
Ray TracingRay Tracing

Kadi BouatouchKadi Bouatouch
IRISA

Email: kadi@irisa.fr

Introduction to ComputerIntroduction to Computer
GraphicsGraphics

ContextContext

R t ti d i li ti f thi• Representation and visualization of things
which do not exist
– Create 3D virtual worlds

• Choose the model of the objects we want to
represent

– Visualize them
• Choose a representation model

– Animate these worlds

Interest in 3D virtual worldsInterest in 3D virtual worlds

C t id d d i• Computer aided design
• Manufacturingg
• Movies
• Entertainement: video games• Entertainement: video games
• Data Visualization
• Virtual Reality
• Working without riskWorking without risk
• Simulation

ApplicationApplication ApplicationApplication

ApplicationApplication ApplicationApplication

ApplicationApplication ApplicationApplication

ApplicationApplication Rendering EngineRendering Engine

Geometric
ModelModel

Rendering
Engine

AppearanceAppearance
Model

Rendering EngineRendering Engine

R l ti• Real-time
– Z-buffer

• 10 images per second >> 0,1s
• 25 images per second >> 0,04 s
• 60 images per second >> 0,016 s
• 120 images per second >> 0,008 s

• Non real-time
– Ray Tracing, Path Tracing, Photon Mappingy g g pp g
– Radiosity

Illumination ModelIllumination Model

• Expresses the light intensity at a point due to:
– The light sources giving rise to :

• diffuse and specular reflections
• shadows

Th fl t d th t itt f th bj t– The reflectance and the transmittance of the object
• Ir = Id + Is

– Id : diffuse intensity
– Is : specular intensity

Diffuse ReflectionDiffuse Reflection
Lambert Reflection (Diffuse):• Lambert Reflection (Diffuse):
– Part of the incident light penetrates the object then arises from

the object with the same intensity in all the directions

– Id = Kd . Isource . cos (N, L) / d2

• Kd : diffuse color of the object• Kd : diffuse color of the object
• Isource : intensity of the light source
• N : normale at point P
• L : light direction• L : light direction
• d : distance between the light source and point P

– Related to the microscopic roughness of the object :Related to the microscopic roughness of the object :
• The more Kd is high, the more important is diffusion

Diffuse ReflectionDiffuse Reflection

• Id = Kd . Isource . cos (N, L) / d2

• d = distance of the light source to the lit point P

Light
source

viewer

L

N R

VV

P
P

Specular ReflectionSpecular Reflection
• Phong Model:• Phong Model:

– reflection by the object’s surface of the part of the
incident light that did not penetrates the object; it
depends on the view direction V

– Is = Ks . Isource . cosn (R, V) / d2

• Ks : specular color of the objectKs : specular color of the object
• Isource : intensity of the light source
• R : direction of ideal specular reflection
• V : view direction• V : view direction
• n : shininess or roughness

– n high: shiny, tight reflection cone
n small: mat object wide reflection cone– n small: mat object, wide reflection cone

– For glass, n = 200
– Gives the size of highlight

Specular ReflectionSpecular Reflection

• Is = Ks . Isource . cosn (R, V) / d2

Light source Viewer

L

N R

VV

P

The Phong Illumination ModelThe Phong Illumination Model

nbLum n

VRkLNkivisII)(

i

isid
i

ilocal VRkLNk
d

II
0

2

NNL
R

Ks : specular color (R,G,B)

Kd : diffuse color (R G B)Kd : diffuse color (R,G,B)

Li : lighting direction of source i

I : intensity of source i (R G B) VIi : intensity of source i (R,G,B)

The Phong Reflection ModelThe Phong Reflection Model
surfacebisector of

eye and light
vectors

light
sourceN

L
H

surface
normal

L

eye V

 IakkkIR d
n

dl coscos

surface

 IakkkI R dsdl coscos

Some RemarksSome Remarks …
• If multiple sources sum their contributionsIf multiple sources, sum their contributions
• Several directions have to be known

The normal to the objects the light source– The normal to the objects, the light source
directions and the view direction:

• the directions L N et R are coplanarthe directions L, N et R are coplanar
• The angle (L, N) is equal to (N, R)

• Ks and Kd are 3-component vectors:Ks and Kd are 3 component vectors:
– Red, Green, Blue

• Id + Is = (kd cos (N L) + ks cosn (R V)) Isource / d2• Id + Is = (kd . cos (N, L) + ks . cos (R, V)) . Isource / d
– The term between () = BRDF

Some RemarksSome Remarks …
I k N H n I• Is = ks . <N,H>n . Isource

• If the surface is perfectly
specular, n is very large

N H

p , y g
• <N,H>n is not negligible

only for (N,H) = 0
Thus Ir = ks I

L
V

• Thus Ir = ks . Isource

• (N,H) = 0 means that the
incident and reflection
angles are equal

• Only 1 reflected ray:
because we assume thebecause we assume the
surface perfectly
specular

Some RemarksSome Remarks …
RH H

N
R

L
V

N

L’V L

S (L’ N) (V N) d (V’ N) (L N)• Suppose (L’,N) = (V,N) and (V’,N) = (L,N)
• Then : (N,H) = (N,H’)
• Ir = ks . <N,H>n . Is
• Ir’ = ks . <N’,H’>n . Is’
• Thus : ks . <N,H>n = ks . <N,H’>n

• This is the reciprocity of the reflection modelp y

ReflectionsReflections

• We normally deal
with a perfectly p y
diffuse surface.

