Introduction to Monte Carlo Method

Kadi Bouatouch
IRISA
Email: kadi@irisa.fr

- IRISA

Why Monte Carlo Integration?

- To generate realistic looking images, we need to solve integrals of 2 or higher dimension
- Pixel filtering and lens simulation both involve solving a 2 dimensional integral
- Combining pixel filtering and lens simulation requires solving a 4 dimensional integral
- Normal quadrature algorithms don't extend well beyond 1 dimension

Continuous Probability

- The distribution of values that x takes on is described by a probability distribution function p
- We say that x is distributed according to p, or $x \sim p$
$-p(x) \geq 0$
- $\int_{-\infty}^{\infty} p(x) d x=1$
- The probability that x takes on a value in the interval $[\mathrm{a}, \mathrm{b}]$ is: $\mathrm{P}(x \in[a, b])=\int_{a}^{b} p(x) d x$

Expected Value

- The expected value of $x \sim p$ is defined as
$E(x)=\int x p(x) d x$
- As a function of a random variable is itself a random variable, the expected value of $f(x)$ is $E(f(x))=\int f(x) p(x) d x$
- The expected value of a sum of random variables is the sum of the expected values:
$\mathrm{E}(x+y)=\mathrm{E}(x)+\mathrm{E}(y)$

Multi-Dimensional Random Variables

- For some space S, we can define a pdf $p: S \rightarrow \mathfrak{R}$
- If x is a random variable, and $x \sim p$, the probability that x takes on a value in $S_{i} \subset S$ is:

$$
\mathrm{P}\left(x \in S_{i}\right)=\int_{S_{i}} p(x) d \mu
$$

- Expected value of a real valued function $f: S \rightarrow \mathfrak{R}$ extends naturally to the multidimensional case:

$$
E(f(x))=\int_{S} f(x) p(x) d \mu
$$

IRISA

Monte Carlo Integration

- Suppose we have a function $f(x)$ defined over the domain $x \in[\mathrm{a}, \mathrm{b}]$
- We would like to evaluate the integral

$$
I=\int_{a}^{b} f(x) d x
$$

- The Monte Carlo approach is to consider N samples, selected randomly with pdf $p(x)$, to estimate the integral
- We get the following estimator: $\langle I\rangle=\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)}$

Monte Carlo Integration

- Finding the estimated value of the estimator we get: $\quad E[I I]=E\left[\frac{1}{N} \sum_{N=1}^{N} \frac{f\left(x_{1}\right)}{p\left(x_{i}\right)}\right]$ $=\frac{1}{N} \sum_{=1}^{N} E\left[\frac{f\left(x_{1}\right)}{p\left(x_{i}\right)}\right]$
$\left.=\frac{1}{N} N \int \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)}\right)\left(x_{i}\right) d x$
$=\int f\left(x_{i}\right) d x=I$
- In other words:

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)}=I
$$

Variance

- The variance of the estimator is

$$
\sigma^{2}=\frac{1}{N} \int\left(\frac{f\left(x_{i}\right)}{p\left(x_{i}\right)}-I^{2}\right) p\left(x_{i}\right) d x
$$

- As the error in the estimator is proportional to σ, the error is proportional to $\frac{1}{\sqrt{N}}$
- So, to halve the error we need to use four times as many samples

Variance Reduction

- Increase number of samples
- Choose p such that f / p has low variance (f and p should have similar shape)
- This is called importance sampling because if p is large when f is large, and small when f is small, there will be more sample in important regions
- Partition the domain of the integral into several smaller regions and evaluate the integral as a the sum of integrals over the smaller regions
- This is called stratified sampling
—IRISA

Variance Reduction: Stratified

 sampling- Region D divided into disjoint sub-regions
- $\mathrm{D}_{\mathrm{i}}=\left[\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}+1}\right]$: sub-region
$\sum_{i} P_{i}=1$
- $\quad \int_{D i}(f(x) / p(x)) p(x) d x=P i$
$\int_{D_{i}}\left(f(x) / P_{i} p(x)\right) p(x) d x=1$
$I=\int_{0}^{1} f(x) d x=\int_{0}^{x}(f(x) / p(x)) p(x) d x+$

$$
\int_{x 1}^{x 2}(f(x) / p(x)) p(x) d x+
$$

$$
\ldots+\int_{x_{x=1}}^{1}(f(x) / p(x)) p(x) d x
$$

Variance Reduction: Stratified

 sampling- N_{i} samples per sub-region i
- n sub-regions
- $p(x) / P_{i}$: pdf for a sub-region i

