Photons

$$L(x,\vec{\omega}) = \int_{\Omega} f_r(x,\vec{\omega}',\vec{\omega}) L'(x,\vec{\omega}') \cos \theta' d\omega$$

$$\begin{split} L(x,\vec{\omega}) &= \int_{\Omega} f_r(x,\vec{\omega}',\vec{\omega}) L'(x,\vec{\omega}') \cos \theta' \, d\omega \\ &= \int_{\Omega} f_r(x,\vec{\omega}',\vec{\omega}) \frac{d\Phi^2(x,\vec{\omega}')}{d\omega \, \cos \theta' dA} \, \cos \theta' d\omega \end{split}$$

$$\begin{split} L(x,\vec{\omega}) &= \int_{\Omega} f_r(x,\vec{\omega}',\vec{\omega}) L'(x,\vec{\omega}') \cos\theta' \, d\omega \\ &= \int_{\Omega} f_r(x,\vec{\omega}',\vec{\omega}) \frac{d\Phi^2(x,\vec{\omega}')}{d\omega \cos\theta' dA} \cos\theta' d\omega \\ &= \int_{\Omega} f_r(x,\vec{\omega}',\vec{\omega}) \frac{d\Phi^2(x,\vec{\omega}')}{dA} \end{split}$$

$$\begin{split} L(x,\vec{\omega}) &= \int_{\Omega} f_r(x,\vec{\omega}',\vec{\omega}) L'(x,\vec{\omega}') \cos\theta' \, d\omega \\ &= \int_{\Omega} f_r(x,\vec{\omega}',\vec{\omega}) \frac{d\Phi^2(x,\vec{\omega}')}{d\omega \cos\theta' dA} \cos\theta' d\omega \\ &= \int_{\Omega} f_r(x,\vec{\omega}',\vec{\omega}) \frac{d\Phi^2(x,\vec{\omega}')}{dA} \\ &\approx \sum_{p=1}^n f_r(x,\vec{\omega}'_p,\vec{\omega}) \frac{\Delta\Phi_p(x,\vec{\omega}'_p)}{\pi r^2} \end{split}$$

The photon map datastructure

The photons are stored in a left balanced kd-tree

```
struct photon = {
  float position[3];
  rgbe power; // power packed as 4 bytes
  char phi, theta; // incoming direction
  short flags;
}
```

Rendering: Caustics

Caustic from a Glass Sphere

Photon Mapping: 10000 photons / 50 photons in radiance estimate

Caustic from a Glass Sphere

Path Tracing: 1000 paths/pixel

Sphereflake Caustic

Reflection Inside A Metal Ring

50000 photons / 50 photons in radiance estimate

Caustics On Glossy Surfaces

340000 photons / \approx 100 photons in radiance estimate

HDR environment illumination

Using lightprobe from www.debevec.org

Cube Caustic

Global Illumination

100000 photons / 50 photons in radiance estimate

Global Illumination

500000 photons / 500 photons in radiance estimate

Fast estimate

200 photons / 50 photons in radiance estimate

Indirect illumination

10000 photons / 500 photons in radiance estimate

Global Illumination

Global Illumination

global photon map

caustics photon map

Photon tracing

- Photon emission
- Photon scattering
- Photon storing

Photon emission

Given Φ Watt lightbulb. Emit N photons. Each photon has the power $\frac{\Phi}{N}$ Watt.

 Photon power depends on the number of emitted photons. Not on the number of photons in the photon map.

What is a photon?

• Flux (power) - not radiance!

Collection of physical photons
 * A fraction of the light source power
 * Several wavelengths combined into one entity

Diffuse point light

Generate random direction Emit photon in that direction

// Find random direction
do {
 x = 2.0*random()-1.0;
 y = 2.0*random()-1.0;
 z = 2.0*random()-1.0;
} while ((x*x + y*y + z*z) > 1.0);

Example: Diffuse square light

- Generate random position p on square
- Generate diffuse direction \boldsymbol{d}
- Emit photon from \boldsymbol{p} in direction \boldsymbol{d}

// Generate diffuse direction

- u = random();
- $v = 2*\pi*random();$
- d = vector($cos(v)\sqrt{u}\,\text{, }sin(v)\sqrt{u}\,\text{, }\sqrt{1-u}$);

Surface interactions

The photon is

- Stored (at diffuse surfaces) and
- Absorbed (A) or
- Reflected (R) or
- Transmitted (T)

A + R + T = 1.0

Photon scattering

The simple way:

Given incoming photon with power Φ_p Reflect photon with the power $R * \Phi_p$ Transmit photon with the power $T * \Phi_p$

Photon scattering

- The simple way:
- Given incoming photon with power Φ_p Reflect photon with the power $R * \Phi_p$ Transmit photon with the power $T * \Phi_p$
- Risk: Too many low-powered photons wasteful!
- When do we stop (systematic bias)?
- Photons with similar power is a good thing.

