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Radiometry

* The goal of a global illumination algorithm
IS to compute a steady-state distribution of
light in a scene

* To compute this distribution, we need an
understanding of the physical quantities
that represent light energy

* Radiometry is the basic terminology used
to describe light
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Photons

* The basic quantity in lighting is the photon

* The energy (in Joule) of a photon with
wavelength A is: g, = hc/A
— c is the speed of light
 In vacuum, ¢ = 299.792.458m/s
—h =6.63*10-3%Js is Planck’ s constant
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(Spectral) Radiant Energy

* The spectral radiant energy, Q,, in n,
photons with wavelength A is

O, =n,q,
» The radiant energy, Q, is the energy of a
collection of photons, and is given as the
integral of Q, over all possible

wavelengths: o0
Q =j; deﬂ
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Radiant Power or Radiant Flux

» Radiant flux, also called radiant power, is the
time rate flow of radiant energy
o
dt

* Flux expresses how much energy (Watts =
Joule/s) flows to/through/from an (imaginary)
surface per unit time

* For wavelength dependence, spectral radiant
flux is defined as do,
P = dt
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Radiant Flux Area Density

* The radiant flux area density is defined as
the differential flux per differential area d®/
dA

— In English: The energy arriving at or leaving a
surface over a short interval of time
 Traditionally, radiant flux area density is
separated into irradiance, E, which is flux
arriving at a surface and radiant exitance,
M, which is flux leaving a surface

— Radiant exitance is also known as radiosity,
__denoted B
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Radiance

Probably, the most important quantity in global
illumination is radiance

Radiance is defined as emitted flux per unit projected
area per unit solid angle (W/(steradian*m?))

Intuitively, radiance tells us how much energy leaves a
small area per unit time in a given direction

dzq) hemisphere of radius 1

B daxdA cosl

L

Surface ofarea A —
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Solid Angle

* Solid angle is the measure for
‘angles’ in 3D

— The unit for solid angle is steradians, w €
[0, 4]

* The solid angle subtended by an
object is defined as the area of the
object projected onto a sphere of
radius 1 centered at the viewpoint

« The 'size’ of a differential solid angle
In spherical coordinates is
dw = sinBdedg
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Solid Angle

hemisphere

of radius 1

PROJECTION

Surface of area A
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Back To Radiance

* Radiance is defined as flux per unit projected
area per unit solid angle (W/(steradian*m?))

d*d

L =
daxdA cosb

* An important property of radiance is
that, in vacuum, it is constant along a line of

sight
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Scattering of Light

* When light reaches a surface, it is either
scattered or absorbed
— We assume that the light is scattered

iImmediately after reaching the surface
* Thus, we ignore fluorescence effects

— We also assume that light incident at some
point also exits at that same point

 This effectively means no subsurface scattering
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BRDF

* A ray of light hits a surface:
— arriving from a direction k;,
— and reflected in the direction k,

 How much of this light is reflected in the direction
k,?

* This question is answered by the bidirectional
reflectance distribution function, BRDF
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BRDF

The BRDF is a 4 dimensional function defined as
Bk k) = dL,(x,k,) _ dL (x,k )
dE(x,k;) L (x,k)cosfdw,
BRDF could change over a surface (texture)
L is the outgoing radiance
L. is the incoming radiance

da is the differential solid angle associated with
the incident direction
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BRDF Properties

* A brdf can take on any positive value
- fi(x,k;.k,) € [0;°]

* The value of a brdf remains unchanged if
the incident exitant directions are
interchanged
- fi(x.ki ko) = T (X, Ko, ki)

* A physically plausible brdf conserves
energy, that is: VK, . f(x.k,,k,)cos8 dw =<1
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Directional Hemispherical
Reflectance

* Related to the BRDF, we may wish to know
exactly how much light is reflected due to light
coming from a fixed direction k;

* This Iis answered by the directional hemispherical
reflectance, R(k:), given as:

R(x,K,) =fux fr(x,K,;, K, )cosO dw
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Example

* A Lambertian surface is an idealized diffuse
surface with a constant brdf, f. = ¢

R(x,K;) = fux ccosl dw
=j;mj:/2ccosé’sin¢9d9d¢

= JIC
* S0, for a perfectly reflecting lambertian surface,
we have f_ = 1/m, and if R(x,k)=r, T, = r/m
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The Rendering Equation

_ dL (x,k))
L.(x,k,)cosBdw,

« Consider again the brdf: /{(xk.k,)
* Rearranging the terms, we get
dL,(x.k,) = fi(x.k;.k,) L (x. k) cos O.da,

* Integrating over the entire hemisphere, we get
the reflected radiance

Ls (xa ko) = Jo ﬁ(xa ki ) ko)Li ()C, kz) COS sza)z

— This is known as the rendering equation

— For translucent objects, we need the lower
___ hemisphere as well
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Alternate Transport Equation

* The rendering equation describes the reflected
radiance due to incident radiance on the entire
hemisphere

« Sometimes we’ Il need the transport equation in

terms of surface radiance only

— Because radiance is constant along a 0
straight line, the field radiance L,(x,k;)
Is equal to the surface radiance from n
some surface: Li(x, k) = L(x’, -k o S

[ x—x’

— The solid angle subtended by a -
— Surfaceis 4, _dAcos?’ { X :
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Alternate Transport Equation

» Putting this together, we get
LS(X,ko) = faHXi ﬁ(x,kiako)Ls(X',X - X')V(X,X')COSBZ_ cosO'dA

x - x|

— Where v(x, x’ ) is a visibility term, equal to 1 if x and
x’ are mutually visible and 0 otherwise

R

- Ki=x'x

Integral equation k°£ X
. u :

to be solved x%
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