = inf {‖p− q‖; p ∈ aa,q ∈ ab} . (3.3)

Intuitively, the distance between two affine subspaces is equal to the length of
the shortest line that is orthogonal to both subspaces.

Lemma: The following generalized triangle inequality holds for an arbitrary
point x ∈ V d and arbitrary non-empty affine subspaces aa, ab ⊂ V d:

d(aa, ab) ≤ d(x, aa) + d(x, ab). (3.4)

Proof. For an arbitrary point x ∈ V d using (3.3) we have

d(aa, ab) = inf {‖p− q‖; p ∈ aa,q ∈ ab}
≤ inf {‖p− x‖+ ‖x− q‖; p ∈ aa,q ∈ ab}
= inf {‖p− x‖; p ∈ aa}+ inf {‖x− q‖; q ∈ ab}
= d(x, aa) + d(x, ab).

35

Improving Performance and Accuracy of Local PCA

3.4.2 The SortClusters LPCA Algorithm

We use the generalized triangle inequality (3.4) to reduce the number of point-
subspace distance calculations performed during the classification stage of LPCA
in a similar way as in the SortMeans algorithm. The structure of our SortClusters
LPCA (SC-LPCA) algorithm is similar to the SortMeans algorithm. However,
instead of computing distances with respect to the clusters’ centroids, we compute
distances with respect to affine subspaces. Following the SortMeans algorithm
we construct the distance and permutation matrices, D and M, at the beginning
of the classification stage. Elements of D are set to distances between pairs of
affine subspaces. After that, we loop over all data points and for each we find
the nearest affine subspace. The pseudo-code for searching the nearest affine
subspace for a given point is given in Algorithm 2. The algorithm takes a data
point x ∈ X , which was assigned to the i-th affine subspace in the previous
iteration, and returns the index of the current nearest affine subspace.

Algorithm 2 Point-subspace classification
input : x . . . data point to be classified

i . . . index of the affine subspace to which x was assigned to in
the previous iteration

output: index of the new nearest affine subspace

dmin ← d(x, ai)
imin ← i

for j ← 2 to k do
if (D(i,M(i, j)) ≥ d(x, ai) + dmin) then

break
end
dist← d(x, aM(i,j))
if (dist < dmin) then

dmin ← dist
imin ←M(i, j)

end
end
return imin

36

Cluster Initialization

3.4.3 Efficient Evaluation of Inter-Subspace Distance
Determination of the distance between two subspaces defined by (3.3) can be
converted to the computation of the distance between a point and a linear sub-
space using the following Lemma [DK92]: Let aa, ab ⊂ V d be non-empty affine
subspaces. Then for arbitrary points p ∈ aa and q ∈ ab the distance between aa

and ab is equal to

d(aa, ab) = d(p− q, dir(aa) ∪ dir(ab)). (3.5)

The above Lemma gives us a recipe to compute the distance between non-
empty affine subspaces aa, ab ∈ V d. We use Equation (3.1) to solve Equa-
tion (3.5). We put p− q = µ(aa)− µ(ab) as x and use the affine subspace with
origin of 0 and basis of dir(aa)∪dir(ab) as a. To evaluate Equation (3.1) we need
to compute xs. It requires finding an orthonormal basis dir(aa)∪dir(ab) followed
by the projection of µ(aa) − µ(ab) onto this basis using (3.2). Orthonormaliza-
tion is, however, a computationally demanding task. Instead, we can compute xs

directly without explicit construction of the orthonormal basis as shown below.
Please, see [DK92] for more details.

Letm and n be the dimension of dir(aa) and dir(ab), respectively. To compute
xs we need to find a solution z = (z1, . . . , zm, zm+1, . . . , zm+n)T ∈ Rm+n of the
following linear system and set xs = K · z:

G(K) · z = KT · (µ(aa)− µ(ab)),

where K = [dir1(aa), . . . , dirm(aa), dir1(ab), . . . , dirn(ab)], and G(K) is the Gram
matrix of all inner products of K. We solve the linear system through the
Cholesky decomposition of G(K), since G(K) is positive semi-definite. Finally,
we compute the distance between aa and ab as d(aa, ab) = ‖µ(ab)− µ(aa)− xs‖.

3.5 Cluster Initialization
The very first step of the LPCA (and k-means) algorithm is to choose k initial
cluster centroids among the data points. We found that the initialization has a
significant impact both on the approximation accuracy and—quite surprisingly—
on the performance of our SortClusters LPCA algorithm. We have investigated
random initialization with uniform probability [SHHS03], random initialization
based on distance sums inpired by [HPB07], and the state-of-the-art k-means++
algorithm [AV07].

37

Improving Performance and Accuracy of Local PCA

Distance sums-based initialization. For each data point xi, we compute the
sum of squared distances to other data points, αi = ∑

x∈X ‖x − xi‖2, and use it
as a probability distribution for picking the k initial cluster centroids.

k-means++. The first centroid is chosen from among the data points at ran-
dom with uniform probability. Distance to all other data points is then used as a
probability distribution for choosing the second centroid. When a new centroid
is chosen, all remaining data points are classified to their nearest centroid. The
updated distance to the nearest centroid for each data point is then used as a
probability distribution for choosing another centroid, and so on until we have k
initial centroids.

The k-means++ initialization produces by far the most accurate data approx-
imation, however the computation cost can be high (on a par with one iteration of
k-means). Below, we describe our new SortMeans++ algorithm which uses the
ideas on which the SortMeans algorithm is built to accelerate the k-means++
initialization.

3.5.1 SortMeans++: Accelerated k-means++
The structure of our SortMeans++ algorithm is similar to k-means++ but we
eliminate some of the point-cluster distance calculations when a new cluster is
created. For each data point, the algorithm maintains the distance to its nearest
cluster in point N and the index of its nearest cluster in point I. Similar to
k-means++ we start by choosing the first centroid xnew ∈ X at random with
uniform probability. Point N is initialized with distances to this centroid, i.e.
N(i) ← ‖xnew − xi‖, and point I is initialized with all ones (index of the only
existing cluster). The following steps are then repeated until the desired number
of clusters is created.

1. Pick a new centroid xnew ∈ X at random with probability proportional to
N, and create a new cluster cnew with µ(cnew) = xnew.

2. Compute the distance from the new cluster to all existing clusters, dnew(i)←
‖µ(cnew)− µ(ci))‖.

3. Loop over all data points xi ∈ X and check if the new point cnew is closer
than their currently assigned cluster. If dnew(I(i)) ≥ 2N(i), then the as-
signment of xi cannot change and we can safely skip the calculation of the
point-cluster distance ‖µ(cnew)− xi‖. Otherwise, we calculate the distance
and if it is smaller than N(i), we update N(i) and I(i). After that, we
proceed to the next data point.

38

Results

3.6 Results

We compare our algorithm (SortCluster LPCA) with the original LPCA [KL97]
for compression of PRT and BTF datasets. Both algorithms were implemented in
C++ using Intel MKL library for matrix computations. All measurements were
performed on a PC with Intel Xeon W3540, 2.93 GHz and 14GB RAM. We use
all 4 CPUs exploiting the parallelism of MKL routines yielding the CPU load of
about 90% (as reported by Windows 7 Task Manager).

3.6.1 Compression of PRT data

We tested our algorithms on PRT data matrix precomputed for three different
scenes shown in Figure 3.3. According to [NRH03] we use a raw lighting basis of
cubemap pixel lights when computing the transfer matrix. The cubemap resolu-
tion is 6× 32× 32. We account for self-shadowing effects only and we eliminate
visibility alias by applying a 4×4 super-sampling to estimate the light transfer for
each cubemap pixel. We used k = 256 clusters for the matrix compression, and
up to l = 24 basis vectors for each cluster. According to Sloan et al. [SHHS03]
we perform several iterations of LPCA before we increase the dimension of PCA
clusters. More specifically, we use the following iterative scheme (0:15), (2:10),
(4:7), (8:5), (12:4), (16:2), (24:1), where the first number is the maximum dimen-
sion of PCA subspaces and the second one is the number of iterations done for the
same dimension. The plots in this section report the time for point classification
only and do not include the time for computing the PCA approximation of the
data points within clusters.

Scalability with the PCA dimension. Breakdown of the average compu-
tation times for one iteration of the classification using our SortClusters LPCA
(SC-LPCA) and original LPCA as a function of the dimension of affine subspaces
is shown in Figures 3.4. The average number of distances computed for both al-
gorithms is shown in Figure 3.5. We can see that our SC-LPCA scales well with
the dimension of affine subspaces. We achieve more than 20× speed up for the
Horse scene while the speed-up for the more complex models (Dragon, Buddha,
Disney) is about 6. The reason for higher speed-up for the Horse scene is pre-
sumably the higher degree of light transport coherence in this relatively simple
scene. Note that the output of our SC-LPCA is exactly the same as provided by
the original LPCA algorithm.

39

Improving Performance and Accuracy of Local PCA

(a) Horse (b) Dragon

(c) Happy Buddha (d) Walt Disney

(e) Happy: 16× Error Image (f) Disney: 16× Error Image

Figure 3.3 – Scenes used in our experiments. We tested our SortClusters LPCA
(SC-LPCA) for compression of transfer matrices for these scenes. The models
in 3.3a, 3.3b, and 3.3c are made of glossy materials represented using Phong’s
BRDF with exponent from 10 to 30. The model in 3.3d is represented using
Ward’s BRDF with the roughness of 0.1. Compared to LPCA, we achieve a 5×
to 20× speed-up using SC-LPCA, while providing identical output. For the sake
of completeness, Figure 3.3e and 3.3f show a 16× amplified difference between
images rendered using the original and compressed transfer matrix.

40

Results

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25

t
i
m
e

[
s
]

subspace dimension [#]

LPCA
SC-LPCA

SC-LPCA overhead

(a) Horse

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25

t
i
m
e

[
s
]

subspace dimension [#]

LPCA
SC-LPCA

SC-LPCA overhead

(b) Dragon

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25

t
i
m
e

[
s
]

subspace dimension [#]

LPCA
SC-LPCA

SC-LPCA overhead

(c) Happy Buddha

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25

t
i
m
e

[
s
]

subspace dimension [#]

LPCA
SC-LPCA

SC-LPCA overhead

(d) Walt Disney Hall

Figure 3.4 – Average computation time per one iteration of our SC-LPCA
and original LPCA. Note that the curves for our SC-LPCA contain both the
overhead and the time required for the classification itself. The overhead of the
SC-LPCA consist of the computation of distance and permutation matrices D
and M, respectively, and is very small even for a high number of PCA basis
vectors.

0.0e0

2.0e6

4.0e6

6.0e6

8.0e6

1.0e7

1.2e7

1.4e7

 0 5 10 15 20 25

d
i
s
t
a
n
c
e
s

[
#
]

subspace dimension [#]

LPCA Horse
SC-L.Horse

LPCA Dragon
SC-L.Dragon

LPCA Buddha
SC-L.Buddha

LPCA Disney
SC-L.Disney

Figure 3.5 – Average number of distances evaluated by the compared algorithms
per one iteration of the classification.

41

Improving Performance and Accuracy of Local PCA

Scalability with the number of clusters. Breakdown of the classification
times in dependence on the total number of clusters is shown in Figure 3.6. We
use the Dragon scene for this comparison. The computation time of our SC-
LPCA stays roughly constant with the number of clusters, meaning that our
SC-LPCA is well suited for applications where clustering to a high number of
clusters is required. The computation time of the classical LPCA, on the other
hand, increases linearly with the number of clusters. Interestingly, the average
time for an SC-LPCA iteration for subspace dimension of 24 decreases with the
number of clusters, in spite of the fact that the SC-LPCA overhead (computation
of the distance matrix D) increases quadratically.

