Introduction to Radiometry and Photometry

Kadi Bouatouch
IRISA

Email: kadi@irisa.fr

Radiometry

- The goal of a global illumination algorithm is to compute a steady-state distribution of light in a scene
- To compute this distribution, we need an understanding of the physical quantities that represent light energy
- Radiometry is the basic terminology used to describe light

Photons

- The basic quantity in lighting is the photon
- The energy (in Joule) of a photon with wavelength λ is: $q_{\lambda}=h c / \lambda$
-c is the speed of light
- In vacuum, c = 299.792.458m/s
$-\mathrm{h} \approx 6.63^{*} 10^{-34} \mathrm{Js}$ is Planck' s constant

(Spectral) Radiant Energy

- The spectral radiant energy, Q_{λ}, in n_{λ} photons with wavelength λ is

$$
Q_{\lambda}=n_{\lambda} q_{\lambda}
$$

- The radiant energy, Q, is the energy of a collection of photons, and is given as the integral of Q_{λ} over all possible wavelengths:

$$
Q=\int_{0}^{\infty} Q_{\lambda} d \lambda
$$

Radiant Power or Radiant Flux

- Radiant flux, also called radiant power, is the time rate flow of radiant energy

$$
\Phi=\frac{d Q}{d t}
$$

- Flux expresses how much energy (Watts = Joule/s) flows to/through/from an (imaginary) surface per unit time
- For wavelength dependence, spectral radiant flux is defined as

$$
\Phi_{\lambda}=\frac{d Q_{\lambda}}{d t}
$$

Radiant Flux Area Density

- The radiant flux area density is defined as the differential flux per differential area dФ/ dA
- In English: The energy arriving at or leaving a surface over a short interval of time
- Traditionally, radiant flux area density is separated into irradiance, E, which is flux arriving at a surface and radiant exitance, M , which is flux leaving a surface
- Radiant exitance is also known as radiosity, denoted B

Radiance

- Probably, the most important quantity in global illumination is radiance
- Radiance is defined as emitted flux per unit projected area per unit solid angle (W/(steradian*m²))
- Intuitively, radiance tells us how much energy leaves a small area per unit time in a given direction

$$
L=\frac{d^{2} \Phi}{d \omega d A \cos \theta}
$$

hemisphere of radius 1

Surface of area A

Solid Angle

- Solid angle is the measure for 'angles' in 3D
- The unit for solid angle is steradians, $\omega \in$ [0, 4T]
- The solid angle subtended by an object is defined as the area of the object projected onto a sphere of radius 1 centered at the viewpoint
- The 'size' of a differential solid angle in spherical coordinates is $\mathrm{d} \omega=\sin \theta \mathrm{d} \theta \mathrm{d} \varphi$

Solid Angle

Back To Radiance

- Radiance is defined as flux per unit projected area per unit solid angle (W/(steradian* ${ }^{2}$))

$$
L=\frac{d^{2} \Phi}{d \omega d A \cos \theta}
$$

- An important property of radiance is that, in vacuum, it is constant along a line of sight

Scattering of Light

- When light reaches a surface, it is either scattered or absorbed
- We assume that the light is scattered immediately after reaching the surface
- Thus, we ignore fluorescence effects
- We also assume that light incident at some point also exits at that same point
- This effectively means no subsurface scattering

BRDF

- A ray of light hits a surface:
- arriving from a direction $\mathbf{k}_{\mathbf{i}}$,
- and reflected in the direction $\mathbf{k}_{\text {o }}$
- How much of this light is reflected in the direction k_{0} ?
- This question is answered by the bidirectional reflectance distribution function, BRDF

BRDF

- The BRDF is a 4 dimensional function defined as

$$
f\left(x, k_{i}, k_{o}\right)=\frac{d L_{s}\left(x, k_{o}\right)}{d E\left(x, k_{i}\right)}=\frac{d L_{s}\left(x, k_{o}\right)}{L_{i}\left(x, \mathbf{k}_{i}\right) \cos \theta_{i} d \omega_{i}}
$$

- BRDF could change over a surface (texture)
- L_{s} is the outgoing radiance
- L_{i} is the incoming radiance
- $d \omega_{i}$ is the differential solid angle associated with the incident direction

