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Why Monte Carlo Integration?

• To generate realistic looking images, we 
need to solve integrals of 2 or higher 
dimension
– Pixel filtering and lens simulation both involve 

solving a 2 dimensional integral
– Combining pixel filtering and lens simulation 

requires solving a 4 dimensional integral
• Normal quadrature algorithms don’t extend 

well beyond 1 dimension

Continuous Probability

• A continuous random variable x is a 
variable that randomly takes on a value 
from its domain

• The behavior of x is completely described 
by the distribution of values it take. 

Continuous Probability

• The distribution of values that x takes on 
is described by a probability distribution 
function p
– We say that x is distributed according to p, or 

x ~ p
– p(x) ≥ 0 
–

• The probability that x takes on a value in 
the interval [a, b] is:
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Expected Value

• The expected value of x~p is defined as

– As a function of a random variable is itself a 
random variable, the expected value of f(x) is

• The expected value of a sum of random 
variables is the sum of the expected 
values:
E(x + y) = E(x) + E(y)
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Multi-Dimensional Random 
Variables

• For some space S, we can define a pdf p:S →ℜ
• If x is a random variable, and x~p, the probability 

that x takes on a value in Si ⊂ S is:

• Expected value of a real valued function f :S →ℜ
extends naturally to the multidimensional case:
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Monte Carlo Integration

• Suppose we have a function f(x) defined over 
the domain x є [a, b]

• We would like to evaluate the integral

• The Monte Carlo approach is to consider N 
samples, selected randomly with pdf p(x), to 
estimate the integral

• We get the following estimator:
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Monte Carlo Integration

• Finding the estimated value of the 
estimator we get:

• In other words:  
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Variance

• The variance of the estimator is

• As the error in the estimator is proportional 
to σ, the error is proportional to
– So, to halve the error we need to use four 

times as many samples
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Variance Reduction

• Increase number of samples
• Choose p such that f/p has low variance (f and p

should have similar shape)
– This is called importance sampling because if p is 

large when f is large, and small when f is small, there 
will be more sample in important regions

• Partition the domain of the integral into several 
smaller regions and evaluate the integral as a 
the sum of integrals over the smaller regions
– This is called stratified sampling

Variance Reduction: Stratified 
sampling

• Region D divided into disjoint sub-regions
• Di=[xi,xi+1]: sub-region         ∑iPi=1

•
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Variance Reduction: Stratified 
sampling

• Ni samples per sub-region i

• n sub-regions
• p(x)/Pi : pdf for a sub-region i
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Variance Reduction: Stratified 
sampling

• 2D example

•
• • •

• • •
•

• • • •

• • • •

→ N2 samples

Sampling Random Variables

• Given a pdf p(x), defined over the interval
[xmin, xmax], we can sample a random variable 
x~p from a set of uniform random numbers ξi є 
[0,1)

• To do this, we need the cumulative probability 
distribution function:
– To get xi we transform ξi: xi = P-1(ξi)
– P-1 is guaranteed to exist for all valid pdfs
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Example

• Sample the pdf p(x)=3x2/2, x є [-1, 1]:
– First we need to find P(x):

– Choosing C such that P(-1)=0 and P(1)=1, we 
get P(x)=(x3+1)/2   and
P-1(ξ)=

– Thus, given a random number ξi є [0,1), we 
can ’warp’ it according to p(x) to get xi: xi = 

CxdxxxP +== ∫ 2/2/3)( 32

3 12 −ξ

3 12 −iξ

Sampling 2D Random Variables
• If we have a 2D random variable α=(αx, αy) with pdf p(αx, αy), 

we need the two dimensional cumulative pdf:

– We can choose xi using the marginal distribution pG(x) and 
then choose yi according to p(y|x), where

– If p is separable, that is p(x, y)=q(x,)r(y), the one 
dimensional technique can be used on each dimension 
instead
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2D example: Uniform Sampling of 
Triangles

• To uniformly sample a triangle, we use barycentric
coordinates in a parametric space

• Let A,B,C the 3 vertices of a triangle
• Then a point P on the triangle is expressed  as:             

– P= αA + βB + γC
– α + β + γ = 1 
– α = 1- γ - β
– P =(1- γ - β ) A + βB + γC

B

1

A

C

0
γ

P

2D example: Uniform Sampling of 
Triangles

• To uniformly sample a triangle, we use 
barycentric coordinates in a parametric space

(0,1)

(1,0)(0,0)
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2D example: Uniform Sampling of 
Triangles

• To uniformly sample a triangle, we use 
barycentric coordinates

• Integrating the constant 1 across the 
triangle gives 
– Thus our pdf is p(β,γ)=2

• Since β depends on γ (or γ depends on β), 
we use the marginal density for γ, pG(γ):
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2D example: Uniform Sampling of 
Triangles

• From pG(γ’), we find p(β’|γ’) = p(γ’, β’)/pG(γ’) = 
2/(2-2γ’) = 1/(1-γ’)

• To find γ’ we look at the cummulative pdf for 
γ:

• Solving for γ’ we get
• We then turn to β’:
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2D example: Uniform Sampling of 
Triangles

• Solving for β’ we get:

• Thus given a set of random numbers ξ1
and ξ2, we warp these to a set of 
barycentric coordinates sampling a 
triangle:
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2D example: Uniform Sampling of a 
parallelogram

• A point P lying on a 
parallelogram:

• ξ1 and ξ2: uniform random 
numbers in the range 
[0,1]

BACP 21 ξξ ++=
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2D example: Uniform Sampling of 
Discs

• Disc
– Generate random point on unit disk with

probability density: p(x) = 1/(π.R2)

– 2D CDF: 
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2D example: Uniform Sampling of 
Discs

• Disc
– Generate random point on unit disk with 

probability density: p(x) = 1/(π.R2)

– 2D CDF: 
– Compute marginal pdf and associated CDF
– are uniform random numbers
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2D example: Uniform Sampling of 
Spheres

• Sphere
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Summary
• Given a function f(µ), defined over an n-dimensional 

domain S, we can estimate the integral of f over S by a 
sum:

where x~p is a random variable and xi are samples of x
selected according to p.

• To reduce the variance and get faster convergence we:
– Use importance sampling: p should have similar 

shape as f
– Use Stratified sampling: Subdivide S into smaller 

regions, evaluate the integral for each region and sum 
these together
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