 0

 200

 400

 600

 800

 1000

 50 100 150 200 250 300 350 400 450 500 550

t
i
m
e

[
s
]

number of clusters [#]

LPCA 0
SC-LPCA 0

LPCA 4
SC-LPCA 4

LPCA 12
SC-LPCA 12

LPCA 24
SC-LPCA 24

Figure 3.6 – Scalability with the number of clusters for the Dragon scene.
The plots show the average time spent on one iteration of the classification for
subspaces’ dimensions of 0, 4, 12, and 24.

Scalability with the Phong’s lobe exponent. Unlike the original LPCA,
the performance of our SC-LPCA does depend on the data set itself. Figure 3.7
illustrates the scalability of SC-LPCA with different Phong’s lobe exponent. We
can see only a small decrease in performance for a high Phong’s lobe exponent,
meaning that our algorithms is applicable for a wide range of materials.

Latency and accuracy of initialization algorithms. Our previous results
only focused on speeding-up LPCA without improving its accuracy. Here we
investigate different strategies for initial centroid seeding and their impact on
accuracy and performance. The results for the Dragon scene are summarized in
Figure 3.8. We perform 50 iterations of the original SortMeans algorithm [Phi02]
after clusters’ initialization and plot averages from 5 different runs. The naïve

42

Results

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25

t
i
m
e

[
s
]

subspace dimension [#]

original LPCA
SC-LPCA Ns=1

SC-LPCA Ns=20
SC-LPCA Ns=100

(a) Ns = 20 (b) 16 x Error (c) Ns = 100 (d) 16 x Error

Figure 3.7 – Scalability with the Phong’s lobe exponent Ns for the Dragon
scene. The top image shows the average time spent on one iteration of the clas-
sification. The bottom images show visual examples of the scene with dragon
made of glossy material represented using Phong’s BRDF with the lobe expo-
nent of Ns = 20 and Ns = 100 in Figures 3.7a and 3.7c, respectively. Images in
Figures 3.7b and 3.7d shows the corresponding 16× difference images between
renderings of the scenes using original and LPCA-compressed light transfer ma-
trices.

algorithm that select centroids purely at random [SHHS03] is prone to getting
stuck in a local minimum. The k-means++ algorithm [AV07] provides a much
lower approximation error at the cost of high initialization latency. While main-
taining the approximation quality, our SortMeans++ algorithm decreases the
start-up latency of the original k-means++ 6× to a value that is even less than
the latency for purely random initialization (because SortMeans++ initialization
produces a valid point-cluster classification).

In addition to producing a better clustering, a good initial seeding also im-
proves the performance of our SC-LPCA in subsequent iterations. The total
computation time spent by SC-LPCA over all iterations using our SortMeans++
for the initial seeding was 1700s with resulting error φ = 0.174. On the other

43

Improving Performance and Accuracy of Local PCA

 9

 10

 11

 12

 13

 14

 15

 16

 0 20 40 60 80 100

Φ

[
-
]

time [s]

random
sums-based

kmeans++
our SortMeans++

Figure 3.8 – Latency and accuracy of initialization algorithms. Note that our
algorithm SortMeans++ maintains the quality of approximation provided by
the original k-means++ while substantially decreasing the start-up latency of
the point-cluster assignment.

hand, when we initialize the centroids randomly, the total computation time is
1780s and the error increases to φ = 0.224.

Overall statistics. Table 3.1 lists the statistics about the pre-computation of
the PRT matrices and the overall computation time required for their compres-
sion. Note that the most computationally demanding part is the classification of
high dimensional data points to affine subspaces, which is the focus of our work.
Evaluating PCA approximations within clusters is only a minor part of the total
compression time for our data sets.

vertices PRT Classification [s] PCA φ
scene [#] [s] LPCA SC-LPCA speedup [s] [-]
Horse 67.6k 22.5 13 700 674 20.3 146 0.029
Dragon 57.5k 25.5 10 900 1700 6.38 155 0.174
Buddha 85.2k 31.6 16 700 3 020 5.55 170 0.316
Disney 106.3k 46.5 20 900 4 080 5.12 170 0.394

Table 3.1 – Summary results and timings for the example scenes. The columns
list the total number of vertices in the scene, transfer matrix computation time
(PRT) and the total classification time using original LPCA and our SC-LPCA
algorithm. The rightmost two columns shows the time spent on the PCA approx-
imation evaluation and the value of the objective function φ. Transfer matrices
were computed on a Geforce GTX 580 GPU, while the Classification and PCA
computation we performed on 4 CPU cores.

44

Conclusion

3.6.2 BTF compression
To investigate the efficiency of our algorithm on more complex data sets, we ran
our algorithm on three measured BTFs (shown in Figure 3.9) from the BTF data
provided by University of Bonn, http://btf.cs.uni-bonn.de. For each material the
total 81× 81 images were taken from different directions of the camera and light
source. The images have a resolution of 256× 256 pixels.

Figure 3.9 – BTF datasets used for testing our algorithm: proposte, wallpaper,
and wool BTFs.

We run the LPCA in the apparent BRDF arrangement [FH09] (i.e. one data
point corresponds to an image of the apparent BRDF). For this arrangement the
LPCA provides an approximation of higher quality than for standard arrange-
ment, while maintaining the same compression ratio [MMK03]. The total number
of clusters and the maximum dimension of the affine subspaces was set to 32 and
8, respectively, in accordance with Müller [MMK03].

Breakdown of the classification times using the SC-LPCA and original LPCA
for all tested materials is shown in Figure 3.10. For the proposte BTF the speed-
up of the SC-LPCA is about 1.6. For the wallpaper and wool materials, which
exhibit different reflectance characteristics in all sampled dimensions, the speed
up of the SC-LPCA is about 1.2.

3.7 Conclusion
We present an accelerated and more accurate local PCA (LPCA) algorithm for
compact approximation of large matrices. The improved performance is due to
the significant reduction of point-cluster distance calculations in the classification
stage of the algorithm. The accuracy is achieved through improved seeding of the
initial cluster centroids. Our measurements on computer graphics data sets show
a speed-up of 5 to 20 for radiance transfer matrices, though the speed-up is lower

45

Improving Performance and Accuracy of Local PCA

 0

 20

 40

 60

 80

 100

 120

 140

 0 1 2 3 4 5 6 7 8

t
i
m
e

[
s
]

subspace dimension [#]

LPCA
SC-LPCA (proposte)

SC-LPCA (wallpaper)
SC-LPCA (wool)

Figure 3.10 – Computation time for different BTFs. Computation time for the
original LPCA algorithm is independent of the BTF material. On the other hand
our algorithm performs better for simple materials with a regular spatial/angular
structure.

for complex and high-dimensional BTF data sets. Devising new algorithms for
accurate and efficient compression of these more complex data set is an exciting
avenue for future work. In the shorter term, our fast LPCA could be combined
with a GPU implementation of Huang and Ramamoorthi’s algorithm [HR10] to
obtain a near-interactive pre-computation and compression of PRT data sets. We
want to investigate the efficiency of the proposed approach on other computer
graphics data sets, such as local light transport [HPB06], and to achieve further
speed-up by performing the clustering in wavelet domain.

46

4Relighting of Animation Sequences

Contents
4.1 Introduction . 47
4.2 Related Work . 49
4.3 Overview of Our Contribution . 52
4.4 Tensor Exploration . 53

4.4.1 Definition of the Light Transfer Tensor 53
4.4.2 Exploring the Structure of the Light Transfer Tensor 55
4.4.3 Computation of the Light Transfer in View Samples 57

4.5 Wavelet-LPCA . 59
4.5.1 Classification to Nearest Affine Subspaces 60
4.5.2 Update of Affine Subspaces . 62
4.5.3 Computation of the Sparse Points 66

4.6 Rendering . 67
4.7 Conclusion . 69

In this chapter we describe a work in progress focusing on the development of
an interactive system for cinematic relighting of animation sequences with indirect
lighting. We build on the idea of direct-to-indirect light transfer used in existing
relighting systems [HPB06, KTHS06, LZT+08] expressing light propagation in
a scene. We aim to precompute the direct-to-indirect light transfer not just in
a static scene but also for an animated dynamic scene, where the movement of
objects in the scene is known in advance. The chapter describes our relighting
framework. However, as it has not been implemented yet we do not provide any
results. This is left as a subject for future work.

4.1 Introduction
One of the important problems in computer cinematography is lighting design in
a scene. Lighting design usually proceeds as follows: a lighting designer places

47

Relighting of Animation Sequences

light sources in the scene, sets their parameters and renders the scene; then he
adjusts the parameters of the light sources and renders the scene again, . . . and
so on until he obtains the desired lighting. Screenshots of a scene as illuminated
by different lights is in Figure 4.1.

Relighting algorithms must meet several requirements. First, the relighting
of a scene must be done interactively as an immediate response to the designer’s
change of light parameters. Second, the relit image must contain lighting effects
that the final quality rendering of the scene will contain. The relighting algorithms
that produce images that do not closely match the final result are useless for
cinematic lighting design. Third, the relighting algorithms must be able to handle
scenes with high geometric complexity, containing various kinds of reflectance
functions, as well as flexible light source models including distant and local lights.

Relighting algorithms usually work in two phases: an offline, precomputa-
tion part and a real-time relighting phase. In the first phase visibility and par-
tial shading in a scene are usually precomputed. The precomputed data are
then used for fast rendering in run-time. An overview of relighting systems fo-
cusing on direct lighting with shadows can be found in [PVL+05]. Recently
several methods have been proposed to handle also indirect lighting on-the-fly
[HPB06, KTHS06, LZT+08] providing different trade-off between rendering ac-
curacy, scene complexity, and view independency. However, to our knowledge
there is no relighting system for animation sequences. Such a system would be
extremely useful for lighting design in computer cinematography.

(a) Spot-light source (b) Spot and area-light sources

Figure 4.1 – Renderings of a scene with a hair ball relit using different configura-
tions of light sources. Images were rendered by our implementation of cinematic
relighting system [HPB06].

Our aim is to lift the restriction of existing relighting systems to static scenes,
and extend them to animated scenes, where the movement of objects is known
in advance. Using modern graphics hardware we can calculate direct lighting

48

Related Work

including shadows in real-time. But much more operations must be performed to
calculate accurate indirect lighting. In our work we focus on a relighting system
delivering high-quality indirect lighting in the scene on-the-fly. To be able to
achieve this goal, we use the idea of direct-to-indirect (DTI) light transfer as a
linear mapping that transforms direct lighting in a scene to indirect lighting in
this scene. If the scene is static, the DTI light transfer is constant over time.
But we want to handle animated scenes with predefined object deformation and
camera movement. In the case of dynamic scene the light transfer is not constant
over time any more. To describe it over time we propose a tensor formulation of
the problem: instead of pre-computing a light transfer matrix expressing the DTI
light transfer in the static scene, we pre-compute a light transfer tensor expressing
the light transfer in the animation. But it makes the precomputation even harder
in memory space and computation time. A naïve pre-computation of the light
transfer tensor is not feasible in practice. Fortunately, there is a high degree
of coherence contained in the light transfer tensor. Changes in the scene often
occur in localized parts in the dynamic scene while other parts remain mostly
static, making DTI light transfer highly coherent. We exploit the coherence in
our efficient algorithm for pre-computation and compression of the light transfer
tensor.

4.2 Related Work

Precomputed Radiance Transfer (PRT). PRT refers to a group of meth-
ods that precompute light transfer in a scene, using it for interactive rendering
of the scene with global illumination effects while allowing some changes in the
scene. Many works are devoted to relighting of static scenes lit by an environ-
ment map [SKS02, SHHS03, LSSS04, NRH03, NRH04, HR10]. Common to these
approaches is that they precompute the light transfer from the environment map
in all the vertices in the scene and compress it subsequently. Ng et al. [NRH03]
precompute the light transfer from an all-frequency environment map allowing ei-
ther geometry or image relighting. In the first case the view point can arbitrarily
change, assuming diffuse surfaces. In the second case the view point must remain
static, allowing glossy surfaces. Liu et al. [LSSS04] and Wang et al. [WTL04]
lift the restriction allowing both arbitrary view changes and glossy surfaces. In-
stead of baking the bi-directional reflectance distribution function (BRDF) into
the light transfer, they extract the view-dependent component of the BRDF. To
solve the same problem Ng et al. [NRH04] propose a triple wavelet product in-
tegral. But evaluation of the integral is still costly and cannot be performed in
real-time.