• With ray tracing we• With ray-tracing, we
can easily handle

f fperfect reflections.
• Phong allows glossyPhong allows glossy

reflections of the
light sourcelight source.

To sum upTo sum up

• Division of the reflectance into 2 components
– Diffuse

• one 3D vector kd

– SpecularSpecular
• one 3D vector ks

• one coefficient n (shininess)
N L

Rone coefficient n (shininess) R

V

V

ExampleExample

•Parameters :Parameters :
– Kd =0.25
– K =0 75Ks 0.75
– n=1.0

Approximation de la réflectanceApproximation de la réflectance

•Paramètres :Paramètres :
– Kd =0.25
– K =0 75Ks 0.75
– n=50.0

Approximation de la réflectanceApproximation de la réflectance

•Paramètres :Paramètres :
– Kd =0.25
– K =0 75Ks 0.75
– n=200.0

Approximation de la réflectanceApproximation de la réflectance

•Paramètres :Paramètres :
– Kd =0.25
– K =0 75Ks 0.75
– n=50.0

Approximation de la réflectanceApproximation de la réflectance

•Paramètres :Paramètres :
– Kd =0.25
– K =0 25Ks 0.25
– n=50.0

Approximation de la réflectanceApproximation de la réflectance

•Paramètres :Paramètres :
– Kd =0.75
– K =0 25Ks 0.25
– n=50.0

Recap: Different Light TransportsRecap: Different Light Transports

Ambient TermAmbient Term

Ia Ia
Ia

N
-The indirect diffuse
component due to
multiple reflections is

Ia

Ia

Ia

Ia

multiple reflections is
supposed to be the result
of the diffuse reflection ofof the diffuse reflection of
an ambient term Ia

- Iid = kd . Ia

Ia is the same for all the- Ia is the same for all the
surfaces

PrinciplePrinciple

View point
Screen

Primary ray

Reflected ray
Normal
Primary ray

Shadow ray

Refracted ray

PrinciplePrinciple
• Trace a primary ray passing through a pixel• Trace a primary ray passing through a pixel
• P : intersection point
• Compute the contribution of the sources to P by tracing shadow

rays toward the light sourcesrays toward the light sources.
• If a shadow ray intersects an opaque object between P and the light

source then P is shadowed
• Compute the contribution to P of other points within the scene by• Compute the contribution to P of other points within the scene by

tracing secondary rays: reflected and refracted
• A reflected ray is traced only if the material is specular
• A refracted ray is traced only if the material is transparent• A refracted ray is traced only if the material is transparent
• A secondary ray intersects the scene at a point P’
• Again compute the contribution of the sources to P’ by tracing

shadow rays toward the light sourcesshadow rays toward the light sources.
• Repeat the process
• Each ray brings its contribution to the luminance of a point

PrinciplePrinciple
eye

incident ray

screen

y

reflected
ray

shadow
“feeler” ray

Y
Z

screen

nearest
intersected Z

world
coordinates

scene
model

surface

refracted
ray

X
coordinatesmodel

PrinciplePrinciple PrinciplePrinciple
2D Example

right = towards x up

Θ = frustum half-angle
d = distance to view plane

P1 = P0 + d*towards – d*tan(Θ)*right
P2 = P0 + d*towards + d*tan(Θ)*right

P = P1 + (i/width + 0.5) * (P2 - P1)
= P1 + (i/width + 0.5) * 2*d*tan (Θ)*right

Ray: P = P0 + tV
V = (P - P0) / ||P - P0 ||

Ray: P P0 tV

Ray GenerationRay Generation

• Pinhole camera

for (x= 0; x < xres; x++)
for (y= 0; y < yres; y++)
{
d= f + 2(x/xres - 0.5)x

+ 2(y/yres - 0.5)y;
/ //

x
d= d/|d|; // Normalize
r.d = d; r.o = o ;
color= ray_cast(r,scene,depth);
it i l(l)

y

dwrite_pixel(x,y,color);
} u

fd

o

REFLECTIONREFLECTION

 NVN2 V

V N

 N.VN2 V

 VNVN2R
NV

R

 VN.VN2R

R

REFRACTIONREFRACTION

E

NE

1n sinsin 21 nn

T2n
N

Refraction: Using Snell’s LawRefraction: Using Snell s Law

21
2

i
sin

• Using this law it is possible to show that:

21
1sin

 1cos1cos 22
121212 NET

• Note that if the root is negative then total

 1cos1cos 121212 NET

Note that if the root is negative then total
internal reflection has occurred and you just
reflect the vector as normal

Ray Tracing: PseudocodeRay-Tracing: Pseudocode
• For each ray r from eye to pixel, color the pixel with the value

t d b t(d th)returned by ray_cast(r , scene,depth):
ray_cast(r, scene,depth)
{{

If(depth >Max_Depth) {color black}
else {

If (intersection(r scene)) {If (intersection(r,scene)) {
p point_of_intersection(r, scene);
u reflect(r, p);

f t()v refract(r, p);
color phong_direct(p, r) +

ks ray_cast(u, scene, depth+1) +
kt ray_cast(v, scene , depth+1);

