Handling Dynamic Changes in Hierarchical Radiosity

Through Interaction Meshes

S. Carré, J.M. Deniel, E. Guillou, K. Bouatouch

Abstract

This paper describes a radiosity method well suited to dynamic changes while requiring less memory compared to classical hierarchical radiosity. Our method relies on the concept of interaction meshes and does not need any computation of links between patches. The light originating at emitters and arriving at a receiving input surface is stored on separate meshes, each one corresponding to an emitter-receiver pair. These meshes are called interaction meshes and facilitate the handling of dynamic changes since for each input surface the surfaces illuminating it can be determined very quickly. The second advantage of the method is the use of a refinement criterion based on the comparison between the illuminances (illuminance is a photometric quantity equivalent to irradiance) over the receiving surfaces reconstructed from the interaction meshes. This criterion makes possible the use of artificial and natural lighting. Finally this meshing technique suits well to multi-gridding resolution systems for which the interaction meshes are not refined but recomputed at each iteration without cumulating error due to earlier iterations.

Key words: Hierarchical radiosity, dynamic environments, lighting simulation , memory saving.
Introduction

Hierarchical Radiosity (called HR from now on) consists in simulating light exchanges using finite element methods. To be effective, such computations rely on a hierarchical representation of light arriving on and/or leaving surfaces. In addition, links are used to store and compute light contributions between nodes of these hierarchies. With HR, light transports are calculated in medium-sized scenes but the memory needed still grows dramatically when increasing the accuracy of the expected result or the spatial complexity of the scene [Hanrahan90][Hanrahan 91]. One solution consists in avoiding the storage of links by computing links whenever they are needed and removing them once used. This solution reduces the memory cost but slows down the process of determining the different emitters of the incoming light on every surface of the scene any more.

To remedy this, Stamminger et al. [Stamminger98] developed a shooting-based approach to get rid of links. The storage of links is no longer required once unshot radiosity is transported across them. A fixed cache of links is created and links are inserted in a sorted manner into the cache based on the energy they transport. If a link is not in the cache, it is recomputed, possibly leading to expensive recursive refinement. In addition, the global representation of all light exchanges is lost. Complex secondary interactions may thus result in significant additional refinement operations.

In the same spirit, Granier et al. [Granier99] proposed a shooting-based method with a memory control mechanism applied to the link hierarchy. Links are deleted when they no longer transport energy. The authors use the line-space hierarchy which stores the history of link creation. Each potential link is first tested against the refinement criterion. The method decides whether the link has enough unshot energy to perform the transfer at this level. A new criterion is added which is the creation criterion. A certain number of links are still however created, resulting in a peak in memory usage. Instead of an explicit cache, the authors use the link hierarchy to directly limit the memory used by links. This is done by modifying the link creation criterion: before creating a link, a test is performed to see whether the link is above a certain level in the link hierarchy. The cut-off level is estimated based on the memory the user wishes to use.

For handling dynamic changes, in the framework of HR, different methods have been proposed. They consist in locating the links concerned with the change, then either refining these links if the BF refinement criterion [Hanrahan 91]. is no longer met or keeping them as is even though they are too fine for the new lighting conditions imposed by the changes. Although interesting, the method described in [Stamminger98] is less efficient in the context of dynamic environments than the one proposed in [Granier99]. The reason of this is that links have to be recomputed when dynamic changes occur. A more recent approach [Schöffel99] tackles the problem of dynamic management of storage enabling the line-space hierarchy method to be applied even for complex scenes. The method operates as follows. When an object is moved into new regions, missing shafts can be computed during radiosity update. To avoid this additional calculation, movement prediction schemes can be applied. The object movement is extrapolated for future frames, allowing thus to pre-compute shaft data so that it is available to the update process in time when needed. A separate process provides shafts just before they are used. There is no longer a need for storing shafts for all links. The memory used is controlled by a garbage collector that keeps the total size of storage approximately constant. To this end, an age counter is associated with each shaft.

All the methods described above, although they try to limit the memory storage, they still need to store a subset of links and additional data structures (such as the line-space hierarchy) for handling any dynamic change efficiently. We propose a new method to reduce the memory cost while keeping dynamic changes practical and time-effective. This paper presents such a method addressing all these points.