- Statistical technique
- Known from Monte Carlo particle physics
- Introduced to graphics by Arvo and Kirk in 1990

Probability of termination: p

$E\{X\}$

Probability of termination: p

 $E\{X\} = p \cdot 0$

$$E\{X\} = p \cdot 0 + (1-p)$$

$$E\{X\} = p \cdot 0 + (1-p) \cdot \frac{E\{X\}}{1-p}$$

$$E\{X\} = p \cdot 0 + (1-p) \cdot \frac{E\{X\}}{1-p} = E\{X\}$$

Probability of termination: p

$$E\{X\} = p \cdot 0 + (1-p) \cdot \frac{E\{X\}}{1-p} = E\{X\}$$

Terminate un-important photons and still get the correct result.

Russian Roulette Example

```
Surface reflectance: R = 0.5
Incoming photon: \Phi_p = 2 W
```

```
r = random();
if ( r < 0.5 )
  reflect photon with power 2 W
else
  photon is absorbed
```

Russian Roulette Intuition

Surface reflectance: R = 0.5200 incoming photons with power: $\Phi_p = 2$ Watt

Reflect 100 photons with power 2 Watt instead of 200 photons with power 1 Watt.

- Very important!
- Use to eliminate un-important photons
- Gives photons with similar power :)

Sampling a BRDF

$f_r(x, \vec{\omega}_i, \vec{\omega}_o) = w_1 f_{r,1}(x, \vec{\omega}_i, \vec{\omega}_o) + w_2 f_{r,2}(x, \vec{\omega}_i, \vec{\omega}_o)$

Sampling a BRDF

$$f_r(x, \vec{\omega}_i, \vec{\omega}_o) = w_1 \cdot f_{r,d} + w_2 \cdot f_{r,s}$$

r = random()· $(w_1 + w_2)$;
if (r < w_1)
 reflect diffuse photon
else
 reflect specular

Rendering

Direct Illumination

Specular Reflection

Caustics

Indirect Illumination

Rendering Equation Solution

$$L_{r}(x,\vec{\omega}) = \int_{\Omega_{x}} f_{r}(x,\vec{\omega}',\vec{\omega})L_{i}(x,\vec{\omega}')\cos\theta_{i} d\omega_{i}'$$

$$= \int_{\Omega_{x}} f_{r}(x,\vec{\omega}',\vec{\omega})L_{i,l}(x,\vec{\omega}')\cos\theta_{i} d\omega_{i}' +$$

$$\int_{\Omega_{x}} f_{r,s}(x,\vec{\omega}',\vec{\omega})(L_{i,c}(x,\vec{\omega}') + L_{i,d}(x,\vec{\omega}'))\cos\theta_{i} d\omega_{i}' +$$

$$\int_{\Omega_{x}} f_{r,d}(x,\vec{\omega}',\vec{\omega})L_{i,c}(x,\vec{\omega}')\cos\theta_{i} d\omega_{i}' +$$

$$\int_{\Omega_{x}} f_{r,d}(x,\vec{\omega}',\vec{\omega})L_{i,d}(x,\vec{\omega}')\cos\theta_{i} d\omega_{i}'.$$

Features

- Photon tracing is unbiased
 - * Radiance estimate is biased but consistent
 * The reconstruction error is local
- Illumination representation is decoupled from the geometry

200000 global photons, 50000 caustic photons

Box: Global Photons

200000 global photons

Fractal Box

200000 global photons, 50000 caustic photons

Cornell Box

Indirect Illumination

Little Matterhorn

Mies house (swimmingpool)

Mies house (3pm)

Mies house (6pm)

More Information

http://graphics.stanford.edu/~henrik henrik@graphics.stanford.edu