$$
\begin{aligned}
& \int_{D i}(f(x) / p(x)) p(x) d x=P i \\
& \int_{D i}(f(x) / p(x))\left(p(x) / P_{i}\right) d x=1 \\
& \quad I=\sum_{i=0}^{n-1} P i \int_{D i} \frac{f(x)}{p(x)} \cdot \frac{f(x)}{P_{i}} d x
\end{aligned}
$$

$$
I \approx \sum_{i=0}^{i=n-1} \frac{P i}{N i} \sum_{k i=0}^{N i} \frac{f\left(X_{k i}\right)}{p\left(X_{k i}\right)}
$$

Variance Reduction: Stratified sampling

- 2D example

Example

- Sample the pdf $p(x)=3 x^{2} / 2, x \in[-1,1]$:
- First we need to find $\mathrm{P}(x): \quad P(x)=\int 3 x^{2} / 2 d x=x^{3} / 2+C$
- Choosing C such that $P(-1)=0$ and $P(1)=1$, we get $P(x)=\left(x^{3}+1\right) / 2$ and $\mathrm{P}^{-1}(\xi)=\sqrt[3]{2 \xi-1}$
- Thus, given a random number $\xi_{i} \in[0,1)$, we can 'warp' it according to $p(x)$ to get $x_{i}: x_{i}=\sqrt[3]{2 \xi_{i}-1}$

Sampling Random Variables

- Given a pdf $p(x)$, defined over the interval [$x_{\text {min }}, x_{\text {max }}$], we can sample a random variable $x \sim p$ from a set of uniform random numbers $\xi_{\mathrm{i}} \epsilon$ $[0,1)$

$$
\operatorname{prob}(\alpha<x)=P(x)=\int_{x_{\min }}^{x} p(\mu) d \mu
$$

- To do this, we need the cumulative probability distribution function:
- To get x_{i} we transform $\xi_{\mathrm{i}} x_{\mathrm{i}}=\mathrm{P}^{-1}\left(\xi_{\mathrm{i}}\right)$
$-\mathrm{P}^{-1}$ is guaranteed to exist for all valid pdfs

Sampling 2D Random Variables

- If we have a 2 D random variable $\mathrm{a}=\left(\alpha_{x}, \alpha_{y}\right)$ with $p d f p\left(\alpha_{x}\right.$, α_{y}), we need the two dimensional cumulative pdf:
$\operatorname{prob}\left(\alpha_{x}<x \& \alpha_{y}<y\right)=P(x, y)=\int_{y_{\text {min }}}^{y} \int_{x_{\text {min }}}^{x} p\left(\mu_{x}, \mu_{y}\right) d \mu_{x} d \mu_{y}$
- We can choose x_{i} using the marginal distribution $p_{\mathrm{G}}(x)$ and then choose y_{i} according to $p(y \mid x)$, where
$p_{G}(x)=\int_{y \text { min }}^{y \max } p(x, y) d y$ and $p(y \mid x)=\frac{p(x, y)}{p_{G}(x)}$
- If p is separable, that is $p(x, y)=q(x) r,(y)$, the one dimensional technique can be used on each dimension instead

2D example: Uniform Sampling of Triangles

- To uniformly sample a triangle, we use barycentric coordinates in a parametric space
- Let A, B, C the 3 vertices of a triangle
- Then a point P on the triangle is expressed as:
$-P=\alpha A+\beta B+\gamma C$
$-\alpha+\beta+\gamma=1$
$-\alpha=1-\gamma-\beta$
$-P=(1-\gamma-\beta) A+\beta B+\gamma C$

2D example: Uniform Sampling of Triangles

- To uniformly sample a triangle, we use barycentric coordinates
- Integrating the constant 1 across the triangle gives $\int_{\gamma=0}^{1} \int_{\beta=0}^{1-\gamma} d \beta d \gamma=0.5$
- Thus our pdf is $p(\beta, \gamma)=2$
- Since β depends on γ (or γ depends on β), we use the marginal density for $\gamma, p_{\mathrm{G}}(\mathrm{\gamma})$:

$$
p_{G}\left(\gamma^{\prime}\right)=\int_{-\mathcal{N}_{\text {RIISA }}}^{1-\gamma^{\prime}} 2 d \beta=2-2 \gamma^{\prime}
$$