The method presented in this paper mainly relies on the concept of interaction meshes. More precisely, the light originating at all potential emitters and arriving at a receiving input surface is stored on separate meshes, each one corresponding to one emitter. In this way, dynamic changes are taken into account efficiently. The second advantage of the method is the used refinement criterion that is based on the comparison between the illuminances over the receiving surfaces reconstructed from meshes with illuminances computed finely. Let us recall that illuminance is a photometric quantity (equivalent to irradiance in radiometry) which represents the light power received per unit surface and is expressed in lumen per square meter. Finally this meshing technique suits well to multi-gridding resolution systems for which meshes are not refined but recomputed at each iteration without cumulating error due to earlier iterations. During the resolution process the refinement criteria gets finer and finer, that means that the used thresholds get smaller and smaller. The consequence is the fact that the resolution process achieves a faster convergence and lower computation times.

This paper is structured as follows. First we give an overview of the three concepts presented above. In the second section the principles of our radiosity method relying on interaction meshes are detailed. Then we show how to handle dynamic changes in the third section. In the fourth section, we give and comment results about the use of interaction meshes and compare them to usual hierarchical. Finally, we conclude and give some perspectives at the last section.

1 Overview
Our first goal is to simulate artificial and natural lighting at a low memory cost and the second is to handle dynamic changes in an efficient way. When accounting for natural lighting a refinement criterion based on geometry (i.e. form factors) is not sufficient since the sky and the sun luminances are direction-dependent. In [Daubert97] natural lighting is accounted for (in the context of HR) by considering the sky as a dome subdivided into patches. A form factor-based refinement criterion is used and the dome’s patches are considered perfectly diffuse, which is not correct since the sky radiance is direction dependent.

For this reason our radiosity algorithm makes use of a refinement criterion based on the variation of the illuminances over each patch of an input surface. With this criterion, we stop refining a patch when the illuminance over it varies as a linear function (or quadratic or cubic). In our implementation, we chose the linear case. More precisely, given a patch located at a given level of a hierarchical mesh associated with a receiving input surface, we linearly interpolate the illuminances at additional sample points using the illuminances at the four vertices. Illuminance is also actually computed at these additional sample points. The refinement criterion compares the interpolated and calculated illuminances and returns a value "TRUE" only if the two sets of illuminances are close to each other, which means that the illuminance function over the patch is linear. In this case the receiving patch does not need any further subdivision.

Illuminance computation consists in subdividing into patches both the emitting and receiving input surfaces. Once light energy has been transferred by the emitting input surface to the patches of the receiving input surface, only the illuminance values on the receiving input surface are stored in an interaction mesh while the resulting subdivision of the emitting input surface is left out. This has the advantage of saving memory. In addition, from one iteration to another the emitter’s subdivision for this receiver tends to get coarser or finer as shadows fade out or get sharper. That is why keeping the subdivision of the emitter for a particular light transport is not necessary because our emitter refinement criterion is not purely geometry-based.

Third we need to keep track of light flux received from different kinds of emitters. To this end, input surfaces sharing some photometric properties are grouped into layers. Then the illuminance function over an input surface is reconstructed by summing the contributions of the associated interaction meshes resulting from different layers (rather than input surfaces) which have already shot energy towards this input surface. We use the term layer to designate a group of objects or surfaces as used in the AUTOCAD modeler. The layers are defined by the user through the modeling session. Note that the notion of layer as used in this paper is different from that of cluster usually employed in hierarchical radiosity. Note also that our new radiosity method does not make use of any clustering technique for accelerating the resolution process. For instance a layer can be made of walls or by some sources of the same kind. The other main advantage of using layers is that when several surfaces emit their energy at the same time toward the same receiver, the resulting illuminance variation over the receiver gets smoother and consequently fewer meshes are generated on it. The obtained lists of interaction meshes make dynamic changes smarter and easier since the influence of a layer on the illuminance of a surface is simply and immediately accessed or modified without any complex operation.

Last of all, the computation of illuminance over the scene is based on a multi-gridding resolution technique. Because neither links nor emitter subdivisions are stored, the illuminance over an input surface is not refined from iteration to iteration but entirely recomputed. The corresponding interaction meshes may vary depending on the evolution of the sharpness of shadows during the resolution process. This kind of solving method allows a coarse approximation of illuminance over the scene at the beginning of the simulation. During successive iterations, the refinement criterion gets finer and finer without cumulating previous approximation errors, that is why the user can quickly get early but coarse previews of his lighting project. More precise results can be obtained by waiting for further and longer iterations using the previously less precise computed results. Furthermore, dynamic changes can be handled in a smart way using this multi-gridding approach coupled with interaction meshes.