} else color background_color ;
}

return(color);
}

Pseudocode ExplainedPseudocode Explained

• p point_of_intersection(r, scene);
Compute p the point of intersection of ray r– Compute p, the point of intersection of ray r
with the scene

• u reflect(r, p); v refract(r, p);
– Compute the reflected ray u and the refracted p y

ray v using Snell’s Laws

Pseudocode ExplainedPseudocode Explained
• phong(p, r)

– Evaluate the Phong reflection model for the ray r at
point p on surface s, taking shadowing into account

k ()• ks ray_cast(u,scene,depth)
– Multiply the contribution from the reflected ray u by

the specular color k for surface t i i O lthe specular color ks for surface s containing p. Only
(specular-to-specular)* light transport is handled. Ideal
specular (mirror) reflectionspecular (mirror) reflection

• kt ray_cast(v,scene,depth)
– Multiply the contribution from the refracted ray v byMultiply the contribution from the refracted ray v by

the specular-refraction coefficient kt for surface s.
Only (specular-refraction)* light transport is handled

About Those Calls to ray cast()About Those Calls to ray_cast()...
• The function ray_cast() calls itself recursively
• There is a potential for infinite recursion

– Consider a “hall of mirrors”
• Solution: limit the depth of recursion

– A typical limit is five calls deep
– Note that the deeper the recursion, the less the ray’s

ib i h i li i i h d h fcontribution to the image, so limiting the depth of
recursion does not affect the final image much

About Those Calls to ray cast()About Those Calls to ray_cast()...
A th l ti• Another solution
– Ei: direct lighting at

point Pi

E0

Ks0 Kt0 point Pi
– Ks: vector (R,G,B)
– Kt: scalar ranging

E1

E5E4

E2

E3
Ks2 Ks1 Kt1

between 0 and 1
– Contribution of the red

path
E8 E7 E6

E5E4

E9 E10

E3

Ks5 Ks4 Ks3 Kt4 Kt5

path
- I : Intensity due to this ray path :

I = Ks0 . (Kt1 (Ks4 . E7 + E4) + E1)
= Ks0 Kt1 Ks4 E7 + Ks0 Kt1 E4 + Ks0 E1= Ks0 . Kt1 . Ks4 . E7 + Ks0 . .Kt1 . E4 + Ks0 . E1

- Stop tracing rays when the cumulative product Ks.Kt… is below a certain
threshold

ExampleExample

L1 I1

O
S Ij H1 : bisecting line of angle S P3 P2

H2 : bisecting line of angle S P2 P1

N1
N2

N3

L1
L2 L3

P3
P1

I1 H2 : bisecting line of angle S P2 P1
H1 : bisecting line of angle S P1 O
Idai : intensity due to direct lighting

d th bi t t f i t Pi N2

P2
I2

I3
and the ambient term for point Pi
Idai = kdi . Ia

+ kdi . Is . cos(Li,Ni)
P2 + ksi . Is . cos(Ni,Hi)n

I3 = Ida3
I2 = Ida2 + ks2 . I3
I1 = Ida1 + ks1 . I2

ReflectionsReflections
• If only one reflected ray is considered, then ray-

t i ill l h dl f t itracing will only handle perfect mirrors.

ReflectionsReflections
• Glossy reflections (multiple reflected rays) blur

the reflectionthe reflection.

ReflectionsReflections

• Mathematically, what does this mean?

What is the
reflected

color?

Glossy ReflectionsGlossy Reflections
• We need to integrate the color over the reflectedWe need to integrate the color over the reflected

cone.
• Weighted by the reflection coefficient in that• Weighted by the reflection coefficient in that

direction.

TranslucencyTranslucency

• Likewise, for blurred refractions, we need
to integrate around the refracted angle.g g

TranslucencyTranslucency

TranslucencyTranslucency Calculating the integralsCalculating the integrals

• How do we calculate these integrals?
– Two-dimensional of the angles and ray-depth g y p

of the cone.
– Unknown function -> the rendered sceneUnknown function > the rendered scene.

• Use Monte-Carlo integration

ShadowsShadows

• Ray tracing casts shadow from a point
light source. g

• Many light sources are illuminated over a
finite areafinite area.

• The shadows between these are
substantially different.

• Area light sources cast soft shadows• Area light sources cast soft shadows
– Penumbra
– Umbra

Soft ShadowsSoft Shadows

Soft ShadowsSoft Shadows

Penumbra

Umbra

Soft ShadowsSoft Shadows

• Umbra – No part of the light source is
visible.

• Penumbra – Part of the light source is
occluded and part is visible (to a varyingoccluded and part is visible (to a varying
degree).

• Which part? How much? What is the Light• Which part? How much? What is the Light
Intensity reaching the surface?

Pros and Cons of Ray TracingPros and Cons of Ray Tracing
• Advantages of ray tracingg y g

– All the advantages of the Phong model
– Also handles shadows reflection and– Also handles shadows, reflection, and

refraction
Di d t f t i• Disadvantages of ray tracing
– Computational expense
– No diffuse inter-reflection between surfaces
– Not physically accurateNot physically accurate

• Other techniques exist to handle these
h t i t t !shortcomings, at even greater expense!