BRDF Properties

- A brdf can take on any positive value
- $f_{r}\left(x, \mathbf{k}_{i}, \mathbf{k}_{0}\right) \in[0 ; \infty[$
- The value of a brdf remains unchanged if the incident exitant directions are interchanged
$-f_{r}\left(x, \mathbf{k}_{i}, \mathbf{k}_{o}\right)=f_{r}\left(x, \mathbf{k}_{o}, \mathbf{k}_{\mathrm{i}}\right)$
- A physically plausible brdf conserves energy, that is: $\forall \mathbf{k}_{i}: \int_{\text {allk }}, f_{r}\left(x, \mathbf{k}_{i}, \mathbf{k}_{o}\right) \cos \theta_{o} d \omega \leq 1$

Directional Hemispherical Reflectance

- Related to the BRDF, we may wish to know exactly how much light is reflected due to light coming from a fixed direction \mathbf{k}_{i}
- This is answered by the directional hemispherical reflectance, $\mathrm{R}\left(\mathbf{k}_{\mathrm{i}}\right)$, given as:

$$
R\left(x, \mathbf{k}_{i}\right)=\int_{\text {allk }}, f_{r}\left(x, \mathbf{k}_{i}, \mathbf{k}_{o}\right) \cos \theta_{o} d \omega
$$

Example

- A Lambertian surface is an idealized diffuse surface with a constant brdf, $\mathrm{f}_{\mathrm{r}}=c$

$$
\begin{aligned}
R\left(x, \mathbf{k}_{i}\right) & =\int_{\text {all }} c \cos \theta_{o} d \omega \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi / 2} c \cos \theta \sin \theta d \theta d \phi \\
& =\pi c
\end{aligned}
$$

- So, for a perfectly reflecting lambertian surface, we have $f_{r}=1 / \pi$, and if $R\left(x, k_{i}\right)=r, f_{r}=r / \pi$

The Rendering Equation

- Consider again the brdf: $\quad f_{i}\left(x, \mathbf{k}_{i}, \mathbf{k}_{o}\right)=\frac{d L_{s}\left(x, \mathbf{k}_{o}\right)}{L_{i}\left(x, \mathbf{k}_{i}\right) \cos \theta_{i} d \omega_{i}}$
- Rearranging the terms, we get

$$
d L_{s}\left(x, \mathbf{k}_{o}\right)=f_{r}\left(x, \mathbf{k}_{i}, \mathbf{k}_{o}\right) L_{i}\left(x, \mathbf{k}_{i}\right) \cos \theta_{i} d \omega_{i}
$$

- Integrating over the entire hemisphere, we get the reflected radiance
$L_{s}\left(x, \mathbf{k}_{o}\right)=\int_{\Omega} f_{r}\left(x, \mathbf{k}_{i}, \mathbf{k}_{o}\right) L_{i}\left(x, \mathbf{k}_{i}\right) \cos \theta_{i} d \omega_{i}$
- This is known as the rendering equation
- For translucent objects, we need the lower hemisphere as well

IRISA

Alternate Transport Equation

- The rendering equation describes the reflected radiance due to incident radiance on the entire hemisphere
- Sometimes we' ll need the transport equation in terms of surface radiance only
- Because radiance is constant along a straight line, the field radiance $L_{i}\left(x, \mathbf{k}_{i}\right)$ is equal to the surface radiance from some surface: $\mathrm{L}_{\mathrm{i}}\left(\mathbf{x}, \mathbf{k}_{\mathrm{i}}\right)=\mathrm{L}_{\mathrm{i}}\left(\mathbf{x}^{\prime},-\mathbf{k}_{\mathrm{i}}\right)$
- The solid angle subtended by a
- Surface is

$$
d \omega=\frac{d A \cos \theta^{\prime}}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{2}}
$$

Alternate Transport Equation

- Putting this together, we get
$L_{s}\left(\mathbf{x}, \mathbf{k}_{o}\right)=\int_{\text {all }^{2}} \frac{f_{r}\left(x, \mathbf{k}_{i}, \mathbf{k}_{o}\right) L_{s}\left(\mathbf{x}^{\prime}, \mathbf{x}-\mathbf{x}^{\prime}\right) v\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \cos \theta_{i} \cos \theta^{\prime} d A}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{2}}$
- Where $v\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ is a visibility term, equal to 1 if \mathbf{x} and \mathbf{x}^{\prime} are mutually visible and 0 otherwise
- $K_{i}=\overline{x^{\prime} x}$
- Integral equation: to be solved