The pseudo-code in the fig. 1.1 presents the global method for solving the radiosity equation over the scene. It is described in detail in the next section. Dynamic changes will be presented in a following section.

Shooting() {

While(convergence_ratio < threshold) {

 // Choose the most emitting layer of surfaces given

 // an energetic residual value associated with

 // each layer.

Layer_source=Choice_of_a_group_of_emitters();

 // Take the energy of each input surface within

 // the chosen emitting layer and shoot it toward the entire scene.

For all the receiving input surfaces R of the scene {

 // The interaction mesh associated with R is removed.

Delete_interaction_mesh(layer_source,R);

 // Computation of the new interaction mesh.(

IM(layer_source,R)=Compute_interaction_mesh(layer_source,R);

 //Update the residual energy from input surface.(

Update_residue(R);

}

 // Store the state of the current chosen layer

 // used during the shooting step.(

 Copy_interaction_meshes_into_residue_meshes(layer_source);

}

}

Fig. 1.1 Pseudo-code of our algorithm.

· (During the shooting process, the interaction meshes, called IM(Layer_source,R) from now on, are entirely recomputed regardless of their previous structure.

· (The update_residue(R) method recomputes the energetic residue related to each R input surface. For each of these R, this residue corresponds to the portion of the impinging energy that has not been yet shot.

· (Copy_interaction_meshes_into_residue_meshes() is a function which copies the interaction mesh into a residual interaction mesh as will be explained later on.
2 Principles of our radiosity approach

In this section we describe the different parts of the algorithm presented above.

2.1 Interaction meshes

There exist several techniques which can handle light transport between two surfaces. We study and compare three of them to present the one we chose in our approach.

First, hierarchical meshes represent both the receiver and emitter subdivisions as well as the links between nodes of the associated hierarchies (figure 2.1). Each link corresponds to a light transport between two nodes. Push-pull operations are needed and links are to be stored. The first main drawback of this method is that the high memory cost for storing links is still high. The second main drawback is the high complexity of managing all the data structures involved and of achieving good energy balance through the hierarchy of light exchanges. These drawbacks can be partially avoided by using the methods described in [Stamminger98] and [Granier99].

[image: image1.wmf]
Figure 2.1 Use of links and hierarchical subdivision of emitters and receivers.

Second, we can still represent illuminance over the receiver with a hierarchy of nodes but limit the knowledge of the incoming flux from the source. Here the origin of all links between nodes of the emitter and nodes of the receiver is reduced to the only root node of the emitter (figure 2.2). The hierarchy representing the emitter for this particular transport can be left out. This technique still needs push-pull operators but limits the memory cost due to the storage of the links

[image: image2.wmf]
Fig. 2.2 Limiting the number of links and deleting the decomposition of the emitters

Third, our approach makes use of interaction meshes that are an extreme simplification of the previous meshing techniques. We do not store links anymore. Instead, for each input surface, multiple meshes are stored, each one resulting from a different emitting layer. Each emission (shooting process) implies the subdivision of the surfaces of the emitting layer which may vary over time because it gets more and more energy from iteration to iteration of the shooting process. Once this emission has been completed, this subdivision is left out because it is likely different from the one computed when this emitting layer has already gathered energy from other layers. This subdivision is used only for computing light transport between all the surfaces of the emitting layer and a receiving surface R. Once light transport, between the emitting layer and the receiving surface, has been accomplished the resulting links between nodes of R and the layer are deleted. This technique expenses a little bit memory than the previous one (second) but is still very interesting compared to classical HR. Besides, this technique allows the use of different refinement criteria for receivers and emitters, generating then different meshing techniques (bintree, discontinuity meshes, etc).

[image: image3.wmf]
Fig. 2.3 Using interaction meshes for reducing memory cost.

2.2 Refinement criterion
In our case, a mesh, associated with an input surface, is a binary tree whose nodes are patches. Illuminance is computed at the vertices of each patch. For implementing our refinement criterion, additional sample points are generated on the receiving patch and illuminance, due to all the input surfaces of the emitting layer, is computed at these additional points. Illuminance at a sample point P, due to an input surface S of the emitting layer, is computed by a discrete evaluation of the integral (over the solid angle subtended by S and whose apex is the point P) of the product of the incidence radiance (that of S), the cosine of the incidence angle and the differential solid angle whose apex is P and subtended by a differential area around a point of S. This discrete evaluation entails a subdivision of all the input surfaces of the emitting layer. It can be performed with a deterministic or a stochastic approach such as Monte Carlo.