49

Relighting of Animation Sequences

The above methods deal with interactive relighting producing high-quality
renderings. But the computation time needed for evaluating the light transfer
accounting for self-occlusion as well as inter-reflection effects is time-consuming.
Huang et al. [HR10] propose to speed up the precomputation through adaptive
and sparse sampling of light transfer. They sample the light transfer densely in
the directional domain (that corresponds to cube-map pixels) in so called dense
vertices in the scene. Then they reconstruct the light transfer in other sparse
vertices from the previously computed dense vertices. Our method builds on their
idea of adaptive sampling of the light transfer, generalizing it to adaptive sampling
of the transfer in all directional, spatial, and temporal domains simultaneously.

Local principal component analysis (LPCA) or non-linear wavelet approxi-
mation are commonly used to compress the precomputed light transfer. Some
works [SHHS03, LSSS04, HR10] use the LPCA (under the name clustered PCA
or CPCA) to exploit the spatial coherence of light transfer across vertices. On the
other hand other works [NRH03, NRH04] compress light transfer in each vertex
of the scene independently. In our algorithm, we combine both approaches in
order to obtain a fast and efficient algorithm for compression of large datasets.

Other extension of PRT methods deal with relighting of articulated characters
lit by an environment map [NSK+07, FPJY07]. As an input these methods take
a large set of light transfer matrices precomputed for many different poses of an
articulated character. Nowrouzezahrai et al. [NSK+07] use the precomputed light
transfer matrices to find a linear mapping from the pose space to the space cover-
ing precomputed light transfer matrices for this character. Feng et al. [FPJY07]
compress the precomputed light transfer matrices using LPCA. Then in run-time
they find several nearby light transfer matrices close to the given pose and use
them for fast interpolation. Precomputation of light transfer matrices for many
different poses of the character and also running these algorithms on them, how-
ever, requires a huge amount of computation time. Moreover final rendering of
the character is of lower accuracy due to strong compression. In contrast, we
focus on high-quality rendering of complex dynamic scenes.

PRT for the support of localized light sources. The major limitation of
the aforementioned methods is the restriction to an environment map. Many
environment maps have to be sampled in many locations in a scene to be able
to accurately simulate global illumination. But doing so prohibits interactive
relighting. Anen et al. [AKDS04] propose a simple solution to support lighting
from “mid-distant” lights. In addition to evaluating an environment map in some
location x in the scene they also compute the gradients of the environment map.
Then in run-time they extrapolate current environment map in the vicinity of
x using the gradients of the environment map. But this technique does not

50

Related Work

fully address local lighting, assuming that the visibility in the neighborhood of x
remains constant.

A different solution for relighting of a scene under dynamically changing local
lights has been proposed by Kristensen et al. [KAMJ05]. First, they distribute
omni-directional light sources in the scene. Then they precompute the light trans-
fer from these lights to mesh vertices, and finally they compress the light transfer
using the LPCA. In run-time they find a small subset of omni-directional light
sources that lie close to the user-defined local light, and use them to approximate
the user-defined local light. Then they apply the precomputed light transfer ob-
taining indirect lighting on the mesh vertices and add it to direct lighting. The
main limitations of the method are the restriction to omni-directional local light
sources, and low accuracy because of high compression. Another disadvantage is
that the method probably would not scale to complex scenes, since it works on
the mesh vertices.

Hašan et al. [HPB06] lift the disadvantages of Kristensen et al.’s work but with
the limitation of fixed view point. Instead of precomputing the light transfer from
a set of omni-directional lights, they precompute light transfer from a large set
of so called gather samples to another set of view samples. They distribute the
gather samples in the whole scene while placing the view samples in positions
directly visible from the camera. In real-time they perform the following steps:
compute direct lighting on the gather samples, transform direct lighting on the
gather samples to indirect lighting on the view samples using pre-computed DTI
light transfer matrix, and add the resulting indirect lighting to the direct lighting
on the view samples. Their relighting algorithm delivers high-quality renderings
even in very complex scenes. We build on their relighting system and generalize
it to the more complex problem of animation relighting.

Hierarchical approaches. Another group of techniques for interactive relight-
ing of a scene as viewed from an arbitrary camera position and lit by local lights
are based on the finite element method [KTHS06, LZT+08]. These techniques
usually define basis functions over scene surfaces and use them to express light
propagation in the scene. To speed up calculation of the light propagation, a
hierarchy on the basis functions is built. Kontkanen et al. [KTHS06] define a 4D
wavelet basis. Since they use mesh quads as the support for the wavelet basis,
their approach is limited to simple scenes that are composed exclusively from
large quads. To lift this restriction Lehtinen et al. [LZT+08] use a set of samples
carefully distributed in the scene as a support for their basis functions. However,
to produce a high-quality rendering a huge number of basis functions covering
the whole scene must be defined. Having such a large number of basis functions,
however, makes the computation too slow for interactive relighting. In contrast

51

Relighting of Animation Sequences

to these methods, we focus on delivering high-quality rendering though at the
price of knowing the object and camera position at each frame of the animation
sequence.

Goal. The major limitation of the cinematic relighting system proposed by
Hašan et al. [HPB06] is the restriction to a static scene as observed from a fixed
view point. Lighting design in an animation sequence with dynamic scene is not
ideal with such a system: The lighting designer must set lighting design just in one
frame; then he must switch to another frame, check if the lighting is correct and
tweak it alternatively. These steps must be performed repeatedly often checking
the lighting design in one frame several times until the desired lighting in the
whole animation sequence is obtained. Such a procedure, however, precludes
rapid lighting of animated sequences. Our goal is to develop an interactive system
to better support lighting design in animations by allowing to play back the relit
animation sequence.

4.3 Overview of Our Contribution
We propose an algorithm for cinematic relighting in animated sequences. To
make our relighting system useful for lighting design in computer cinematography
we must deliver high-quality rendering of the animation sequence with indirect
lighting. But high-quality indirect lighting is time-consuming and cannot be
rendered in real-time even on the latest graphic hardware. To achieve this goal,
our relighting system is split into two parts: an off-line part for pre-computing the
direct-to-indirect (DTI) light transfer tensor, and a run-time part for high-quality
rendering of the animation sequence with indirect lighting.

Run-time phase. The run-time part of our relighting system uses the pre-
computed DTI light transfer to interactively render global illumination in the
predefined animation sequence. The run-time part can be summarized into the
following steps, that are described in more detail in Section 4.6.

1. Calculate direct lighting at frame t on a set of points (gather samples)
distributed uniformly in the scene.

2. Use the precomputed light transfer tensor to transform the direct lighting on
gather samples to indirect lighting at points (view samples) visible through
camera at frame t.

3. Calculate direct lighting on the view samples and add it to indirect lighting,
obtaining final rendering of the scene at frame t.

52

Tensor Exploration

4. Shift to the next frame, i.e. t← t+ 1, and repeat all steps until the end of
the animation sequence is reached.

Pre-computation phase. In the off-line part we pre-compute the light transfer
tensor. Since the tensor is huge, containing several Tera (i.e. 1012) elements, a
problem arises: how to make its pre-computation feasible in terms of memory
space and computation time. But as we mentioned above the light transfer tensor
contains a high degree of coherence that can be exploited to make the evaluation
practical. We use the following strategy to evaluate the light transfer tensor
in a compressed form while keeping the memory requirements tractable. See
Figure 4.2 for a conceptual overview of our off-line algorithm.

1. Explore the structure of the light transfer tensor; elements of the light
transfer tensor in which the light transfer is likely to change rapidly are
sampled more densely than other elements.

2. Run a modified version of the local principal component analysis (LPCA)
to find linear subspaces that closely approximate light transfer vectors of
the parts of the tensor explored so far.

3. Reconstruct light transfer in other unexplored parts of the light transfer
tensor and approximate them in the previously computed linear subspaces.

Pre-computation of the light transfer tensor is an essential part of our relight-
ing system. In Section 4.4 we formally define the light transfer tensor and show
how we explore its raw structure. In Section 4.5 we present a rapid modified
LPCA called Wavelet LPCA. Section 4.5.3 gives more details about the recon-
struction of the light transfer tensor in unexplored parts.

4.4 Tensor Exploration

4.4.1 Definition of the Light Transfer Tensor
We aim to compute indirect lighting for an animation sequence allowing for dy-
namic scenes. To achieve this goal we pre-compute DTI light transfer over the
animation sequence. We use two sets of samples to express the DTI light transfer
over the animation sequence: a set of gather samples and a set of view samples.

To define the gather samples we distribute d samples on the whole scene
surface, and associate them with the object surfaces they lie on. When the
objects change (due to translation and/or deformation) the positions, normals,
and areas of the associated gather samples may change as well. Having these

53

Relighting of Animation Sequences

fra
m

es
gather samples

vi
ew

 s
am

pl
es

(a) Definition

fra
m

es
gather s.

vi
ew

 s
.

(b) Exploration

fra
m

es
gather s.

vi
ew

 s
.

(c) Compression

fra
m

es
gather s.

vi
ew

 s
.

(d) Refinement

Figure 4.2 – Conceptual overview of our offline algorithm. (a) We use a light
transfer tensor to describe direct-to-indirect light transfer from one set of samples
to another set of samples over multiple frames of an animation sequence. The
solid line depicts the contributions of all gather samples at some frame to one
view sample at the same frame. (b) We start by exploring structure of the light
transfer. (c) Then we run a modified version of local principal component analysis
(LPCA) to find linear subspaces that fit the light transfer tensor. (d) Finally
we refine the structure of the light transfer tensor and approximate it in linear
subspaces found in the previous step.

samples depending on time, we pick d gather samples at each time t ∈ 1 . . . f of
the animation sequence consisting of f frames. Let gjt be the j-th gather sample
at time t and let G be the set of all the gather samples

G = {gjt | j ∈ 1 . . . d, t ∈ 1 . . . f} .

The view samples correspond to the points visible to the camera through image
pixels. Let vit be the i-th view sample at t and let V be the set of all the view
samples

V = {vit | i ∈ 1 . . . p, t ∈ 1 . . . f} ,

where p is the number of pixels captured by the camera.
Having these sets we can formalize DTI light transfer over the animation

sequence as a large |p| × |d| × f tensor of light interaction between vit and gjt,
i ∈ 1 . . . p, j ∈ 1 . . . d, t ∈ 1 . . . f . Each element of the light transfer tensor
expresses DTI light transfer from one gather sample to one view sample in one
frame of the animation sequence. See Figure 4.3 for a visual illustration of the
relationship between vit and gjt.

The DTI light transfer from gjt to vit, i.e. the tensor element at index (i, j, t),
is defined as:

A(gjt) fr(vit → gjt) G(vit, gjt) V (vit, gjt), (4.1)

54

Tensor Exploration

Figure 4.3 – Geometry of direct-to-indirect (DTI) light transfer from a gather
sample gjt to a view sample vit.

where A(gjt) is the area of the sample gjt, fr(vit → gjt) is the bi-directional
reflectance distribution function (BRDF) at vit in direction to the camera and to
gjt, and G(vit, gjt) and V (vit, gjt) are the geometry term and visibility between
vit and gjt, respectively. The geometry term is defined as:

G(vit, gjt) = cos θvit cos θgjt

‖P (vit)− P (gjt)‖2 ,

where P (·) is the 3D position of the sample, θvit and θgjt are the angles between
the normal at vit and gjt, respectively, and the vector P (gjt)− P (vit). V (vit, gjt)
is equal 1 when the gjt is visible from the vit and 0 otherwise.

