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Radiometry 

•  The goal of a global illumination algorithm 
is to compute a steady-state distribution of 
light in a scene 

•  To compute this distribution, we need an 
understanding of the physical quantities 
that represent light energy 

•  Radiometry is the basic terminology used 
to describe light 
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Photons 

•  The basic quantity in lighting is the photon 

•  The energy (in Joule) of a photon with 
wavelength λ is: qλ = hc/λ 
– c is the speed of light 

•  In vacuum, c = 299.792.458m/s 
– h ≈ 6.63*10-34Js is Planck’s constant 
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(Spectral) Radiant Energy 

•  The spectral radiant energy, Qλ, in nλ 
photons with wavelength λ is 

•  The radiant energy, Q, is the energy of a 
collection of photons, and is given as the 
integral of Qλ over all possible 
wavelengths: 

λλλ qnQ =
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Radiant Power or Radiant Flux 

•  Radiant flux, also called radiant power, is the 
time rate flow of radiant energy 

•  Flux expresses how much energy (Watts = 
Joule/s) flows to/through/from an (imaginary) 
surface per unit time 

•  For wavelength dependence, spectral radiant 
flux is defined as 

dt
dQ
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Radiant Flux Area Density 
•  The radiant flux area density is defined as 

the differential flux per differential area dΦ/
dA 
–  In English: The energy arriving at or leaving a 

surface over a short interval of time 
•  Traditionally, radiant flux area density is 

separated into irradiance, E, which is flux 
arriving at a surface and radiant exitance, 
M, which is flux leaving a surface 
– Radiant exitance is also known as radiosity, 

denoted B 
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Radiance 
•  Probably, the most important quantity in global 

illumination is radiance 
•  Radiance is defined as emitted flux per unit projected 

area per unit solid angle (W/(steradian*m2)) 
•  Intuitively, radiance tells us how much energy leaves a 

small area per unit time in a given direction 
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Solid Angle 
•  Solid angle is the measure for 
‘angles’ in 3D 
–  The unit for solid angle is steradians, ω є 

[0, 4π] 

•  The solid angle subtended by an 
object is defined as the area of the 
object projected onto a sphere of 
radius 1 centered at the viewpoint 

•  The ’size’ of a differential solid angle 
 in spherical coordinates is  
dω = sinθdθdφ 
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Back To Radiance 

•  Radiance is defined as flux per unit projected 
area per unit solid angle (W/(steradian*m2)) 

•  An important property of radiance is  
that, in vacuum, it is constant along a line of 
sight 
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Scattering of Light 

•  When light reaches a surface, it is either 
scattered or absorbed 
– We assume that the light is scattered 

immediately after reaching the surface 
•  Thus, we ignore fluorescence effects 

– We also assume that light incident at some 
point also exits at that same point 

•  This effectively means no subsurface scattering 
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BRDF 

•  A ray of light hits a surface: 
–   arriving from a direction ki, 
–   and reflected in the direction ko 

•  How much of this light is reflected in the direction 
ko? 

•  This question is answered by the bidirectional 
reflectance distribution function, BRDF 
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BRDF 

•  The BRDF is a 4 dimensional function defined as 

•  BRDF could change over a surface (texture) 
•  Ls is the outgoing radiance 
•  Li is the incoming radiance 
•        is the differential solid angle associated with 

the incident direction 
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BRDF Properties 

•  A brdf can take on any positive value 
–  fr(x,ki,ko) є [0;∞[ 

•  The value of a brdf remains unchanged if 
the incident exitant directions are 
interchanged 
–  fr(x,ki,ko) = fr (x,ko,ki) 

•  A physically plausible brdf conserves 
energy, that is: ∫ ≤∀

o
dxf ooiri k kkk  all 1cos),,(: ωθ
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Directional Hemispherical 
Reflectance 

•  Related to the BRDF, we may wish to know 
exactly how much light is reflected due to light 
coming from a fixed direction ki  

•  This is answered by the directional hemispherical 
reflectance, R(ki), given as: 
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Example 

•  A Lambertian surface is an idealized diffuse 
surface with a constant brdf, fr = c 

•  So, for a perfectly reflecting lambertian surface, 
we have fr = 1/π, and if R(x,ki)=r, fr = r/π 
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The Rendering Equation 

•  Consider again the brdf: 
•  Rearranging the terms, we get 

•  Integrating over the entire hemisphere, we get 
the reflected radiance 

–  This is known as the rendering equation 
–  For translucent objects, we need the lower 

hemisphere as well 
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Alternate Transport Equation 
•  The rendering equation describes the reflected 

radiance due to incident radiance on the entire 
hemisphere 

•  Sometimes we’ll need the transport equation in 
terms of surface radiance only 
–  Because radiance is constant along a 

straight line, the field radiance Li(x,ki) 
is equal to the surface radiance from 
some surface: Li(x, ki) = Li(x’, -ki) 

–  The solid angle subtended by a  
–  Surface is 
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Alternate Transport Equation 

•  Putting this together, we get 

–  Where v(x, x’) is a visibility term, equal to 1 if x and 
x’ are mutually visible and 0 otherwise 

–    

•  Integral equation:  
    to be solved 
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