More precisely, first an illuminance value EC is computed at the vertices of the current receiving patch and at the additional points whose number depends on the area of this patch. Then we compute for each sample point a relative error
[image: image4.wmf]C

C

I

E

E

E

-

, where EC represents the illuminance (due to the emitting layer) computed at each additional sample point and EI is the illuminance at each sample point reconstructed by linear interpolation from the computed illuminance values at the vertices of the receiving patch. As soon as none of these errors exceeds a threshold fixed by the user, the meshing process ends up. Otherwise this process is recursively repeated for the resulting new patches. In this manner the resulting mesh gets more precise at the regions with highly varying illuminances (like shadows and penumbras). Note that the additional sample points are re-used at the subsequent subdivisions.

[image: image5.wmf]
[image: image6.wmf]

Level one: no subdivision, one patch
level two: one subdivision, two patches

[image: image7.wmf]
 [image: image8.wmf] [image: image9.wmf]

Level tree: four patches
level four: seven patches and so on

Fig. 2.3 Adaptive subdivision defined during the recursive process

2.3 Resolution method
Our iterative resolution method relies on a multi-gridding approach. The main resolution loop of the algorithm follows the shooting method (see figure 1.1): at each iteration, a layer of input surfaces is chosen to emit its energy over the entire scene. This layer has the highest residual flux. The meaning of this residue will be detailed hereafter.

At each iteration, the chosen emitting layer E emits its light toward all the input surfaces R, including its own surfaces. More precisely, all the surfaces belonging to the emitting layer emit their energy toward the input surfaces of R at the same time. The process of emission consists in computing the illuminance at each sample point of a receiving surface R due to all the surfaces belonging to E. For each E, two interaction meshes are associated with R: IM(E,R) which represents the illuminance over R due to the most recent contribution of E (remember that our resolution method follows a multi-gridding approach), and RM(E,R) which is a copy of the interaction mesh IM(E,R) that was assigned to R just before the most recent selection (as an emitting layer) of the layer containing R. RM(E,R) is referred to as Residual Mesh. Note that when a layer E’ is chosen as an emitting layer, for each input surface R within E’ and each potential other emitting layer E the associated mesh IM(E,R) is copied into the associated mesh RM(E,R). Consequently, with each input surface R are associated one list of IM(E,R) and one other list of RM(E,R). These two lists contain a number of meshes equal to the number of potential emitting layers E. In addition, we build a temporary mesh T(E,R) which corresponds to the difference between IM(E,R) and RM(E,R), then we compute the flux res(E,R) associated with T(E,R) which represents the unshot flux (or residual flux) of R due to E. Note that the flux of a surface is computed as the average illuminance over the surface (computed by averaging the illuminances at the sample points which are also the patches’ vertices) multiplied by the reflectance and by the area of this surface. By summing all these residual fluxes we obtain the global residual flux res(R) associated with a surface R. The emitting layer E selected by the shooting process is that of maximum residual flux.
Let us now detail the different resolution steps involving E and each R, E being the current selected emitting layer.

· The old interaction mesh IM(E,R) representing illuminance over R due to E is deleted (if it already exists). The data structure used in our method makes this deletion easier and faster.
· A new interaction mesh IM(E,R) is computed, using the new luminances over the input surfaces within E (see figure 2.4).

 [image: image10.wmf]
Fig. 2.4 Computing the interaction mesh. From now on, the black meshes are those created/modified at the current iteration, while the grey ones are those which remain unchanged.

· Compute res(E,R). If R has never emitted any energy due to E over the scene, res(E,R) corresponds to the flux leaving R and due to IM(E,R) through the reflectance of R. Otherwise R has already emitted some energy coming from E. In this case two particular meshes are available among the data of R. The first is the new IM(E,R). The second, denoted RM(E,R) and called residual mesh, corresponds to the illuminance state of R due to E at the preceding light emission from R to the rest of the scene.