The usual image resolution p and the dimension d used by Hašan et al.
[HPB06] is 300k (i.e. 300 × 103) pixels and 64k samples, respectively. For an
animated sequence of one hundred frames the light transfer tensor is of 1.9 Tera
(i.e. 1.9× 1012) elements. A naïve approach that evaluates the light transfer ten-
sor in each element is not feasible in terms of computation time and also memory
space. In the following sections we show how to evaluate and compress the light
transfer tensor more efficiently.

4.4.2 Exploring the Structure of the Light Transfer Tensor
To save a large amount of computation we subsample light transfer in carefully
selected view samples of the light transfer tensor. The question is where to sam-
ple (i.e. at which view sample we should calculate light transfer) and how densely
we should sample. Ideally we would like to sample proportionally to the rate of
change of light transfer in the animated scene: those regions of the light transfer
tensor where the light transfer changes rapidly would be sampled more densely

55

Relighting of Animation Sequences

than other regions. But we have no a priori information about the light transfer
at the beginning of the precomputation. To address this problem we adopt the it-
erative matrix sampling technique proposed by Huang and Ramamoorthi [HR10]
and generalize it to efficient sampling of the light transfer tensor. In the following
we describe our generalized sampling technique.

The iterative sampling technique that allows us to explore the structure of
the light transfer tensor works as follows. We start by assigning to each transfer
point vit ∈ V a uniform sampling weight (probability). Then we pick a small
subset of view samples using weighted sampling and evaluate light transfer in the
selected view samples. The light transfer in view sample vit is a d-dimensional
vector where j-th element expresses the contribution of gather sample gjt ∈ G to
vit. We denote the light transfer vector in vit, i.e. the row of light transfer tensor,
by xit.

So far we have only a very crude approximation of the light transfer tensor.
To be able to adaptively explore the regions of the light transfer tensor where
the light transfer shows a high change rate, we need to update the sampling
weights of the remaining, unsampled view samples. To update the sampling
weights, we use the local dimensionality of light transfer, which has been shown
to be proportional to the rate of change of the light transfer in the scene [HR10].
So we estimate local dimensionality at each of the remaining view samples and
assign them new sampling weight proportional to the dimensionality estimate.
After that we sample the next batch of view samples, and so on until the desired
number of iterations is reached. How to determine the number of view samples
picked in each iteration and the total number of the iterations are subjects for
future work. The pseudo-code for this iterative adaptive sampling of view samples
is shown in Algorithm 3.

To compute the dimensionality of light transfer around a view sample vit ∈ V
we pick a small set S of nearby view samples (sampled so far) which lie “close”
to vit. In the case of a static scene the Euclidean distance of view samples visible
in the scene is used to measure the closeness of the view samples. But in our case
we need to take into account also the closeness of our view samples in time. Let
vita , vjtb

∈ V be two view samples. We propose to define the distance d(vita , vjtb
)

as:
d(vita , vjtb

) =
√
w2

1‖P (vita)− P (vjtb
)‖2 + w2

2(ta − tb)2, (4.2)

where w1 and w2 are user-defined weights. In a future work we plan to set these
weights automatically. We suggest to take the inverse of scene size for w1 and
the inverse of the total number of frames for w2.

Having the set S of view samples which are close to vit, we can estimate
the local dimensionality of light transfer around vit. We build a |S| × d local
light transfer matrix with i-th row equal to the light transfer vector of the i-

56

Tensor Exploration

Algorithm 3 Exploring structure of the light transfer tensor
input : V set of view samples

Scene configuration
output: Approximation of the light transfer tensor; i.e. a set of xit in

carefully chosen vit ∈ V

∀vit ∈ V, w(vit) ← uniform sampling weight;
D ← empty set;
for several iterations do

for i← 1 to user-defined number do
vit ← weighted sampling from V \D;
xit ← light transfer vector in vit;
D ← D + vit;

end
foreach vit in V \D do

T ← nearby samples from D;
w(vit) ← dimensionality of T ;

end
end

th view sample from S. Then we compute the numerical rank of this local light
transfer matrix, which is equal to the local dimensionality of light transfer around
vit [MSRB07, NBB04]. So in the regions in the scene where the light transfer
changes very smoothly, the local light transfer matrix will be of small rank, i.e. the
dimensionality of light transfer around vit will be small. Since we set the sampling
weights for vit equal to the local dimensionality, the probability of picking the vit

will be smaller in that case. Figure 4.4 shows an example of a scene with the
rank of the local light transport shown in false color.

4.4.3 Computation of the Light Transfer in View Samples
For every view sample vit ∈ V selected by the iterative sampling algorithm de-
scribed above, we need to evaluate the corresponding light transfer vector xit.
A naïve approach for doing this would iterate over the gather samples, and for
each gather sample gjt ∈ G, j ∈ 1 . . . d, the transfer from gjt to vit would be
evaluated. Such a brute-force approach, however, is very costly.

To speed up the evaluation of the transfer vector xit in the view sample vit,
we adopt Hašan et. al.’s [HPB06] N -body approach. For each frame t we build
a perfectly balanced quad-tree on the positions of the gather samples gjt ∈ G.
When evaluating the light transfer at vit, we select the quad-tree built on the

57

Relighting of Animation Sequences

R
an
k

1
40

Figure 4.4 – Local dimensionality of light transfer around a 3D point in the
scene is defined to be proportional to the rank of the local transfer matrix, whose
rows are the transfer vectors of several nearby view samples. Colored dots show
the points in the scene where the rank of the local transfer matrices was evaluated.
We can see that the rank is of highest values around the neck and on the ground
beneath the feet, where the light transport varies a lot. In contrast the rank is
of low value far away from the runner, since the light transport is smooth here.
Image courtesy of Huang and Ramamoorthi [HR10].

gather samples at t, and traverse it in a depth-first manner. We use a solid
angle heuristic to decide whether to stop the traversal in the current quadrant or
continue to the children: If a quadrant is small and/or far enough, we randomly
select one gather sample from the quadrant and calculate its contribution to vit.
We approximate contributions of all the other gather samples from the quadrant
by the same value.

Alternatively, the light transfer vector xit at the view sample vit could also be
estimated using a Monte Carlo technique described in [OKP+08]. A number of
rays can be traced from the position of vit through the hemisphere above vit. For
each ray an intersection with the scene is computed and the nearest gather sample
gjt ∈ G is found, using a kd-tree to speed-up the search. Finally, contribution
from gjt to vit is computed and adjusted by the inverse of the probability density
of sampling that direction.

The transfer vector xit estimated by the Monte Carlo method provides better
image quality near corners and other places in the scene where the density of
gather samples is not sufficient. In those places the N -body approach is not suit-
able and produces energy losses giving rise to local image darkening. Nonetheless,
the Monte Carlo method will produce noisy and sparse transfer vectors xit with
many zero elements even if the real contribution of the corresponding elements
should be non zero. The N -body approach, on the other hand, provides transfer
vectors xit with lower variance across the individual elements. Such a vector is

58

Wavelet-LPCA

more amenable to compression which we perform in the next stage and that is
why we decided to adopt the N -body approach in our work.

4.5 Wavelet-LPCA
In the previous section we have described how to calculate a raw approximation of
the light transfer tensor. In order to reduce the memory requirements and to be
able to perform transformation using these light transfer vectors at run-time, we
need to compress them. Two different methods have been used to compress the
light transfer vectors in the previous work: non-linear wavelet approximation and
compression based on dimensionality reduction through local principal component
analysis (LPCA).

In the case of wavelets each light transfer vector is approximated as a sparse
vector of wavelet coefficients. Using only the wavelet compression to compress
each transfer vector independently, however, would not be sufficient in our case
because of the sheer number of individual transfer vectors (remember that we are
dealing with an animation sequence). Multi-dimensional wavelet compression
across light transfer vectors cannot be used because that would require costly
decompression at run-time.

Unlike the wavelet compression that compresses each light transfer vector
independently, the local principal component analysis (LPCA) explores coherence
across different light transfer vectors. Running the LPCA on the original light
transfer vectors would, however, be infeasible, since the calculation time of the
LPCA is proportional to the dimension of the light transfer vectors, which in our
case is about 64k.

Any one of the two compression techniques (wavelet approximation and LPCA
compression) does not seem sufficient for our purpose. But their respective ad-
vantages and drawbacks are complementary. If we could shorten the length of the
light transfer vectors, we could use the LPCA. To make the light transfer vectors
shorter we exploit their sparsity when approximated in non-linear wavelet basis.
Then we run the LPCA directly on the sparse wavelet images of the light transfer
vectors exploiting coherence across these wavelet images. This, however, requires
to reformulate the LPCA to be applicable to sparse wavelet vectors.

In the following we show how to perform the LPCA on sparse wavelet images
of light transfer vectors. The goal of the LPCA is to choose several clusters rep-
resented by low-dimensional affine subspaces that approximate the light transfer
vectors minimizing some error measure. The LPCA iteratively perform two steps:

� Classify all the light transfer vectors to the nearest clusters.

� Update of the clusters’ affine subspaces.

59

Relighting of Animation Sequences

For more details about the LPCA, see the Chapter 3. In the following we de-
velop our Wavelet-LPCA (WLPCA) algorithm as an efficient LPCA algorithm
for compression of high-dimensional data. Our WLPCA will be much faster than
running the original LPCA performed on the long, dense light transfer vectors,
without loosing much of the accuracy of the original LPCA.

4.5.1 Classification to Nearest Affine Subspaces
4.5.1.1 Distance Calculation in the Wavelet Domain

When classifying a light transfer vector to the nearest cluster, distances of the
transfer vector to the clusters must be evaluated. Let V d be the linear space
of all d-dimensional light transfer vectors. To calculate the distance of any light
transfer vector x ∈ V d to a cluster represented by an affine subspace a we need
to evaluate Equation 3.1:

d(x, a) = ‖(x− µ(a))− xs‖,

where µ(a) is the origin of a, dir(a) is its basis, and xs is the orthogonal projection
of (x− µ(a)) onto a.

Let us switch the representation of the light transfer vectors and of the
affine subspaces to the wavelet domain. Let xw be the wavelet image of x and
aw be the affine subspace with the origin and basis vectors represented in the
same wavelet basis. Formally we can write xw = Wx for a transfer vector x,
µ(aw) = Wµ(a) for origin and diri(aw) = Wdiri(a) for basis vectors of the affine
subspace a. The d × d matrix W transforms any vector from V d into wavelet
basis [Mal08]. The question is what does the distance d(xw, aw). Let us show
that d(x, a) = d(xw, aw). For d(xw, aw) we have:

d(xw, aw) = ‖ (xw − µ(aw))− xw
s ‖

= ‖W ((x− µ(a))− xs) ‖
(1)= ‖W‖· ‖ ((x− µ(a))− xs) ‖
= ‖ (x− µ(a))− xs‖
= d(x, a),

where xw
s is the orthogonal projection of xw onto aw. In (1) we use the orthonor-

mality of W. For xw
s it is also easy to see that xw

s = Wxs:

xw
s =

l∑
i=1
〈xw − µ(aw), diri(aw)〉 diri(aw)

=
l∑

i=1
〈x− µ(a), diri(a)〉Wdiri(a) = Wxs,

60

Wavelet-LPCA

since for any vector xw,yw ∈ V d we have

〈xw,yw〉 = (xw)T yw = xT WT Wy = xT y = 〈x,y〉 .

So indeed d(x, a) = d(xw, aw). Thanks to this distance invariance property,
xw will be closest to aw if and only if x would be closest to a. Applying this
statement to all the previously evaluated light transfer vectors we get the same
vector-cluster assignment made in the classification stage of the LPCA regardless
of whether we are working with the original light transfer vectors or with their
wavelet images.