An Aside on AntialiasingAn Aside on Antialiasing
• Our simple ray tracer produces images• Our simple ray tracer produces images

with noticeable “jaggies”
• Jaggies and other unwanted artifacts can

be eliminated by antialiasing:y g
– Cast multiple rays through each image pixel

Color the pixel with the average ray– Color the pixel with the average ray
contribution
A l ti b t it i th b– An easy solution, but it increases the number
of rays, and hence computation time, by an

d f it dorder of magnitude or more

IntersectionIntersection
PrinciplePrinciple

• The scene is supposed to be expressed in the world coordinate
system (WCS)system (WCS).

• It may be: A set of independent objects
• Purpose: intersect a scene with a ray whose equation is given by :

P P t D• P = P0 + t . D
• where :

P0 is the ray origin;
D = (dx, dy, dz) is the direction vector of the ray ;
t > 0

• Intersection result = { ti / ti is a value of t corresponding to an { p g
intersection point }.

• Only the closest point to the ray origin is used to compute shading
and secondary shot rays.

IntersectionIntersection
Spherep
• d0: Orthogonal distance between the ray and the

center of the sphere of radius r and center C
• P = P0 + t . D : the ray equation

P (X Y Z) D (d d d)

P0

D• P0 = (X0, Y0, Z0) D=(dx,dy,dz)
• If d0

2 <= r2, then the ray intersects the sphere
• Intersection points = solutions of

|| P C ||2 + 2t (P C) ● D + t2 || D ||2 = r2

d0

r

ray

D

|| P0 - C ||2 + 2t . (P0 - C) ● D + t2 . || D ||2 = r2

• d0 is evaluated by minimizing the
distance d between C and a point P on the ray.

• This gives:

C
P

distance to minimize

• This gives:
d2 = || P0 + t . D - C ||2 = || P0 - C ||2 +
2t . (P0 - C) ● D + t2 . || D ||2

• By setting to 0 the derivative of d2 we obtain :By setting to 0 the derivative of d , we obtain :
t = ((P0 - C) ● D / || D ||2) = - (P0 - C) ● D

• After substitution : d0
2 = || P0 - C ||2 –

((P - C) ● D)2((P C) D)

IntersectionIntersection
Axis aligned ParallelepipedAxis-aligned Parallelepiped

• Faces: perpendicular to the axes of the world coordinate system.
Fi t th i t ti b t th d th f 1 d• First, the intersections between the ray and the faces x = x1 and x =
x2 are computed.

• Two values of t are then obtained
t1 (1 0) / d d t2 (2 0) / d• t1 = (x1 - x0) / dx and t2 = (x2 - x0) / dx.

• Interval: [Ix, Mx] = [min(t1, t2), max(t1, t2)]
• Same processing applied to the faces perpendicular to the y and z

T th i t l [I M] d [I M]axes. Two other intervals: [Iy, My] and [Iz, Mz]
• The result is then an intersection interval given by :

[I, M] = [max(Ix, Iy, Iz), min(Mx, My, Mz)]
• If I <= M then the ray intersects the parallelepiped bounding volume,

otherwise it does not intersect it
• Closest intersection point: t=I

IntersectionIntersection
PolyhedronPolyhedron

f f• Polyhedron = set of pairs of
parallel faces

• Ni: normal to a pair of faces
• A pair of parallel faces is p p

called slab

IntersectionIntersection
P l h dPolyhedron

• The intersection test is similar to that of a
parallelepiped, except that the faces are not
perpendicular to the axes of the coordinateperpendicular to the axes of the coordinate
system

• For each pair i compute interval [I M]• For each pair i, compute interval [Ii, Mi]
• Let N be the normal to a face

N P d 0 h i f h l• N ● P + d = 0 the equation of the plane
containing the face.

IntersectionIntersection
P l h dPolyhedron

• The value of t corresponding to theThe value of t corresponding to the
intersection between the ray and this
face is computed by substituting the
ray equation into that of the plane : idt i ray equation into that of the plane :
t = - (d + N ● P0) / N ● D

• For each slab i , N=Ni and === DNi
i

idt i

1

• Given a slab i, these values are the
same for all the polyhedra used as DNi

PNii

DNi

0

same for all the polyhedra used as
object bounding volumes

IntersectionIntersection
CylinderCylinder

• The cylinder : intersection between an infinite height cylinder and the
subspace delimited by two planes which equations are p y p q
z = 0 and z= h

• The intersection between the ray an the infinite height cylinder is first
performed. This yields a first interval [t1,t2]
Th i t ti ith th t l i d i t l [t3 t4]• The intersection with the two planes gives a second interval [t3, t4].

• The final intersection interval [I, M] results from the combination of these
two intervals (as for the parallelepiped).

r

z

y

h

x

IntersectionIntersection
Cylinder: continuedCylinder: continued

• obtaining [t1, t2]
Th ti f th i fi it h i ht li d– The equation of the infinite height cylinder :

– x2 + y2 = r2

– Substituting the ray equation in this equation we obtain:
t2 (dx2 + dy2) + 2t (x dx + y dy) + (x 2 + y 2 r2) 0t2 . (dx2 + dy2) + 2t . (x0 . dx + y0 . dy) + (x0

2 + y0
2 - r2) = 0

– Solving this equation gives the interval [t1, t2].
• obtaining [t3, t4]

Let A and B the two values of t resulting from the intersection– Let A and B the two values of t resulting from the intersection
with the two planes :