· The residue res(R) of R is updated since IM(E,R) has changed. This residue is a collection of elementary residues res(E,R) corresponding to each interaction mesh IM(E,R) due to all the potential layers E in the scene visible to R. If R has not yet emitted its energy over the scene res(E,R) corresponds to the flux leaving R due to IM(E,R). Otherwise res(E,R) is the flux equivalent to the absolute difference between RM(E,R) and IM(E,R) (see figure 2.5).

[image: image11.wmf]
Fig 2.5: Updating the residue value for the receiver.

Once the emitting layer E’ has emitted its energy toward all potential receivers in the scene, the interaction meshes IM(E,
[image: image12.wmf]'

E

R

) associated with each input surface
[image: image13.wmf]'

E

R

 within E’ and due to another layer E are copied into the associated residual meshes RM(E,
[image: image14.wmf]'

E

R

).
[image: image15.wmf]
Fig. 2.6: Storing the state of the emitter after his emission.

The main loop stops when arriving at the convergence state. The convergence criterion is based on the ratio between the sum of the surface residues and the initial flux computed from the light sources.

To see what happens once the first time one layer has emitted its energy toward another, let us take the example of figure 2.6. In this example, the left wall emits its light towards the ceiling for the second time. As we can see in figure 2.7, the interaction mesh IM(Wall, Ceiling) is recomputed but the residual mesh RM(Wall, Ceiling) does not change because the ceiling did not yet emit its residual energy.

[image: image16.wmf]
Figure 2.7 Second emission of the wall.

To determine the convergence state and the next emitting layer the residue for all the surfaces is computed. In the case of the ceiling this is done by using IM(Wall, Ceiling) and RM(Wall, Ceiling) in particular. This residue computation uses an absolute difference between these two meshes as described in the figure 2.8.

[image: image17.wmf]
Fig. 2.8 The residue value of the ceiling is updated using the residue and interaction meshes.

2.4 Discussion about our resolution method

The main interest in our method is related to the use of the multi-gridding resolution approach. The two kinds of interaction meshes together with our subdivision criterion improve the multi-gridding efficiency and make easier the implementation of our method. Indeed, after a certain number of iterations, most of the surface meshes IM(E,R) get coarser (because they have been illuminated many times by several layers whose illuminances approach more and more to stable values corresponding to the convergence state) while the meshes of other surfaces containing shadows get finer and finer.

The other great interest in our approach lies in the ability of efficiently managing dynamic changes in the scene. Recall that dynamic changes consist in modifying some parameters of the lighting project. Managing them efficiently means that the dynamic changes must entail few extra computations. Interaction meshes suit well to dynamic changes because they allow to easily determine the surfaces illuminating another surface. Dynamic changes are addressed in the following section.

3 Dynamic changes

Dynamic changes consist in modifying some parameters of the lighting project such as skylight and artificial light sources, surface coatings and objects placement. In the case of a lighting project many modifications are common and may lead to high extra computing time. To be effective, these changes must entail fewer computations. For example a small variation of skylight conditions should not lead to an entire re-computation of illuminance over the scene.

In our case, all changes are managed in two passes: correction of meshes concerned with the changes, then propagation of these corrections through the scene.

In what follows, the different kinds of dynamic changes are discussed and solutions are brought for handling them efficiently.

3.1 Fast changes

Interaction meshes are well suited to dynamic changes because they allow to locate and re-compute rapidly the illuminance over a surface due to a particular layer. In addition as our subdivision criterion is based on a relative error on illuminance gradient, this leads to meshes whose precision is independent of the absolute illuminance values over a surface.

Changes which can be handled rapidly concern the modification of surface reflectance, the spectral distribution and the flux of the artificial light sources (different from natural light). For every surface in the scene, the meshes representing illuminance gathered from layers whose properties have been changed, are immediately updated by means of a simple scaling operation. For example, if the reflectance of a layer E is changed, the spectral illuminances of all the surfaces illuminated by E are simply scaled for each spectral component (corresponding to a certain wavelength sample). In other words, the residual mesh RM(E,R) does not change and the interaction mesh IM(E,R) remains the same except the illuminance values stored in this mesh which are scaled. This processing will be referred to as the correction phase.

[image: image18.wmf]
Figure 3.1 Before the modification. The coating of the wall is going to change.

[image: image19.wmf]
Figure 3.2 After the correction. Interaction meshes have been scaled.