4.5.1.2 Distance Calculation for Sparse Vectors

Let x̃w be a compact sparse approximation of xw, keeping just a few highest
wavelet coefficients from xw. Calculation of d(x̃w, aw) using Equation 3.1, how-
ever, is not efficient because it cannot allow to exploit sparsity in x̃w. In order to
speed up the calculation of d(x̃w, aw) exploiting the compact, sparse representa-
tion of x̃w, we reformulate the distance formula into a more suitable form.

Figure 4.5 – Orthogonal projection of xw onto subspace S. Vector xw − xw
s

is perpendicular to any line in subspace S. Specifically the triangle formed by
vectors xw, xw

s , and xw − xw
s is right-angled with the right angle at the end of

xw
s .

Let S ⊂ V d be the subspace generated by diri(aw) of an affine subspace aw

and let S⊥ ⊂ V d be the orthogonal complement of S in V d. For any xw 6= 0 the
orthogonal projection of xw on S is xw

s ∈ S, and therefore xw − xw
s ∈ S⊥, see

Figure 4.5. Then according to the Pythagorean theorem we have:

d2(xw, aw) = ‖ (xw − µ(aw))− xw
s ‖2 = ‖xw − µ(ãw)‖2 − ‖xw

s ‖2.

The two terms on the right hand side can be calculated as:

‖xw − µ(aw)‖2 = ‖xw‖2 − 2(xw)Tµ(aw) + ‖µ(aw)‖2 (4.3)

61

Relighting of Animation Sequences

and

‖xw
s ‖2 =

∥∥∥∥∥
l∑

i=1
〈xw − µ(aw), diri(aw)〉 diri(aw)

∥∥∥∥∥
2

= ‖VT xw −VTµ(aw)‖2, (4.4)

where V is a d × l matrix with diri(aw) as i-th column. Remember that d is
dimension of light transfer vectors and l is dimension of affine subspaces where
we approximate the light transfer vectors in.

Distance calculation d(x̃w, aw) in this form is more convenient for sparse x̃w

than Equation 3.1. Let us have a look why. When evaluating term ‖x̃w−µ(aw)‖2

for sparse x̃w in Equation 4.3, x̃w appears in a dot product with dense vector
µ(aw), 2(x̃w)Tµ(aw). This dot product can be efficiently evaluated by accumu-
lating just |x̃w| wavelet coefficients. Similarly in Equation 4.4, x̃w appears in a
multiplication with dense matrix, (x̃w)T V which is also very efficient to calculate.
Other terms on the right sides of the equations can be precomputed as explained
hereafter. Since square norms ‖x̃w‖2 do not change during the course of the
computation it can be precomputed and passed to WLPCA. In the case of terms
‖µ(aw)‖2 and VTµ(aw) they are constant for aw, so we can precompute them
once after aw is updated. Expecting that a high number of light transfer vectors
will be assigned to aw, the overhead of pre-computation of these terms should
be easily amortized. The pseudo-code for classification stage of our WLPCA is
given in Algorithm 4.

Acceleration of the distance computation proposed in this section comple-
ments the acceleration proposed in Chapter 3. In that chapter, we eliminate
distance calculation that provably cannot change the current vector-cluster as-
signment: If one knows that the distance of a light transfer vector to an affine
subspace cannot be less than the current minimum distance found so far, calcu-
lation of their true distance can be avoided. On the other hand, the technique
described above in this section focuses on quick calculation of the distance itself.

4.5.2 Update of Affine Subspaces
The second important step in LPCA, after the data vector classification, is the
update of the affine subspaces in the individual clusters. Let us start by explaining
how to calculate the affine subspace that fits a set of light transfer vectors, and
then let us switch to the wavelets.

Let S be the set of light transfer vectors xi, i = 1 . . .m assigned to a cluster
represented by an l-dimensional affine subspace a. To update a we need to find
a new origin µ(a) and basis vectors diri(a) that better fit S. The new origin is
simply the mean of the light transfer vectors from S. The question is how to find

62

Wavelet-LPCA

Algorithm 4 Classification stage of our Wavelet-LPCA

input : X set of sparse light transfer vectors x̃w and their norms ‖x̃w‖2

A vector of k affine subspaces to be updated
R vector of ‖µ(A[i])‖2, i ∈ 1 . . . k
S l × k matrix formed by VT

i µ(A[i]) as i-th column; VT
i is d× l

matrix formed by dirj(A[i])Tµ(A[i]) as j-th column
output: Assignment of x̃w ∈ X to A
foreach x̃w ∈ X do

dmin ←∞;
imin ← 1;
for i← 1 to k do

µ← µ(A[i]);
V← d× l matrix formed by dirj(A[i]) as j-th column;
y ← ‖x̃w‖2 − 2(x̃w)Tµ+R[i];
z ← ‖VT x̃w − S[i−th column]‖2;
d← y − z;
if (d < dmin) then

dmin ← d;
imin ← i;

end
end
Assign x̃w to A[imin];

end

the new basis vectors. Let A0 be them×dmatrix with i-th row equal to xi, 1m be
the m-dimensional vector of ones, and put A = A0−1mµ(a) (i.e. we subtract the
mean from the rows of A0). Computing the singular value decomposition (SVD)
of A we obtain A = UDVT , where U and V are the left and right orthogonal
rotation matrices, respectively, and D is a diagonal matrix of singular values
arranged in descending order. Having the SVD of A the new basis consist of the
first l rows of V that are called the right singular vectors.

Now let us switch to the wavelets. Let T be the set of the corresponding light
transfer vectors from S in the wavelet basis and let aw be the affine subspace
calculated as above but using wavelet images of the light transfer vectors from T .
We would like to have µ(aw) = Wµ(a) and diri(aw) = Wdiri(a). The question
is if these equations actually hold. For the first one we immediately have:

µ(aw) =
n∑

i=1
xw

i =
n∑

i=1
Wxi = W

n∑
i=1

xi = Wµ(a).

63

Relighting of Animation Sequences

So let us prove the second statement. Let Aw
0 be the m× d matrix with i-th row

equal to xw
i , put Aw = Aw

0 − 1mµ(aw) and perform the SVD of Aw. We need to
prove that the right singular vectors of Aw are equal to the right singular vectors
of A transformed to the wavelet basis. In other words, we need to verify that:

UD(WV)T is the SVD of Aw if and only if A = UDVT is the SVD of A.

But it is very easy to show. Take A = UDVT , multiply both sides by WT

and rearranging the terms:

AWT = UDVT WT

(WAT)T = UD(WV)T

Aw = UD(WV)T .

The matrix on the right WV is orthogonal, since WV(WV)T is equal to the
identity matrix, and therefore actually UD(WV)T is the SVD of Aw.

So now we know how to find the affine subspace for a set of light transfer vec-
tors represented in the wavelet basis. In the following we review several existing
SVD algorithms and choose one of them that allow us to exploit the sparsity of
the data vectors.

4.5.2.1 Choice of a Suitable SVD Algorithm

Many methods to evaluate SVD of a rectangular matrix A have been proposed.
An overview can be found in [GVL96]. Accurate methods first compute the
covariance matrix AAT (or AT A depending on which one has a smaller dimen-
sion). Then they transform the covariance matrix into a tri-diagonal form using
the Householder transformation and solve for eigen-pairs of the tri-diagonal ma-
trix [Dhi97]. The eigen-pairs are then used to build the diagonal matrix of singular
values D and U (or V when AT A was taken). Finally, the matrix V (or U) is
computed so that A = UDVT holds.

There are several bottlenecks associated with the use of such algorithms in
practice. First, they work with dense matrices only, since even if A was sparse,
the calculation of AAT would not map well to the existing computer architecture
and moreover AAT is dense. Second, the calculation of the SVD of A starts
every time from scratch, i.e. the methods cannot exploit previously calculated
results to update existing SVD of A. Third, they often provide the full SVD of
A, not just the few leading top right singular vectors that we are interested in,
thereby wasting the computation effort. That is why a number of SVD algorithms
have been proposed trading these issues. Sirovich [Sir87] proposes an algorithm
that evaluates several top leading eigen-pairs to the SVD of A without evalu-
ating its covariance matrix. Another approach has been presented by Drineas

64

Wavelet-LPCA

et. al. [DDH03] using a data-driven approach. They draw a subset of rows and
columns of A, scale them appropriately, and build a new small matrix B. After
that they perform an accurate SVD on B and use it to find an approximation to
the SVD of A. Both algorithms can exploit sparsity of A but still the calculation
of the SVD of A must start every time from scratch.

Roweis [Row98] proposes a learning algorithm that works with a sparse A
while progressively updating previously calculated top eigenvectors of AT A in
implicit form, i.e. AT A is never built explicitly. The iterative nature of the
algorithm is a very nice property in our case, since the algorithm can be well
integrated into the LPCA: The converged leading eigenvectors estimated in the
previous iteration of the LPCA can be used as starting eigenvectors when we
update the affine subspaces in the next LPCA iteration. This property together
with the fact that the algorithm works with the sparse A lead us to choose
Roweis’s algorithm for our purpose.

4.5.2.2 Roweis’s SVD Algorithm on Sparse Transfer Vectors

We briefly summarize the algorithm proposed by Roweis [Row98] for finding the
top leading eigenvectors of the covariance matrix AT A of A, whose normalized
versions correspond to the desired right singular vectors. At the beginning of the
algorithm, l leading eigenvectors of A must be guessed. Since no information
about the eigenvectors is often available at the beginning, randomly chosen rows
of A are used as the initial guess. Then algorithm performs two steps until the
convergence of the eigenvectors is reached: expectation (e-step) and maximization
(m-step). In the expectation step, the rows of A are translated onto the subspace
generated by the guessed leading eigenvectors. In the maximization step the
translated rows are used to find an updated eigenvector that better fits the rows
of A. An example of the process of learning the leading principal vector for
Gaussian distributed data is shown in Figure 4.6.

Formally, the algorithm evaluates:

(e-step): X =
(
CCT

)−1
ACT

(m-step): CT
new = (XA)T

(
XXT

)−1
,

where C is a l × d matrix of learned principal vectors. Let us switch to wavelet
basis and take Ãw = Ãw

0 − 1mµ(aw) instead of A, where Ãw
0 is the m× d sparse

matrix formed by sparse light transfer vectors approximated in wavelet bases.
Since µ(aw) is a dense vector, Ãw is also dense. In order to exploit sparsity we
use expanded form of Ãw, i.e. Ãw

0 − 1mµ(aw) in both steps:

(e-step): X =
(
CCT

)−1 [
Ãw

0 CT − 1m
(
µ(aw)T CT

)]
CT

(m-step): CT
new =

[
XÃw

0 − (X1m)µ(aw)T
]T (

XXT
)−1

.

65

Relighting of Animation Sequences

x1

x 2

0

1 2
3

Figure 4.6 – Process of learning of the first eigenvector for a set of 2D vectors
drawn from a Gaussian distribution. The initial direction of the eigenvector is
shown by the solid line with the number 0. The direction of the eigenvector after
first, second, and third iteration of the EM algorithm is shown by other solid
lines. The direction of the eigenvector, to which the EM algorithm converges, is
shown by the dashed line. Image courtesy of Roweis [Row98].

Here Ãw
0 is multiplied with dense matrix that as we mention above is very efficient,

see term Ãw
0 CT and XÃw

0 , respectively. Note we also rearrange brackets for
when multiplying with 1mµ(aw), see term 1m

(
µ(aw)T CT

)
and (X1m)µ(aw)T ,

respectively, to obtain simple matrix-vector multiplications.

