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Today

• Radiosity
– A very important method in practice, because it is so much more y p p ,

efficient than Monte Carlo for diffuse environments
– Can also be used in conjunction with Monte Carlo, if you’re very 

careful about partitioning the LTE into different componentscareful about partitioning the LTE into different components
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Radiosity

• Radiosity is the total power leaving a surface, per unit 
area on the surface
– Usually denoted B
– The outgoing version of irradiance

• To get it, integrate radiance over the hemisphere of outgoing 
directions:
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Exitance

• Light sources emit light, they are sources of radiance
• Exitance is the equivalent of radiosity for emitters:Exitance is the equivalent of radiosity for emitters:

 
  2 cos),(
n

xx
H ooe dLE 

• Distinguish exitance from radiosity to simplify equations
• Different from Intensity which is power per unit solid angle

 

• Different from Intensity, which is power per unit solid angle
• Exitance is not ill-defined for point light sources
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Radiosity Algorithms

• Radiosity algorithms solve the global illumination equation 
under a restrictive set of assumptionsp
– All surfaces are perfectly diffuse
– We only care about the radiosity at surfaces

• Some form of rendering pass is required to transfer to the image plane
– Surfaces can be broken into patches with constant radiosity

• Some algorithms extend this to linear combinations of basis functionsSome algorithms extend this to linear combinations of basis functions

• These assumptions allow us to linearize the global 
illumination equationq
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Diffuse Surface Radiosity

• Diffuse surfaces, by definition, have outgoing radiance that 
does not depend on directiondoes not depend on direction

• Same can be said for diffuse emitters
 

 
 xxx

n oH oo LdLB    2 cos),(
Same can be said for diffuse emitters

• And recall the definition of the diffuse BRDF in terms of

 
 
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• And recall the definition of the diffuse BRDF in terms of 
directional hemispheric reflectance
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Radiosity Light Transport

• Simplifying the global illumination equation gives:
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• We have removed almost all the angular dependence, but 
we still have an integral of directions computing irradiance



we still have an integral of directions computing irradiance
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Switch the Domain

• We can convert the integral over the hemisphere of solid 
angles into one over all the surfaces in a scene:g
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Discretize Radiosity

• Assume world is broken 
into N disjoint patches, Pi, j p , i,
i=1..N, each with area Ai

• Assume radiosity is constant 
over patches

• Define:  
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Discrete Formulation

• Change the integral over surfaces to a sum over patches:
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The Form Factor

dydxyxV
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Fij is the proportion of the total power leaving

h i h h h f f i d

Fij is the proportion of the total power leaving 
patch Pi that is received by patch Pj

• Note that we use it the other way: the form factor Fij is used 
in computing the energy arriving at I

• Also called the configuration factor• Also called the configuration factor
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Form Factor Properties

• Depends only on geometry
• Reciprocity: AiFij=AjFjiReciprocity: AiFij AjFji

• Additivity: Fi(jk)=Fij +Fik

• Reverse additivity is not trueReverse additivity is not true
• Sum to unity (all the power leaving patch i must get 

somewhere): Nsomewhere):
1,

1
  

N

j ijFi
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The Discrete Radiosity Equation


N

jijiii BFEB 

• This is a linear equation!
j 1

FBEB 

Di i f M i i b h b f h i h
)(         where FIMΜBE

FBEB




• Dimension of M is given by the number of patches in the 
scene: NxN

It’s a big system– It s a big system
– But the matrix M has some special properties
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Solving for Radiosity

• First compute all the form factors
– These are view-independent, so for many views this need only be p , y y

done once
– Many ways to compute form factors

• Compute the matrix M
• Solve the linear system

f h d i– A range of methods exist

• Render the result using Gourand shading, or some other 
method but no additional lighting it’s baked inmethod – but no additional lighting, it s baked in
– Each patch’s diffuse intensity is given by its radiosity
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Solving the Linear System

• The matrix is very large – iterative methods are preferred
• Start by expressing each radiance in terms of the others:Start by expressing each radiance in terms of the others:
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Relaxation Methods

• Jacobi relaxation: Start with a guess for Bi, then (at 
iteration m): EMN)
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• Gauss-Siedel relaxation: Use values already computed in 
this iteration:
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Gauss-Seidel Relaxation