This scaling operation entails an augmentation or a diminution of energy in the scene. To ensure energy balance, any resulting augmentation or diminution is propagated into the scene using additional iterations in the iterative resolution process. This will be referred to as the propagation step.

3.2 Significant changes:

When lighting conditions change significantly, simple scaling of energy captured by the interaction meshes is not enough. These changes concern any modification of the photometry and the orientation of the artificial light sources or the skylight model. In these cases, for every surface S the previously computed interaction meshes IM(L,S) (L being a light source) cannot represent scalable values nor gradients of illuminance incoming from the newly modified layers any more.

To handle efficiently this kind of change we must recompute the direct contribution of the modified layer L to the illuminance at each surface S (see figure 3.3). Each interaction mesh IM(L,S) is entirely recomputed.

[image: image20.wmf]
[image: image21.wmf]
Figure 3.3 Deleting and re-computing interaction meshes after skylight changes. When skylight conditions change, some interaction meshes are deleted then entirely recomputed

Similar to previous scaling operations, propagating these kinds of change over the scene requires further iterations for reaching the convergence state.

The first pass (correction) of this process gives meshes adapted to the new photometrical parameters without any excess nor lack of precision. Unlike link-based methods certain meshes may get coarser whenever light source modifications are effected. This is particularly interesting when the user often modifies light source orientations and natural lighting conditions.

3.3 Manipulating objects :

Three kinds of object manipulation are possible: removing, adding and moving. For moving an object, our technique proceeds by removing then placing this object at its new location. Consequently, in what follows, we will focus only on object removal and object addition.

The problem of dynamic changes in the context of progressive radiosity has been addressed in [George 90], [Chen 90], [Müller 94] and [Sillion 94]. Unlike other HR methods such as [Forsyth 95] and [Drettakis 97], we do not use links to handle dynamic changes. For handling a change, these methods first determine all the links concerned with this change, then check if these links still meet the refinement criteria. If so, these links are left as is even though they are too fine for the new lighting conditions related to the current change. Moreover, managing and accounting for these links may entail significant extra computations that slow down hierarchical radiosity. Instead of refining links, our method re-computes the interaction meshes associated with the surfaces concerned with the current dynamic change. Re-computing meshes is a simpler and faster operation. Recall that the link storage problem has also been addressed in [Stamminger98] and [Granier99].

Object removal

First, we remove all the influences on the scene of the object to be removed. Suppose this object belongs to a layer L. To do so, for each surface S of the scene the interaction mesh IM(L,S) is removed (see figure 3.4). Second, all the layers L’ that have already emitted energy toward L are flagged. Third, to remove the shadows due to the surfaces within L we allow all the flagged layers L’ to shoot again their energy toward the scene (see fig. 3.5). The two first operations are easily performed thanks to the data structures associated with the interaction meshes. The third step is time consuming but has two benefits. First it is the primary step (say correction step) of the two-pass process which carries out the change and entails simpler meshes since some shadows are likely removed. Second, since our resolution follows a multi-gridding scheme, this third step can be viewed as a new set of iterations of the shooting process leading to more and more accurate solutions. In other words, any object removal avoids any overestimation of energy transfer.

[image: image22.wmf]
[image: image23.wmf]
Fig. 3.4 Initial conditions before removing the spherical object
and deleting all the interaction meshes IM(object,*).

[image: image24.wmf]
[image: image25.wmf]
Fig. 3.5 Re-emission of the wall and the ceiling onto the all scene.

Adding objects

When adding an object, the correction and the propagation steps are carried out as follows. First, all the layers in the scene that have already emitted their energy (say, those which have already been selected as emitting layers) emit again their energy but only toward the added object. Amongst these layers, those which effectively view the added object (more precisely, those which have generated an IM(l,object) for the added object) shoot their energy toward all the layers within the scene except the added object. This correction step generates shadows due to the added object and allows to coherently illuminate this object (see figure 3.7). Unlike other methods, our correction step does not limit to only parts of the scene (for reducing the computing time using shaft culling volumes) but operates on the whole scene by adding new iterations in the overall shooting process.

[image: image26.wmf]
[image: image27.wmf]
Fig. 3.4 Initial conditions before adding the spherical object
and emission of the ceiling and the wall toward this object.

[image: image28.wmf]
[image: image29.wmf]
Fig. 3.4 Emission of the wall and the ceiling onto the all scene.