4.5.3 Computation of the Sparse Points
The last step of our algorithm is to calculate light transfer vectors at all other
view samples that have not been selected during the exploration phase and to
assign them in clusters. The question is how to calculate the light transfer vector
at such view samples. We could calculate them using either hierarchical or Monte
Carlo approach as discussed in Section 4.4.3. But it would be costly. Since the
light transport is locally low-dimensional [MSRB07, NBB04] we can reconstruct
a light transfer vector at a view sample vit ∈ V more efficiently from light transfer
vectors at previously evaluated nearby view samples that lie close to vit in space
and time.

To find such nearby samples we use our distance metric defined by Equa-
tion 4.2. Let us say we find k nearest samples vrt, r ∈ 1 . . . k. Then we can
reconstruct a sparse wavelet image of a light transfer vector at vit, x̃w

it, from the

66

Rendering

light transfer vectors x̃w
rt at vrt as:

x̃w
it ≈

k∑
r=1

αrx̃w
rt, r ∈ 1 . . . k, (4.5)

where αr are the weights of linear combination. Assuming that elements on the
corresponding indices of all light transfer vectors x̃w

rt are of similar value (because
of locality of light transport), we can pick a small subset of indices I, |I| ≥ k,
and consider a sparse reconstruction:

x̃w
it[j] ≈

k∑
r=1

αrx̃w
rt[j], r ∈ 1 . . . k and j ∈ I,

where [j] is the vector operator returning j-th element of the vector. To determine
αr we need to calculate x̃w

it[j] for all j ∈ I. But to be able to calculate the wavelet
coefficient x̃w

it[j] at any index j we would need to know the original d-dimensional
light transfer vector xit (or its approximation). To solve this difficulty we perform
sparse reconstruction on the original light transfer vector (not in wavelets) as
follows:

xit[j] ≈
k∑

r=1
αrxrt[j], r ∈ 1 . . . k and j ∈ I,

where xit[j], j ∈ I we calculate using Equation 4.1. We reconstruct the ele-
ments x̃rt[j] from x̃rt using inverse wavelet transform returning elements just
at requested indices. This completes a linear system of |I| equations with
αr, r ∈ 1 . . . k, |I| > k as unknowns that can be solved by using the least square
minimization method. Once we have αr we reconstruct the wavelet image of the
light transfer vector at vit, x̃w

it, using 4.5. As the last step we assign x̃w
it to nearest

affine subspace provided by WLPCA.

4.6 Rendering
The run-time algorithm for relighting an animation sequence is straightforward.
When rendering an image at frame t, we perform the following steps:

1. calculate direct lighting at gather samples gjt ∈ G, j ∈ 1 . . . d,

2. transform direct lighting from all the gather samples gjt, j ∈ 1 . . . d to indi-
rect lighting at view samples vit ∈ V, i ∈ 1 . . . p using the precomputed light
transfer tensor, and finally

3. add the result to direct lighting at the view samples.

Recall that p is the number of pixels in the rendered images.

67

Relighting of Animation Sequences

Direct lighting on gather samples The first step is to calculate direct light-
ing on gather samples. To account for visibility in direct lighting we can use
shadow maps [LP09]. Another option is to calculate the direct lighting by trac-
ing shadow rays. Compared to the shadow maps, ray-traced shadows provide
higher-quality results without the need to tune any constants presents in the
shadow maps, though at the price of higher computational costs. Considering
the high performance of modern graphics cards (that are capable to trace up
to two hundred million rays per second) and the requirement for a high-quality
rendering, we opt to calculate direct lighting by ray tracing.

Indirect lighting on view samples Once we have calculated direct lighting
at gather samples at time t, we use the precomputed light transfer tensor to
calculate indirect lighting at view samples at time t. Let v ∈ V be an arbitrary
view sample at t and calculate indirect lighting at v. Indirect lighting on v can
be calculated as:

xT L,

where x is the light transfer vector at v, and L is a d-dimensional vector whose
j-th element is equal to direct lighting on gjt. Note that we can obtain the same
result, i.e. the indirect lighting on v, even if both vectors are expressed in wavelet
basis:

(xw)T Lw = (Wx)T WL = xT WT WL = xT L,

where Lw is the wavelet image of L. We use the precomputed light transfer tensor
to obtain an approximation of xw, x̃w. Let aw be the affine subspace that contains
x̃w, and wk be k-th coordinate of x̃w in aw. Then x̃w can be easily reconstructed
as:

x̃w ≈ µ(aw) +
l∑

k=1
wkdirk(aw).

But reconstructing light transfer vectors at each view point at t and multiplying
with Lw would be very inefficient. Expecting that there are many view samples
assigned to aw, we can perform calculation of indirect lighting at these view
samples more efficiently:

(x̃w)T Lw ≈
(
µ(aw) +

l∑
k=1

wkdirk(aw)
)T

Lw

= µ(aw)T Lw +
l∑

k=1
wk

(
dirk(aw)T Lw

)

= H0 +
l∑

k=1
wkHk,

68

Conclusion

where H0 = µ(aw)T Lw and Hk = dirk(aw)T Lw, k ∈ 1 . . . l. Note that they are
constant for given Lw so the calculation of indirect lighting at view sample clus-
tered in aw should be amortized. An illustration of indirect lighting calculation
in a view sample v is depicted in Figure 4.7.

Figure 4.7 – Calculation of indirect lighting at view sample v. Image of direct
lighting on gather samples at t represented in wavelet basis, Lw, is projected onto
the position vector µ(aw) and basis vectors dirk(aw), k ∈ 1 . . . l of aw obtaining
the H0 and Hk. Having coordinates of the wavelet image of the light transfer
vector with respect to an affine subspace aw, wk, the indirect lighting at v is
approximated by H0 +

∑l
k=1wkHk.

Once we have calculated indirect lighting on all v ∈ V at t, we calculate direct
lighting at those v and add direct and indirect lighting together. This produces
the final rendering at t.

4.7 Conclusion
We have introduced an approach for animation relighting with indirect lighting.
We used the tensor formulation to describe the direct-to-indirect light transfer
over multiple frames of an animation sequence. We have suggested a possible
solution for evaluating the transfer tensor in a compressed form. In our approach
we take advantage of directional, spatial, and temporal coherence of the light
transport to make computation of the tensor practical. We believe that our
approach will be able to preserve all the important lighting effects and deliver high
quality indirect lighting even in complex scenes with many various materials of
different reflectance characteristics and flexible lighting models. As our approach
has not been implemented yet we cannot provide any results leaving them to a
future work.

69

5Conclusion and Future Work

Contents
5.1 Spatial Directional Radiance Caching 71
5.2 SortCluster-LPCA and SortMeans++ 72
5.3 Relighting of Animation Sequences. 73

Realistic rendering of complex virtual scenes is demanded by a number com-
puter graphics applications. This necessitates fast and accurate algorithms for
realistic image synthesis. It has been shown that coherence of light transport can
be exploited [DHS+05, MSRB07, PML+09] to accelerate these algorithms. This
thesis describes three new algorithms for realistic image synthesis and shows how
the coherence was used to make these algorithms efficient.

In Chapter 2 we developed spatial directional radiance caching (SDRC) to
speed up GI calculation in scenes with glossy surfaces. Efficiency of SDRC is
achieved by reusing cached radiance samples calculated adaptively on demand. In
Chapter 3 we deal with local principal component analysis (LPCA) used for data
compression in data-driven approaches. We developed an accelerated algorithm,
SortCluster-LPCA (SC-LPCA), that produces exactly the same result as the
original LPCA but more quickly by exploiting coherence in the compressed data-
set. In Chapter 4 we presented a different modification of LPCA called Wavelet-
LPCA (WLPCA) that combines sparse data approximation in the wavelet domain
with LPCA. We used the WLPCA to compress a direct-to-indirect light transfer
precomputed for an animation sequence. In the following we summarize our three
contributions and suggest ideas for future work.

5.1 Spatial Directional Radiance Caching
We have presented spatial directional radiance caching (SDRC) for efficient cal-
culation of indirect lighting in scenes with glossy surfaces. To do so we utilize
spatial and directional coherence in incoming indirect radiance: we cache radiance
samples whose calculation is time-consuming and reuse them whenever possible.

71

Conclusion and Future Work

Our SDRC delivers high-quality images in glossy scenes. Using the BRDF
importance sampling, SDRC automatically adapts to the glossiness of object
surfaces. Moreover SDRC needs no conversion of the scene BRDFs into the
frequency domain (spherical harmonics) in a preprocess as in the original radiance
caching algorithm [KGPB05]. Our results show that caching pays off even in
scenes with glossy surfaces: compared to traditional Monte Carlo methods based
on BRDF importance sampling our SDRC produces less noisy images in the same
time.

In the future work it would be interesting to port our algorithm to GPU
and compare it with GPU implementations of other common Monte Carlo based
methods [Kaj86, LW93, VG97]. Another subject for future work is to devise a
more complete interpolation error criterion than the one borrowed from irradiance
caching. Such new interpolation criterion should take surface BRDF into account
when picking spatially nearby cache records. In addition, a more sophisticated
strategy than just adding spatial and directional samples should be developed to
make algorithm practical for rendering animations.

5.2 SortCluster-LPCA and SortMeans++

We proposed a novel fast and more accurate local principal component analysis
(LPCA) algorithm for data compression. Having a set of high-dimensional data
vectors and a number of clusters k, the goal of LPCA is to find an approxima-
tion of these vectors in k low-dimensional affine subspaces minimizing an error
criterion. The original LPCA starts with a random initialization of affine sub-
spaces. After that it alternately performs classification of the data vectors into
nearest clusters as well as clusters’ update. But such an algorithm is very inef-
ficient, since distances to all affine subspaces are computed. Moreover, LPCA is
prone to get stuck in a local optimum producing a less accurate data approxi-
mation. To improve the efficiency of the LPCA we developed a new algorithm
called SortCluster-LPCA which explores coherence in distribution of the data
vectors to eliminate unnecessary distance calculations. To address the accuracy
we proposed a fast algorithm that produces better initialization for the LPCA.

We tested our SC-LPCA for compression of radiance transfer matrices used
in precomputed radiance transfer (PRT) and for compression of bi-directional
texture function (BTF) image databases. We achieved speed-up of 5 to 20 for
radiance transfer matrices while the speed-up for BTF data sets was lower. Con-
cerning the data approximation accuracy, we consistently achieve a lower approx-
imation error in our tested data sets compared to simple random initialization.

There are several issues as subjects for a future works:

72

Relighting of Animation Sequences.

� Our SC-LPCA algorithm uses upper bound on the vector-cluster dis-
tance to accelerate the classification stage. In k-means Elkan [Elk03] and
Hamerly [Ham10] show that further speed-up can be achieved by using also
a lower bound on the vector-cluster distance. Generalization of the lower
bound from k-means to LPCA, however, is not as simple as in the case of
upper bound: when an affine subspace is updated both origin and orienta-
tion of basis vectors change. This raises the problem of how to efficiently
and quickly update the lower bound.

� The next issue is that the LPCA algorithm produces sharp clustering. Two
similar data vectors may be assigned to two different clusters and conse-
quently their approximation in the respective affine subspaces may end up
being quite different. This may cause some problems in applications that
require smooth transitions between data vectors. Though we have not ob-
served any artifact due to sharp clustering in PRT application for relighting
of static scene, sharp clustering may cause some problems in animation re-
lighting. It would be interesting to develop techniques for soft clustering.
One possible solution to tackle the problem in the LPCA could be to ap-
proximate data vectors that lie in between affine subspaces by using basis
vectors from both subspaces.

� The LPCA algorithm treats each data vector as one element. Assume we
have PRT application for relighting of a simple scene with one object lit
by an environment map. Let us suppose two visible points that lie close to
the object and calculate the light transfer vectors for them. Then many el-
ements in the light transfer vectors corresponding to cubemap pixels which
lie in the opposite direction toward the object will be similar. On the other
hand elements of the light transfer vectors that correspond to cubemap pix-
els visible in the directions toward the object will be very different because
of occlusion. This causes problems for LPCA clustering. The question is
whether it would be better to divide long light transfer vectors into several
shorter sub-vectors and run LPCA on shorter sub-vectors than run LPCA
on original long light transfer vectors.