A = - z0 / dz and B = (h - z0) / dz
We get :– We get :

t3 = min(A,B) and t4 = max(A, B)

IntersectionIntersection
ConeCone

• Intersection: performed in the LCS of the conep
• Cone: intersection between an infinite height cone and the subspace

delimited by two planes, the equations of which are z = 0 and z = h.
• Intersection between the ray and the infinite height cone is first y g

performed.
• The equation of this cone is given by :

h2 . (x2 + y2) - r2 . z2 = 0.(y)
z

yr

x

h

IntersectionIntersection

Cone
• Substituting the ray equation in this equationSubstituting the ray equation in this equation

yields an interval [t1, t2].
• Then the planes are in their turn intersected to• Then the planes are in their turn intersected to

give a second interval [t3, t4] such that :
t3 i (A B) d t4 (A B)t3 = min(A, B) and t4 = max(A, B)

• where A = - z0 / dz and B = (h - z0) / dz.
• The final interval is the combination of these two

intervals (as for the cylinder)(y)

IntersectionIntersection
P lPolygon
• Several ray-polygon intersection methods have

been proposed in the literaturebeen proposed in the literature.
• Only two of them are presented .
• For all these methods the intersection process• For all these methods, the intersection process

consists of two steps :
– First step: Ray-Plane intersection test p y

• the goal of the first step is to perform the intersection
between the ray and the plane containing the polygon

– Second step: Inside - Outside testSecond step: Inside Outside test
• the second step tests if the resulting point is inside or outside

the polygon.

Intersection TriangleIntersection - Triangle
• Barycentric coordinates• Barycentric coordinates

– Non-degenerate triangle ABC
P A B C

1
C

P= 1A + 2B + 3C
– 1 + 2 + 3 = 1 P
– i >= 0
– 3 = area(APB) / area(ACB) B0

33

P

3 area(APB) / area(ACB),
– 2 = area(APC) / area(ACB),
 (CPB) / (ACB)

B
A

– 1 = area(CPB) / area(ACB),
– Area(APB)=)ˆsin(

2
1

2
1),det(

2
1 PBPAPBPAPBPAP

222

IntersectionIntersection
Polygon: Snyder's method• Polygon: Snyder's method

• Ray-triangle intersection: extension to a polygon.Ray triangle intersection: extension to a polygon.
• Let Pi be the vertices of a triangle and Ni the associated

normals which are used for normal interpolation across
the trianglethe triangle.

• Normal to the triangle: N = (P1 - P0) x (P2 - P0)
• A point P lying on the triangle plane satisfies :po y g o e a g e p a e sa s es

P ● N + d = 0 where d = - P0 ● N.
• To intersect a ray P = O + t . D with a triangle, first

t th t t f th i t ti b t thcompute the t parameter of the intersection between the
ray and the triangle plane

t = (d - N ● O) / N ● D.()

IntersectionIntersection
Polygon: Snyder's method

• Projecting the triangle into any other plane, except
one that is orthogonal to the triangles plane will not
change the barycentric coordinates of the triangle.g y g

• This allows to simplify computations, since we can
choose any of the coordinate system's three axis-
aligned planes to project our triangle, thus throwing

f th th di t d d i thaway one of the three coordinates and reducing the
barycentric equations to R2.

• For reasons of numerical stability we want to choose
the dominant axis of the triangles normal for thethe dominant axis of the triangles normal for the
projection.

• An index i0 is computed: equal either to 0 if | Nx | is
maximum (i e the x axis is dominant) or to 1 if | Ny | ismaximum (i.e. the x axis is dominant) or to 1 if | Ny | is
maximum or to 2 if | Nz | is maximum.

IntersectionIntersection
Polygon: Snyder's methodPolygon: Snyder s method

• Let i1 and i2 (i1, i2 {0, 1, 2}) be two unequal indices different from i0.
Compute the i1 and i2 components of the intersection point I:

Compute the i1 and i2 components of the intersection point I:

Ii1 = Oi1 +t . Di1 and Ii2 = Oi2 + t . Di2
• The inside-outside test can be performed by computing scalars ß0, ß1 and

ß2 according to :
ßi = [(Pi+2 - Pi+1) x (I - Pi+1)]i0 / [N]i0

• The ßi are the barycentric coordinates of the point where the ray intersects
the triangle plane.

• I is inside the triangle if and only if 0 ≤ ß ≤ 1 for i {0 1 2}• I is inside the triangle if and only if 0 ≤ ß ≤ 1 for i {0, 1, 2}.
• The interpolated normal at point I is given by :

N' = ß0 . N0 + ß1 . N1 + ß2 . N2.
• Snyder's method can be easily extended up to polygons• Snyder s method can be easily extended up to polygons.
• The main idea is to consider a polygon as a union of triangles.

IntersectionIntersection
Marchal’s methodMarchal’s method

• I is the ray-plane intersection point.
• The Pi are transformed to the two dimensional

u
• The Pi are transformed to the two dimensional

coordinates system (u, v) whose origin is vertex
P0.

• The plane of this coordinates system is the
l l P

P

P

0

1

polygon plane.
• The inside-outside test determines if an edge PiPi+1

intersects the v axis at a point M (this may occur
when the u components of Pi and Pi+1 have

P

P
I

2

4

p i i+1
different signs).