3.4 Previous work and discussion.

Some previous works dealing with dynamic changes are based on progressive radiosity [George 90], [Chen 90], [Müller 94] while some others such as [Forsyth95] rely on HR and operate on links. These methods go through all the data structures representing the links. For each of these links, if the BF criterion is not met this link is refined, otherwise it is kept as it is even though it is too fine. Refining a link consists in removing it as well as all the radiosities brought by this link to each node of the hierarchy associated with the corresponding receiving surface. More recent and faster methods [Drettakis 97], [Granier98], [Schöffel99] make use of data structures such as the line-space hierarchy and shaft culling volumes, which require a large amount of memory.

As our method does not make use of clustering, we did not compare it with that described in [Drettakis 97].

We do not pretend that our method is faster than the ones above (which would require implementing the other existing methods) but we can assert that our approach is easier to implement and well suited to dynamic changes thanks to the interaction meshes and the multi-gridding resolution scheme.

In addition, our technique is efficient from the user point of view because carrying out corrections takes a short time while giving accurate results. Indeed, every recomputed mesh fits well with the new lighting conditions. In addition, the overall resolution algorithm naturally propagates these changes in a time related to the energetic unbalances they entail.

4 Results

Our test-scene is made up of 5008 input polygonal surfaces and is illuminated by natural light (figure 4.3). The scene is illuminated by 12 artificial light sources and by natural light (through the holes in the walls). A clear sky model is used. The sun is low and has a solar altitude (in degrees) of 10 degrees. As our objective is lighting simulation, our refinement and convergence criteria are very fine, which requires finer meshes at locations with high illuminance gradients. It is important to notice that the classical H.R. algorithm we used does not aim at high performance at all. It has been designed for a purpose of inverse illumination. Consequently, it requires a high running time and a large amount of memory, compared to commonly used HR algorithms. In addition, this classical HR algorithm is based on the same refinement criterion operating on illuminances and needs a very large memory that is not available in our computers. For this reason we chose coarser criteria (higher thresholds) for this classical HR, which explains the lower number of patches in the following table. On the other hand, our radiosity method based on interaction meshes makes use of finer criteria (figure 4.3). The following table contains the results obtained with the two methods. Note that the two methods use different data structures and do not employ any clustering technique.

Hierarchical Radiosity

(direct illumination only)
Interaction mesh method

(global illumination)

Input surfaces
5008
5008

Execution time
2h 37mn
34mn

Number of patches (hierarchy’s nodes)
63,188
227,830

Memory for storing patches
7,582 Kb
7,290 Kb

Number of links
1,423,463
0

Memory for storing links
62,632 Kb
0

Number of additional sample points
448,019
220,510

Memory for storing the sample points
14,336 Kb
4,410 Kb

Number of interaction meshes
0
16624

Memory for storing interaction meshes
0
598 Kb

Total memory needed
326,988 Kb
30,895 Kb

Let us give now the different parameters that have to be tuned for running our method and classical HR.

· Our Interaction Mesh-based method:

- The minimum distance between two sample points is set to 10 cm.

· Relative error threshold: This threshold limits the acceptable relative error between the computed and reconstructed illuminances at a given sample point (see section 2.2). This threshold is used by the refinement criterion to check if the illuminance over a patch varies linearly. It is fixed to 1%.

· Maximum number of sample points (on a patch) at which illuminance is evaluated: Used by the refinement criterion. It is fixed to 80 points.

· Our classical H.R:

· Maximum number of sample points: It has the same meaning as above except the fact that the refinement criterion checks if the illuminance over a patch is constant instead of linear. It is set to 16.

· The minimum distance between two sample points is set to 8cm

· Minimum patch edge: This limits the minimum size of the resulting patches. It is set to 4cm.

· Absolute error threshold: Used by the refinement criterion to check if the illuminance over a patch is constant. It is set to 0.1 lumen per square meter.

· Visibility Computation threshold: Between two patches exchanging energy, no finer occlusion computation will occur if the emitted flux falls under this threshold. It is set to 0.5 watt.

We can remark that our method outperforms this HR algorithm in term of memory space and running time even though the used classical HR considers coarser refinement criteria. The number of interaction meshes is not large since each interaction mesh of a surface is due to a layer (a group of input surfaces) and not to another input surface. The number of hierarchical nodes (nodes of interaction meshes) is reasonable because, as the interaction meshes are deleted before being computed again, the illuminance gradient over a surface gets coarser and coarser in all the regions which do not contain shadows. Figures 4.1 and 4.2 show the resulting meshes obtained with our interaction mesh method and classical HR respectively. We can see on these figures, thanks to figure 4.3, that our method builds coarse meshes at regions with smooth illuminance gradient and finer meshes elsewhere.