• Allows updating in place
R i t i tl di ll d i t• Requires strictly diagonally dominant:

NiMM
N

ijii   1|,||| NiMM
ij

j
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
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1

• It can be shown that the matrix M is diagonally dominant
– Follows from the properties of form factors
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Displaying the Results

• Color is handled by discretizing wavelength and solving 
each channel separatelyp y

• Smooth shading:
– Patch radiosities are mapped to vertex colors by averaging the 

radiosities of the patches incident upon the vertex
– Per-vertex colors then used to Gourand shade
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Value for Computation

• Most of the time is spent computing form factors - must 
solve N visibility problemsy p

• However, same form factors for different illumination 
conditions, and no color dependence

• Result is view independent - have radiosities for all patches. 
May be good or may be wasteful

02/16/05 © 2005 University of Wisconsin

Form Factors

• Computing form factors means solving an integral
coscos1

 


• We have had plenty of practice at this kind of thing

dydxyxV
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• We have had plenty of practice at this kind of thing
• Also a point-patch form: the proportion of the power from a 

differential area about point x received by jdifferential area about point x received by j
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Form Factor Computations

• Unoccluded patches:
– Direct integrationg
– Conversion to contour integration
– Form factor algebra – set operations on areas correspond to 

i l i f f ll f lnumerical operations on form factors – not really useful

• Occluded patches:
Monte Carlo integration– Monte Carlo integration

– Projection methods (essentially numerical quadrature)
• Hemisphere
• Hemicube
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Direct Integration – e.g. Rect-Rect

• Note that we can do this only 
under the constant radiosity over y
patch assumption

• There is a formula for 2 isolated 
polygons, but it assumes they can 
see each other fully!
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Contour Integral

• Use Stokes’ theorem to convert the area integrals into 
contour integralsg

  
i jC C

i
ij ydxrd

A
F ln

2
1


• For point to polygon form factors, the contour integral is not 
too hard

i

• Care must be taken when r0
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Projection Methods

• For patches that are far apart compared to their areas, the 
inner integral in the form factor doesn’t vary muchg y
– That is, the form factor is similar from most points on a surface i

• So, compute point to patch form factors and weigh by area
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Nusselt’s Analogy

• Integrate over visible solid angle instead of visible patch 
area:

1


P

dF Px 


cos1
,

Fx,P is the fraction of the area of the unit disc in the base 
plane obtained by projecting the surface patch P onto theplane obtained by projecting the surface patch P onto the 
unit sphere centered at x and then orthogonally down onto 
the base plane.
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Same Projection – Same Form Factor

• Any patches with the same 
projection onto the hemisphere p j p
have the same form factor
– Makes sense: put yourself at the point 

d l k if land look out – if you see equal 
amounts, they get equal power

• It doesn’t matter what you projectIt doesn t matter what you project 
onto: two patches that project the 
same have the same form factor
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Monte-Carlo Form Factors

• We can use Monte-Carlo methods to estimate the integral 
over visible solid angleg

• Simplest method – cosine weighted sampling:
– Sample the disc about the point
– Project up onto the hemisphere, then cast a ray out from the point in 

that direction
Form factor for each patch is the weighted sum of the number of– Form factor for each patch is the weighted sum of the number of 
rays that hit the patch

• There are even better Monte-Carlo methods that we will see 
later
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The Hemicube

• We have algorithms, and even 
hardware, for projecting onto , p j g
planar surfaces

• The hemicube consists of 5 such 
faces

• A “pixel” on the cube has a certain 
Aprojection, and hence a certain 

form factor
S thi th t j t t th

222 )1( yx
AF facetop 


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• Something that projects onto the 
pixel has the same form factor 222 )1( yz

AzF faceside 

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Hemicube, cont.


)(

,
C

qPx FF
j

• Pretend each face of the hemicube is a screen, and project 

 )( jCq

the world onto it
• Code each polygon with a color, and count the pixels of 

h l d i C( )each color to determine C(j)
• Quality depends on hemicube resolution and z-buffer 

d thdepth
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Next Time

• Progressive Radiosity
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