• If so, and if P0I < P0M then I is inside the polygon,
else it is outside.
O th th h d if f th d i t t

vP3

M

• On the other hand, if none of the edges intersect
the v axis, then I lies outside the polygon.

IntersectionIntersection
M h l’ th dMarchal’s method

• The interpolated normal at point I is given by :
u

P
0p p g y

NI = (P0I / P0M) ● NM + (1 - P0I / P0M) ● N0 P

P

0

1

4

• where the normal NM at point M is given by : P
I

2

M

NM = (PiM / PiPi+1) ● Ni+1 + (1 – PiM/ PiPi+1) . Ni

and Ni, Ni+1 are the normals at point Pi and Pi+1. PiPi+1 is the intersected

vP3

and Ni, Ni+1 are the normals at point Pi and Pi+1. PiPi+1 is the intersected
edge.

Bounding boxBounding box
T d th t f bj t• To reduce the amount of ray-object
intersections, its is absolutely necessary to use a
hierarchical data structurehierarchical data structure .

• This data structure is a tree of bounding
volumesvolumes.

• Bounding volumes are simple geometric objects
which fit around the objectswhich fit around the objects.

• They are chosen to be simple to intersect with a
ray such as spheres or parallelepipeds thatray, such as spheres or parallelepipeds that
have faces perpendicular to the axes.

Bounding boxBounding box

• Example of a
hierarchy ofhierarchy of
bounding boxes
: binary tree: binary tree.

ll l i d hparallelepiped sphere

cylinders

Bounding VolumeBounding Volume
Diff t ki d f b di V lDifferent kinds of bounding Volume

• Parallelepiped• Parallelepiped
– For the sake of speed up, the faces of this bounding volume are

perpendicular to the axes of the World Coordinates System.
– Its perspective projection onto the screen plane is often used to

filter the primary rays (rays starting at the eye location).
• Sphere and EllipsoidSphere and Ellipsoid

– They may be used to filter the reflected and refracted rays and
those directed to the light sources.

P l h d• Polyhedron
– Intersection of slabs: a slab is a pair of parallel faces

Bounding Volume HierarchyBounding Volume Hierarchy

• Organize objects into a tree Organize objects into a tree
• Group objects in the tree

– based on spatial relationships

• Each node in the tree
contains a bounding box of allcontains a bounding box of all
the objects below it

Bounding Volume Hierarchy (BVH)Bounding Volume Hierarchy (BVH)

D t i i ti l BVH• Determining optimal BVH
structure is NP-hard problemp

• Heuristic approaches:
Cost models (minimize volume– Cost models (minimize volume
or surface area)
Spatial models– Spatial models

• Categories of approaches:
– Top down
– Bottom up

Median Cut BVH ConstructionMedian Cut BVH Construction

Top down approach:

• Sort objects by position on
axisaxis
– cycle through x,y,z

t f b di b– use center of bounding box
• Insert tree node with half of

objects on left and half on
right

Median Cut BVH ConstructionMedian Cut BVH Construction
1 L {li t f b di l b }1. L= {list of bounding volume numbers}
2. Choose widest slab:

dmax[2] – dmin[2] or dmax[1] –
d i [1]

dmax[2]
dmin[1]
(In this example :
max width = dmax[1] – dmin[1]

1 3
2

3. Then choose slab of max width
4. Sort the bounding volumes wrp to

increasing
d i [b f id t l b]

4

dmin[number_of_widest_slab]
5. We get a sorted list L = {1,5,3,2,4}
6. Split L into two sub-lists L1 and L2 dmin[2] dmin[1] dmax[1]

5

7. We get : L1 = {1,5,3} L2 = {2,4}
8. Go to 1 with L = L1 then L = L2

Leaf = one or more objects

Bottom up BVH ConstructionBottom up BVH Construction

• Add objects one at a time to
tree

• Insert to subtree that would
cause smallest increase tocause smallest increase to
area

Bottom up BVH ConstructionBottom up BVH Construction

• Add objects one at a time
to tree

• Insert to subtree that
would cause smallestwould cause smallest
increase to area

Bottom up BVH ConstructionBottom up BVH Construction

• Add objects one at a
time to tree

• Insert to subtree that
would cause smallestwould cause smallest
increase to area

Bottom up BVH ConstructionBottom up BVH Construction

• Add objects one at a time
to tree

• Insert to subtree that would
cause smallest increase tocause smallest increase to
area

Intersection Test Using the BVHIntersection Test Using the BVH
O th hi h f b di l h b• Once the hierarchy of bounding volumes has been
built, the ray-scene intersection test is performed as
follows.
– The hierarchy is searched from the root to the leaves.
– During this search, at a node N, the associated bounding

volume is checked for an intersection with the current rayvolume is checked for an intersection with the current ray.
– If the bounding volume of N is intersected, those of its

children node are in their turn checked for an intersection.
• This process is repeated recursively and ends up at

the leaf nodes.
• Else if the bounding volume of N is not intersected• Else, if the bounding volume of N is not intersected

by the ray, the associated subtree is left out, that is, it
is not searched, which saves time.