[image: image30.png]

Fig. 4.1: Interaction meshes

[image: image31.png]

Fig.4.3: Result using interaction meshes after complete convergence.

[image: image32.png]it

Fig. 4.2: Standard HR meshes

Regarding dynamic changes, we obtained the following results. The effect of modifying the color of the walls, the flux, the spectrum and the intensity distribution of a light source, the natural lighting conditions (by changing the solar altitude from 10 degrees to 3 degrees) took respectively less than 1s, 1s, 5s, 23s, and 9mn to get a new illumination. Removing the 6 chairs took less than 6mn.

5. Conclusion
In this paper we presented a new meshing technique, for hierarchical radiosity, that is well suited to a multi-gridding resolution scheme. It has some strong advantages, in terms of memory cost, computation time and dynamic change capabilities. Separating the contributions to an input surface of different layers tends to improve the computation time as well as memory expense compared to traditional techniques relying on links. This smart but easy-to-implement technique is currently used in natural and artificial lighting projects. As mentioned in the previous sections, we did not compare our method with others designed for getting rid of links or limiting the memory storage entailed by the computed links. We do not claim that our method uses a better approach but we can assert that it represents a new alternative for lighting dynamic scene.

Two new directions are currently under investigation. The first one will consist in extending the concept of interaction mesh to scenes containing specular objects (glossy and perfect specular reflection). The second will aim to handling very large scenes made up of diffuse and specular objects by relying on existing or new partitioning techniques (to be devised) into cells and visibility information between cells as already done for scenes composed of diffuse objects only.

6. References
 [Chen 90]
S. Chen. Incremental Radiosity : An Extension of Progressive Radiosity to an Interactive Image Synthesis System. Proceedings of Siggraph '90.

 [Drettakis 97]
G. Drettakis, F. Sillion. Interactive Update Of Global Illumination Using A Line-Space Hierarchy. Proceedings of Siggraph '97.

 [Forsyth 95]
D. Forsyth, C. Yang, K. Teo. Efficient Radiosity in Dynamic Environments. Proceedings of the fifth Eurographics Workshop on Rendering. 1995.

[George 90]
D. George, F. Sillion, D. Greenberg. Radiosity Redistribution for Dynamic Environments. IEEE Computer Graphics & Applications. 1990.

[Hanrahan 90]
P. Hanrahan, D. Salzman. A Rapid Hierarchical Radiosity Algorithm for Unoccluded Environments. K. Bouatouch, Photosimulation, Realism and Physics in Computer Graphics. Springer-Verlag 1990

[Hanrahan 91]
P. Hanrahan, D. Salzman, L. Aupperle. A Rapid Hierarchical Radiosity Algorithm. Proceedings of Siggraph '91.

 [Müller 94]
S. Müller, F. Schöffel. Fast radiosity repropagation for interactive virtual environments using a shadow-form-factor-list. Proceedings of the fifth Eurographics Workshop on Rendering. 1994.

 [Sillion 94]
F. Sillion, C. Puech. Radiosity & Global Illumination, Morgan Kaufmann, San Francisco, 1994.

[Stamminger98]
Stamminger, H. Shirmacher and Ph. Shlusallek, Getting Rid of Links in a Hierarchical Radiosity, Eurographics’98, Lisbon, 1998.

[Granier99]
X. Granier and G. Drettakis, Controlling Memory Consumption of Hierarchical Radiosity With Clustering, Graphics Interface’99, Kingston, 1999.

[Schöffel]
F. Shöffel and Andreas Pomi, Reducing Memory Requirements for Interactive Radiosity Using Movement Prediction, Eurographics Workshop on Rendering, Granada, 1999.

[Daubert]
K. Daubert, H. Shirmacher, F. Sillion and G. Drettakis, Hierarchical Lighting Simulation for Outdoor Scenes, Eurographics Workshop on Rendering, Saint Etienne, 1997.

4
4

_1002787564.unknown

_1017471858.doc
[image: image1.png]sample point whose illuminance - sample point whose illuminance has

_1002787616.unknown

_986717444.unknown

_1002787330.unknown