2D example: Uniform Sampling of Triangles

- To uniformly sample a triangle, we use barycentric coordinates in a parametric space

2D example: Uniform Sampling of Triangles

- From $p_{\mathrm{G}}\left(\mathrm{\gamma}^{\prime}\right)$, we find $p\left(\beta^{\prime} \mid \mathrm{Y}^{\prime}\right)=p\left(\mathrm{\gamma}^{\prime}, \beta^{\prime}\right) / p_{\mathrm{G}}\left(\mathrm{Y}^{\prime}\right)=$ $2 /\left(2-2 \gamma^{\prime}\right)=1 /\left(1-\gamma^{\prime}\right)$
- To find γ^{\prime} we look at the cummulative pdf for p :

$$
\xi_{1}=P_{G}\left(\gamma^{\prime}\right)=\int_{0}^{\gamma^{\prime}} p_{G}(\gamma) d \gamma=\int_{0}^{\gamma^{\prime}} 2-2 \gamma d \gamma=2 \gamma^{\prime}-\gamma^{\prime 2}
$$

- Solving for γ^{\prime} we get $\quad \gamma^{\prime}=1-\sqrt{1-\xi_{1}}$
- We then turn to β^{\prime} :

$$
\xi_{2}=P\left(\beta^{\prime} \mid \gamma^{\prime}\right)=\int_{0}^{\beta^{\prime}} p\left(\beta^{\prime} \mid \gamma^{\prime}\right) d \beta=\int_{0}^{\beta^{\prime}} \frac{1}{1-\gamma^{\prime}} d \beta=\frac{\beta^{\prime}}{1-\gamma^{\prime}}
$$

2D example: Uniform Sampling of Triangles

- Solving for β^{\prime} we get:

$$
\beta^{\prime}=\xi_{2}\left(1-\gamma^{\prime}\right)=\xi_{2}\left(1-\left(1-\sqrt{1-\xi_{1}}\right)\right)=\xi_{2} \sqrt{1-\xi_{1}}
$$

- Thus given a set of random numbers ξ_{1} and ξ_{2}, we warp these to a set of barycentric coordinates sampling a triangle: $(\beta, \gamma)=\left(\xi_{2} \sqrt{1-\xi_{1}}, 1-\sqrt{1-\xi_{1}}\right)$

2D example: Uniform Sampling of Discs

- Disc
- Generate random point on unit disk with probability density: $\quad p(x)=1 /(\pi . F$ $\varphi \in[0,2 \pi]$ et $r \in[0, R]$ $d \mu=d S=r d r d \phi$

$$
F(r, \varphi)=\int_{0}^{\varphi} \int_{0}^{r}\left(r^{\prime} /\left(\pi \cdot R^{2}\right) d r^{\prime} d \psi\right.
$$

- 2D CDF:

2D example: Uniform Sampling of Discs

- Disc
- Generate random point on unit disk with probability density: $\quad p(x)=1 /\left(\pi . \mathrm{R}^{2}\right)$

$$
\varphi \in[0,2 \pi] \text { et } r \in[0, R]
$$

$$
d \mu=d S=r d r d \phi
$$

- 2D CDF: $F(r, \varphi)=\int_{0}^{\varphi} \int_{0}^{r}\left(2 r^{\prime} / R^{2}\right)(1 / 2 \pi) d r^{\prime} d \varphi^{\prime}$
- Compute marginal pdf and associated CDF
$-\zeta_{1}$ and $\zeta_{2} \in[0,1]$ are uniform random numbers

$$
\varphi=2 \pi \zeta_{1} \text { and } r=R \sqrt{\zeta_{2}}
$$

2D example: Uniform Sampling of Spheres

- Sphere

Summary

- Given a function $f(\mu)$, defined over an n-dimensional domain S , we can estimate the integral of f over S by a sum:

$$
\int_{S} f(\mu) d \mu \approx \frac{1}{N} \sum_{i=1}^{N} \frac{f\left(\mathbf{x}_{i}\right)}{p\left(\mathbf{x}_{i}\right)}
$$

where $\boldsymbol{x} \sim p$ is a random variable and $\boldsymbol{x}_{\boldsymbol{i}}$ are samples of \boldsymbol{x} selected according to p.

- To reduce the variance and get faster convergence we:
- Use importance sampling: p should have similar shape as f
- Use Stratified sampling: Subdivide S into smaller regions, evaluate the integral for each region and sum these together