Spatial SubdivisionSpatial Subdivision
Th t l b di l f th• The rectangular bounding volume of the scene
is subdivided into 3D cells
E h ll t i f bj t f th• Each cell contains a few objects of the scene

• When a ray enters a cell, we check the objects
ithi thi ll f i t ti ith thwithin this cell for an intersection with the ray

• If the intersection process ends up with success
th d t h k th t f th bj tthen no need to check the rest of the objects

• If the ray fails to hit any object in the cell then it
t th t 3D llmoves to the next 3D cell

• Repeat the process until intersection is found

Spatial SubdivisionSpatial Subdivision

• Two procedures
– A procedure which performs a spatial p p p

subdivision of the scene into 3D cells, each
of them containing a small portion of the g p
database

– A second procedure which determines theA second procedure which determines the
next cell along a ray

Spatial SubdivisionSpatial Subdivision

• Two procedures

Non uniform Grid

Uniform Grid

Non uniform Grid

Uniform Grid

What is Ray Tracing in a
subdivided space?

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing in a
subdivided space?

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing in a
subdivided space?

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing in a
subdivided space?

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing in a
subdivided space?

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing in a
subdivided space?

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing in a
subdivided space?

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing in a
subdivided space?

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing in a
subdivided space?

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing in a
subdivided space?

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing in a
subdivided space?

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

Spatial SubdivisionSpatial Subdivision

• Different kinds of subdivision

Uniform Spatial Sub Quadtree/Octree kd-tree BSP-tree

Uniform GridUniform Grid
Th t l b di• The rectangular bounding
volume of the scene is
subdivided into a uniform 3D
grid of rectangular cells

• The grid is represented by a 3D
th i di f hi harray, the indices of which are

i, j and k corresponding to the x,
y and z axes respectivelyy a d a es espec e y

• Each cell is represented by a
data structure containing a

i t t th bj t ti llpointer to the objects partially or
totally within the cell

Uniform GridUniform Grid
Ray Traversal Algorithm: Classical Method

• Let G[i][j][k] be the 3D array representing the 3D grid
• Let P the point where the ray leaves the current cell and D the ray

direction
P i th t i i t• P is the outgoing point

• Let w be the axis perpendicular to the face which contains P
• Let u (x, y or z) be the index (i, j or k) of the current cell corresponding to

ww
• If Dw > 0 then the index u of the next cell is u = u + 1, the other indices

are unchanged
• Else it is : u = u – 1
• Example :
• If w = z then u = k
• If Dz > 0 then the index of the next cell along the ray is k = k + 1, while the

h i di d hother indices do not change
• If the current cell is G[i][j][k] then the next cell along the ray is G[i][j][k + 1]

if Dz > 0, or G[i][j][k - 1] if Dz < 0

Uniform GridUniform Grid
Ray Traversal Algorithm: Classical Method

j

4

3 P
(3,1) (3,2)

3

2
P

(2,1)(2,0) (2,3)(2,2)

y 1
(1,0)

(1,3)

0 1 2 3 4
0 i

(0,3)

x0 1 2 3 4

Uniform GridUniform Grid
• Ray Traversal Algorithm: Amanatide’s Algorithm

ty = ty + tDeltay

t t +tD lt
tDeltay

ty

tx= tx +tDeltax

tDeltax

tx

Initial Voxel

Uniform GridUniform Grid
Ray Traversal Algorithm: Amanatide’s AlgorithmRay Traversal Algorithm: Amanatide’s Algorithm
Initialization
• Ray equation : P = P0 + t . D

Id tif th l t i i th i i O• Identify the voxel containing the ray origin O
• If O is outside the grid, find the point through which the ray enters

the grid and determine the adjacent voxel
X Y d Z l i di• X, Y and Z : voxel indices

• StepX, stepY and stepZ : initialized to 1, incremented or
decremented as the ray crosses the voxel boundaries
t t d t l f t di t th i t lti f• tx, ty and tz : values of t corresponding to the points resulting from
the intersection between the ray and 3 faces of the initial voxel

• tDeltaX, tDeltaY and tDeltaZ : distance travelled by the ray between
two successive faces perpendicular to the x y and z facestwo successive faces perpendicular to the x, y and z faces
respectively

Uniform GridUniform Grid
Ray Traversal Algorithm:Ray Traversal Algorithm:

Amanatide’s Algorithm

Algorithm
ty = ty + tDeltay

Min = min(tx,ty,tz) ;
switch(Min)
{

case tx : tDeltay
tx= tx +tDeltax

X += stepX ;
tx += tDeltax ;
break ;

case ty

tDeltay

tx

ty

Y += stepY ;
ty += tDeltay ;
break ;

case ty

tDeltax Initial Voxel

Z += stepZ ;
tz += tDeltaz ;
break ;

}

Uniform GridUniform Grid

• Advantages?
– easy to constructy
– easy to traverse

Di d t ?• Disadvantages?
– may be only sparsely

filled
– geometry may still be g y y

clumped (say, densely
grouped)g p)

Non Uniform GridNon Uniform Grid
• The rectangular bounding volume of the scene is recursively sliced :• The rectangular bounding volume of the scene is recursively sliced :

– either simultaneously by 3 planes perpendicular to the x, y and z
axes: Octree
or by one plane at a time perpendicular to an axis: Kd tree Bsp– or by one plane at a time perpendicular to an axis: Kd-tree, Bsp
tree

– or by one plane at a time non necessary perpendicular to an
axis: Bsp treeaxis: Bsp tree

• Each slicing plane divides a space (a 3D cell) into two subspaces
(3D cells)

• The subdivision process stops either when a cell contains partially orThe subdivision process stops either when a cell contains partially or
totally a minimum number of objects, or the maximum subdivision
level is reached for each axis

• The result is a linear array of rectangular cells or a binary tree or an y g y
octree

• Each cell is represented by a data structure containing a pointer to
the objects partially or totally within it

Non Uniform GridNon Uniform Grid

• Subdivide until each cell contains no more
than n elements, or maximum depth d is , p
reached

Non Uniform GridNon Uniform Grid
Ad t ?• Advantages?