5.3 Relighting of Animation Sequences.
We described an algorithm for cinematic relighting of animated sequences with
global illumination. Our approach extends the idea of direct-to-indirect light
transfer from a static scene to an animated sequence where the object deformation
and camera path are known in advance.

73

Conclusion and Future Work

In the offline part of our relighting system we calculate a light transfer tensor.
We use coherence in light transport to make the precomputation of the transfer
tensor feasible in terms of memory and computation time. (We remind that the
raw light transfer tensor is of Tera-byte size and calculation of each element itself
is costly.) First we adaptively explore the structure of the light transfer tensor
placing more samples in regions where light transfer changes quickly. Then we run
our Wavelet-LPCA that exploits sparsity in the light transfer vectors expressed in
wavelet basis. We reconstruct the rest of the transfer tensor using the observation
that light transport is locally low-dimensional [MSRB07]. As our approach has
not been implemented yet we cannot provide any results. Implementing and
verifying our approach is the subject for future work.

Trend in computer graphics We made a contribution in the field of realistic
image synthesis making use of coherence of light transfer to speed up image syn-
thesis. In future research we expect more efficient algorithms utilizing coherence
for fast GI calculation. In addition, we expect that data-driven approaches will
cement their key position in modern computer graphics. Powerful algorithms for
processing and compression of large databases that exploit the coherence therein
will be of foremost importance.

74

Author’s Publications

[GK08] Gassenbauer V., Křivánek J.: Spatial directional radiance
caching. In Siggraph Asia 2008 NEW HORIZONS, Sketches and
Posters (Singapore, 2008). 9

[GKB09] Gassenbauer V., Křivánek J., Bouatouch K.: Spatial direc-
tional radiance caching. Computer Graphics Forum (Proc. of Euro-
graphics Symposium on Rendering) 28, 4 (2009), 1189–1198. 9

[GKB11] Gassenbauer V., Křivánek J., Bouatouch K., Bouville C.,
Ribardière M.: Improving Performance and Accuracy of Local PCA.
Computer Graphics Forum (Proc. of Eurographics Symposium on Ren-
dering) 30, 7 (2011). 29

75

Bibliography

[AFO05] Okan Arikan, David A. Forsyth, and James F. O’Brien. Fast and de-
tailed approximate global illumination by irradiance decomposition.
ACM Transactions on Graphics, 24(3):1108–1114, August 2005. 11

[AKDS04] Thomas Annen, Jan Kautz, Frédo Durand, and Hans-Peter Seidel.
Spherical harmonic gradients for mid-range illumination. In Render-
ing Techniques, pages 331–336, 2004. 50

[AV07] David Arthur and Sergei Vassilvitskii. k-means++: the advantages
of careful seeding. In SODA ’07: Proceedings of the eighteenth annual
ACM-SIAM symposium on Discrete algorithms, pages 1027–1035. So-
ciety for Industrial and Applied Mathematics, 2007. 30, 32, 37, 43

[BGB08] Jonathan Brouillat, Pascal Gautron, and Kadi Bouatouch. Photon-
driven irradiance cache. Computer Graphics Forum (Proc. of Pacific
Graphics), 27(7):1971–1978, 2008. 11

[BSH02] Philippe Bekaert, Mateu Sbert, and John Halton. Accelerating path
tracing by re-using paths. In Rendering Techniques 2002: 13th Eu-
rographics Workshop on Rendering, pages 125–134, June 2002. 11

[CAE08] David Cline, Daniel Adams, and Parris Egbert. Table-driven adap-
tive importance sampling. Computer Graphics Forum (Proc. of Eu-
rographics Symposium on Rendering), 27(4), 2008. 10

[CAM08] Petrik Clarberg and Tomas Akenine-Möller. Practical product im-
portance sampling for direct illumination. Computer Graphics Forum
(Proc. of Eurographics), 27(2):681–690, 2008. 10

[Coo86] Robert L. Cook. Stochastic sampling in computer graphics. ACM
Trans. Graph., 5:51–72, January 1986. 4

[CPC84] Robert L. Cook, Thomas Porter, and Loren Carpenter. Distributed
ray tracing. In Proc. of SIGGRAPH ’84, 1984. 3

77

Bibliography

[CSH08] Francesco Castro, Mateu Sbert, and John H. Halton. Efficient reuse
of paths for random walk radiosity. Computers & Graphics, 32(1):65–
81, February 2008. 11

[CW93] Michael F. Cohen and John R. Wallace. Radiosity and Realistic Image
Synthesis. Morgan Kaufmann, 1993. 3

[DDH03] Petros Drineas, Eleni Drinea, and Patrick S. Huggins. An experimen-
tal evaluation of a Monte-Carlo algorithm for singular value decompo-
sition. In Proceedings of the 8th Panhellenic conference on Informat-
ics, PCI’01, pages 279–296, Berlin, Heidelberg, 2003. Springer-Verlag.
65

[DFK+04] Petros Drineas, Alan M. Frieze, Ravi Kannan, Santosh Vempala, and
V. Vinay. Clustering large graphs via the singular value decomposi-
tion. Machine Learning, 56:9–33, 2004. 32

[Dhi97] Inderjit Singh Dhillon. A New O(n2) Algorithm for the Symmetric
Tridiagonal Eigenvalue/Eigenvector Problem. PhD thesis, EECS De-
partment, University of California, Berkeley, Oct 1997. 64

[DHS+05] Frédo Durand, Nicolas Holzschuch, Cyril Soler, Eric Chan, and
François X. Sillion. A frequency analysis of light transport. ACM
Trans. Graph., 24:1115–1126, July 2005. 3, 71

[DK92] Arthur M. DuPre and Seymour Kass. Distance and parallelism be-
tween flats in Rn. Linear Algebra and its Applications, 171:99–107,
July 1992. 35, 37

[Elk03] Charles Elkan. Using the triangle inequality to accelerate k-means. In
Tom Fawcett and Nina Mishra, editors, Machine Learning, Proceed-
ings of the Twentieth International Conference (ICML 2003), August
21-24, 2003, Washington, DC, USA, pages 147–153. AAAI Press,
2003. 30, 31, 73

[FH09] JiříFilip and Michal Haindl. Bidirectional texture function modeling:
A state of the art survey. IEEE Trans. Pattern Anal. Mach. Intell.,
31:1921–1940, November 2009. 4, 6, 30, 31, 45

[FPJY07] Wei-Wen Feng, Liang Peng, Yuntao Jia, and Yizhou Yu. Large-scale
data management for PRT-based real-time rendering of dynamically
skinned models. In EGSR ’07: Proceedings of the 17th Eurographics
workshop on Rendering, Switzerland, 2007. Eurographics Associa-
tion. 4, 5, 50

78

Bibliography

[GBP07] Pascal Gautron, Kadi Bouatouch, and Sumanta Pattanaik. Temporal
radiance caching. IEEE Transactions on Visualization and Computer
Graphics, 13(5), 2007. 3, 11

[GKBP05] Pascal Gautron, Jaroslav Křivánek, Kadi Bouatouch, and
Sumanta N. Pattanaik. Radiance cache splatting: A GPU-friendly
global illumination algorithm. In Rendering Techniques (Proc. of Eu-
rographics Symposium on Rendering), pages 55–64, 2005. 11

[GVL96] Gene H. Golub and Charles F. Van Loan. Matrix computations (3rd
ed.). Johns Hopkins University Press, Baltimore, MD, USA, 1996. 64

[Ham10] Greg Hamerly. Making k-means even faster. In SIAM International
Conference on Data Mining, pages 130–140, 2010. 31, 73

[HDMS03] Vlastimil Havran, Cyrille Damez, Karol Myszkowski, and Hans-Peter
Seidel. An efficient spatio-temporal architecture for animation ren-
dering. In Eurographics Symposium on Rendering: 14th Eurographics
Workshop on Rendering, pages 106–117, June 2003. 11

[Hod88] Michael E. Hodgson. Reducing the computational requirements of
the minimum-distance classifier. Remote Sensing of Environment,
25(1):117 – 128, 1988. 31

[HPB06] Miloš Hašan, Fabio Pellacini, and Kavita Bala. Direct-to-indirect
transfer for cinematic relighting. ACM Trans. Graph., 25:1089–1097,
July 2006. 4, 5, 6, 46, 47, 48, 51, 52, 55, 57

[HPB07] Miloš Hašan, Fabio Pellacini, and Kavita Bala. Matrix row-column
sampling for the many-light problem. ACM Trans. Graph., 26, July
2007. 3, 10, 37

[HR10] Fu-Chung Huang and Ravi Ramamoorthi. Sparsely precomputing the
light transport matrix for real-time rendering. Computer Graphics
Forum (EGSR 2010), 29(4):1335–1345, 2010. 4, 30, 31, 46, 49, 50,
56, 58

[HS85] Dorit S. Hochbaum and David B. Shmoys. A Best Possible Heuris-
tic for the k-Center Problem. Mathematics of operations research,
10(2):180–184, May 1985. 32

[HS98] Wolfgang Heidrich and Hans-Peter Seidel. View-independent envi-
ronment maps. In Proc. of Graphics Hardware, 1998. 14

79

Bibliography

[JDZJ08] Wojciech Jarosz, Craig Donner, Matthias Zwicker, and Henrik Wann
Jensen. Radiance caching for participating media. ACM Trans.
Graph., 27(1), 2008. 10, 11

[Jen01] Henrik W. Jensen. Realistic Image Synthesis Using Photon Mapping.
AK Peters, Ltd., July 2001. 4, 10, 11

[JZJ08] Wojciech Jarosz, Matthias Zwicker, and Henrik Wann Jensen. Irra-
diance gradients in the presence of participating media and occlu-
sions. Computer Graphics Forum (Proc. of Eurographics Symposium
on Rendering), 27(4), 2008. 11, 19

[Kaj86] James T. Kajiya. The rendering equation. In Proc. of SIG-
GRAPH ’86, 1986. 3, 72

[KAMJ05] Anders Wang Kristensen, Tomas Akenine-Möller, and Henrik Wann
Jensen. Precomputed local radiance transfer for real-time lighting
design. In SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers, pages
1208–1215, New York, NY, USA, 2005. ACM. 4, 6, 51

[KBPv06] Jaroslav Křivánek, Kadi Bouatouch, Sumanta Pattanaik, and
JiříŽára. Making radiance and irradiance caching practical: Adaptive
caching and neighbor clamping. In Rendering Techniques 2006 (Proc.
of Eurographics Symposium on Rendering), pages 127–138, 2006. 19,
20

[Kel97] Alexander Keller. Instant radiosity. In SIGGRAPH ’97: Proceed-
ings of the 24th annual conference on Computer graphics and inter-
active techniques, pages 49–56, New York, NY, USA, 1997. ACM
Press/Addison-Wesley Publishing Co. 11

[KG09] Jaroslav Křivánek and Pascal Gautron. Practical Global Illumination
with Irradiance Caching. Morgan-Claypool, 2009. 2, 18

[KGPB05] Jaroslav Křivánek, Pascal Gautron, Sumanta Pattanaik, and Kadi
Bouatouch. Radiance caching for efficient global illumination compu-
tation. IEEE Transactions on Visualization and Computer Graphics,
11(5), 2005. i, 3, 4, 5, 10, 11, 12, 25, 72

[KL97] Nandakishore Kambhatla and Todd K. Leen. Dimension reduction
by local principal component analysis. Neural Comput., 9:1493–1516,
October 1997. 4, 5, 30, 31, 32, 39

80

Bibliography

[KMN+02] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Chris-
tine D. Piatko, Ruth Silverman, and Angela Y. Wu. An effi-
cient k-means clustering algorithm: analysis and implementation.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
24(7):881–892, 2002. 30, 31, 32

[KTHS06] Janne Kontkanen, Emmanuel Turquin, Nicolas Holzschuch, and
François Sillion. Wavelet radiance transport for interactive indi-
rect lighting. In Thomas Akenine-Möller Wolfgang Heidrich, editor,
Rendering Techniques 2006 (Eurographics Symposium on Rendering).
Eurographics, jun 2006. 6, 47, 48, 51

[LF97] Paul Lalonde and Alain Fournier. Generating reflected directions
from BRDF data. Comput. Graph. Forum, 16(3):293–300, 1997. 4

[LP09] Nan Liu and Ming-Yong Pang. Shadow mapping algorithms: A com-
plete survey. 2009 International Symposium on Computer Network
and Multimedia Technology, pages 1–5, 2009. 68

[LRR04] Jason Lawrence, Szymon Rusinkiewicz, and Ravi Ramamoorthi. Ef-
ficient BRDF importance sampling using a factored representation.
ACM Trans. Graph., 23:496–505, August 2004. 4

[LSSS04] Xinguo Liu, Peter-Pike J. Sloan, Heung-Yeung Shum, and John Sny-
der. All-frequency precomputed radiance transfer for glossy objects.
In Rendering Techniques, pages 337–344, 2004. 4, 31, 49, 50

[LW93] Eric P. Lafortune and Yves D. Willems. Bi-directional path tracing.
In COMPUGRAPHICS ’93, pages 145–153, 1993. 3, 72

[LW95] Eric P. Lafortune and Yves D. Willems. A 5D tree to reduce the vari-
ance of Monte Carlo ray tracing. In Rendering Techniques (Proc. of
the Sixth Eurographics Workshop on Rendering), pages 11–20, 1995.
11

[LZT+08] Jaakko Lehtinen, Matthias Zwicker, Emmanuel Turquin, Janne Kon-
tkanen, Frédo Durand, François X. Sillion, and Timo Aila. A meshless
hierarchical representation for light transport. ACM Trans. Graph.,
27:37:1–37:9, August 2008. 6, 47, 48, 51

[Mal08] Stphane Mallat. A Wavelet Tour of Signal Processing, Third Edition:
The Sparse Way. Academic Press, 3rd edition, 2008. 6, 60

81

Bibliography

[MMK03] Gero Müller, Jan Meseth, and Reinhard Klein. Compression and
real-time rendering of measured BTFs using local PCA. In Vision,
Modeling and Visualisation 2003, pages 271–280. Akademische Ver-
lagsgesellschaft Aka GmbH, Berlin, November 2003. 4, 30, 31, 45

[Moo00] Andrew W. Moore. The anchors hierarchy: Using the triangle in-
equality to survive high dimensional data. In Proceedings of the 16th
Conference on Uncertainty in Artificial Intelligence, UAI ’00, pages
397–405, San Francisco, CA, USA, 2000. Morgan Kaufmann Publish-
ers Inc. 31

[MSRB07] Dhruv Mahajan, Ira Kemelmacher Shlizerman, Ravi Ramamoorthi,
and Peter Belhumeur. A theory of locally low dimensional light trans-
port. ACM Trans. Graph., 26, July 2007. 3, 31, 57, 66, 71, 74

[NBB04] Shree K. Nayar, Peter N. Belhumeur, and Terry E. Boult. Lighting
sensitive display. ACM Trans. Graph., 23(4):963–979, 2004. 57, 66

[NRH03] Ren Ng, Ravi Ramamoorthi, and Pat Hanrahan. All-frequency shad-
ows using non-linear wavelet lighting approximation. ACM Trans.
Graph., 22:376–381, July 2003. 4, 39, 49, 50

[NRH04] Ren Ng, Ravi Ramamoorthi, and Pat Hanrahan. Triple product
wavelet integrals for all-frequency relighting. ACM Trans. Graph.,
23(3):477–487, 2004. 49, 50

[NSK+07] Derek Nowrouzezahrai, Patricio Simari, Evangelos Kalogerakis,
Karan Singh, and Eugene Fiume. Compact and efficient genera-
tion of radiance transfer for dynamically articulated characters. In
GRAPHITE ’07: Proceedings of the 5th international conference on
Computer graphics and interactive techniques in Australia and South-
east Asia, pages 147–154, New York, NY, USA, 2007. ACM. 5, 50

[OKP+08] Juraj Obert, Jaroslav Křivánek, Fabio Pellacini, Daniel Sýkora, and
Sumanta N. Pattanaik. iCheat: A representation for artistic control of
indirect cinematic lighting. Computer Graphics Forum, 27(4):1217–
1223, 2008. 58

[ORSS06] Rafail Ostrovsky, Yuval Rabani, Leonard J. Schulman, and Chai-
tanya Swamy. The effectiveness of Lloyd-type methods for the k-
means problem. In In 47th IEEE Symposium on the Foundations of
Computer Science (FOCS), pages 165–176, 2006. 32

82

Bibliography

[PBSP08] Vincent Pegoraro, Carson Brownlee, Peter S. Shirley, and Steven G.
Parker. Towards interactive global illumination effects via sequential
Monte Carlo adaptation. In Proc. of the 3rd IEEE Symposium on
Interactive Ray Tracing, pages 107–114, 2008. 11

[PH04] Matt Pharr and Greg Humphreys. Physically Based Rendering: From
Theory to Implementation. Morgan Kaufmann, 2004. 10, 19

[Phi02] Steven J. Phillips. Acceleration of K-means and related clustering
algorithms. In Algorithm Engineering and Experiments (ALENEX),
pages 166–177, 2002. 30, 31, 33, 34, 42

[PM99] Dan Pelleg and Andrew Moore. Accelerating exact k-means algo-
rithms with geometric reasoning. In Surajit Chaudhuri and David
Madigan, editors, Proceedings of the Fifth International Conference
on Knowledge Discovery in Databases, pages 277–281. AAAI Press,
aug 1999. 30, 31

[PML+09] Pieter Peers, Dhruv K. Mahajan, Bruce Lamond, Abhijeet Ghosh,
Wojciech Matusik, Ravi Ramamoorthi, and Paul Debevec. Com-
pressive light transport sensing. ACM Trans. Graph., 28:3:1–3:18,
February 2009. 3, 71

[PVL+05] Fabio Pellacini, Kiril Vidimče, Aaron Lefohn, Alex Mohr, Mark
Leone, and John Warren. Lpics: a hybrid hardware-accelerated re-
lighting engine for computer cinematography. ACM Trans. Graph.,
24:464–470, July 2005. 48

[Ram09] Ravi Ramamoorthi. Precomputation-Based Rendering. Foundations
and Trends© in Computer Graphics and Vision. Now Publishers Inc,
2009. 30

[Row98] Sam Roweis. EM algorithms for PCA and SPCA. In Proceedings
of the 1997 conference on Advances in neural information processing
systems 10, NIPS ’97, pages 626–632, Cambridge, MA, USA, 1998.
MIT Press. 65, 66

[SHHS03] Peter-Pike Sloan, Jesse Hall, John Hart, and John Snyder. Clus-
tered principal components for precomputed radiance transfer. ACM
Trans. Graph., 22:382–391, July 2003. 4, 6, 30, 31, 33, 37, 39, 43, 49,
50

[Sir87] Lawrence Sirovich. Turbulence and the dynamics of coherent struc-
tures: Dynamics and scaling. Quarterly of Appl. Math., XLV:561–590,
1987. 64

83

Bibliography

[SKS02] Peter-Pike Sloan, Jan Kautz, and John Snyder. Precomputed radi-
ance transfer for real-time rendering in dynamic, low-frequency light-
ing environments. ACM Trans. Graph., 21:527–536, July 2002. 4, 6,
30, 31, 49

[SP94] François Sillion and Claude Puech. Radiosity and Global Illumina-
tion. Morgan Kaufmann Publishers, San Francisco, 1994. ISBN 1-558.
3

[TL04] Eric Tabellion and Arnauld Lamorlette. An approximate global il-
lumination system for computer generated films. ACM Transactions
on Graphics, 23(3):469, 2004. 11

[VG97] Eric Veach and Leonidas J. Guibas. Metropolis light transport. In
Proc. of SIGGRAPH, pages 65–76, 1997. 3, 4, 72

[VP08] Steven G. Parker Vincent Pegoraro, Ingo Wald. Sequential Monte
Carlo adaptation in low-anisotropy participating media. The Euro-
graphics Association and Blackwell Publishing Ltd., 27(4):1097–1104,
2008. 11

[WABG06] Bruce Walter, Adam Arbree, Kavita Bala, and Donald P. Green-
berg. Multidimensional lightcuts. ACM Trans. Graph. (Proc. of
SIGGRAPH), 25(3):1081–1088, 2006. 10

[Wal05] Bruce Walter. Notes on the Ward BRDF. Technical report PCG-05-
06, Program of Computer Graphics, Cornell University, April 2005.
20

[WH92] Gregory J. Ward and Paul S. Heckbert. Irradiance gradients. In
Eurographics Workshop on Rendering, 1992. 11

[WNLH06] Rui Wang, Ren Ng, David Luebke, and Greg Humphreys. Efficient
wavelet rotation for environment map rendering. In Rendering Tech-
niques (Proc. of Eurographics Symposium on Rendering), pages 173–
182, 2006. 14

[WRC88] Gregory J. Ward, Francis M. Rubinstein, and Robert D. Clear. A ray
tracing solution for diffuse interreflection. In Proc. of SIGGRAPH,
1988. 3, 4, 5, 9, 10, 11, 15, 18

[WTL04] Rui Wang, John Tran, and David P. Luebke. All-frequency relight-
ing of non-diffuse objects using separable BRDF approximation. In
Rendering Techniques, pages 345–354, 2004. 49

84

Bibliography

[XJF+08] Kun Xu, Yun-Tao Jia, Hongbo Fu, Shi-Min Hu, and Chiew-Lan Tai.
Spherical piecewise constant basis functions for all-frequency precom-
puted radiance transfer. IEEE Transactions on Visualization and
Computer Graphics, 14(2):454–467, 2008. 31

85

	List of figures
	Introduction
	Global Illumination Problem
	Motivation
	Summary of Contributions
	Thesis Outline

	Spatial Directional Radiance Cache
	Introduction
	Related Work
	Background: Radiance Caching
	Spatial Directional Radiance Caching
	Motivation
	Overview
	New Record Computation
	Incoming Radiance Interpolation
	Outgoing Radiance Computation
	Cache Record Density Control

	Results
	Discussion and Limitations
	Conclusion

	Improving Performance and Accuracy of Local PCA
	Introduction
	Related Work
	Preliminaries
	Problem definition
	Local Principal Component Analysis (LPCA)
	SortMeans: Acceleration of k-means Clustering

	SortClusters LPCA: Acceleration of General LPCA
	Distance Between Affine Subspaces and The Generalized Triangle Inequality
	The SortClusters LPCA Algorithm
	Efficient Evaluation of Inter-Subspace Distance

	Cluster Initialization
	SortMeans++: Accelerated k-means++

	Results
	Compression of PRT data
	BTF compression

	Conclusion

	Relighting of Animation Sequences
	Introduction
	Related Work
	Overview of Our Contribution
	Tensor Exploration
	Definition of the Light Transfer Tensor
	Exploring the Structure of the Light Transfer Tensor
	Computation of the Light Transfer in View Samples

	Wavelet-LPCA
	Classification to Nearest Affine Subspaces
	Update of Affine Subspaces
	Computation of the Sparse Points

	Rendering
	Conclusion

	Conclusion and Future Work
	Spatial Directional Radiance Caching
	SortCluster-LPCA and SortMeans++
	Relighting of Animation Sequences.

	Author's Publications
	Bibliography