– grid complexity matches geometric density
• Disadvantages?• Disadvantages?

– more expensive to traverse (especially octree)

Non Uniform Grid: Kd TreeNon Uniform Grid: Kd-Tree
• Subdivide only 1 dimension
• Do not subdivide at the center
• Which axis to pick?p
• What point on the axis to pick?
• One heuristic:

– Sort objects on each axis
– Pick point corresponding to “middle” object
– Pick axis that has “best” distribution of objects
– L = n/2, R = n/2 (ideal), where LLeft and RRight

Realistically– Realistically,
• minimize (L-R) and
• L approx. n/2, R approx. n/2

kD TreeskD-Trees

kD TreeskD-Trees kD TreeskD-Trees

kD Trees: Data StructurekD-Trees: Data Structure
Struct KdTreeNode {Struct KdTreeNode {

int axis; // Both, x or y or z split plane (0,1,2), 3 for leaf

float value; // Interior split position x y or zfloat value; // Interior, split position x, y or z

int nPrims; // Leaf

B di B b dBounding_Box bounds;
KdTreeNode *LeftChild; // interior
KdTreeNode *RightChild; // interior

}

KD Tree: TraversalKD-Tree: Traversal

B

X Z Xtmin

B

Y
Y Z

A

DC
Y

A A B C D

tmax
Range of t: [tmin,tmax]

KD Tree: TraversalKD-Tree: Traversal
•Input: a tree and a rayInput: a tree and a ray

•Search for the first intersected primitive in the tree

•Traversal: start from the root

•Use of a stack

•First range of t, [tmin,tmax]: associated with the scene bounding box

•Internal node encountered: ray is classified wrp to the splitting plane

•If range lies entirely in one side of the plane, traversal moves to the
appropriate child

•If the range straddles the plane, traversal will continue to the first
child hit by the ray while the second child is pushed onto the stackchild hit by the ray while the second child is pushed onto the stack
along with its range [tmin,tmax]

•Traversal proceeds down the tree, occasionally pushing items onto the
stack until a leaf node is reachedstack, until a leaf node is reached.

KD Tree: TraversalKD-Tree: Traversal

tmax tmax
tsplit

•(a) Initial parametric
range [tmin, tmax] :
intersection ray-

tmin
tminNearFar(a) (b)

bounding box

•(b) The ray first enters
the child “near” which

tmax tmax

tmin
tmintsplit

the child near which
has [tmin,tsplit] as
parametric range. If leaf
then intersection,

(c) (d)

,
otherwise child nodes
are processed

•(c) If no hit or a hit•(c) If no hit or a hit
beyond [tmin,tsplit]
then “far node” is
processed

•(d) Sequence continues, processing tree
nodes in depth first, front-to-back traversal,
until closest intersection is found or the ray processeduntil closest intersection is found or the ray
exists the tree

KD Tree: TraversalKD-Tree: Traversal
kd-search(tree ray)kd search(tree, ray)

(global-tmin, global-tmax) = intersect(tree.bounds, ray)
{
search node(tree root ray global tmin global tmax)search-node(tree.root, ray, global-tmin, global-tmax)
}

h d (d t i t)search-node(node, ray, tmin, tmax)
{

if(node.is-leaf)
search-leaf(node, ray, tmin, tmax)

else
search-split(node, ray, tmin, tmax)p (y)

}

KD Tree: TraversalKD-Tree: Traversal
search-split(split ray tmin tmax) {search split(split, ray, tmin, tmax) {

a = split.axis
thit = (split.value - ray.origin[a]) / ray.direction[a]
(first second) = order(ray direction[a] split left split right)(first, second) = order(ray.direction[a], split.left,split.right)
if(thit >= tmax or thit < 0)

search-node(first, ray, tmin, tmax)
l if(thit < t i)else if(thit <= tmin)

search-node(second, ray, tmin, tmax)
else {

stack.push(second, thit, tmax)
search-node(first, ray, tmin, thit)

}}
}

KD Tree: TraversalKD-Tree: Traversal
search-leaf(leaf, ray, tmin, tmax) {search leaf(leaf, ray, tmin, tmax) {

// search for a hit in this leaf
if(found-hit and hit.t < tmax)

succeed(hit)()
else

continue-search(leaf, ray, tmin, tmax)
}

continue-search(leaf, ray, tmin, tmax){
if(stack.is-empty) •Remarkfail()
else {

(n, tmin, tmax) = stack.pop()
h d (t i t)

Remark

If stack empty, then no
intersection along the

d th hsearch-node(n, ray, tmin, tmax)
}

}

ray and the search
terminates

KD Tree TraversalKD-Tree Traversal
X Z

X
B

X Z

X

DC
Y

Y ZDC

A

A B C DA B C D

Kd tree traversal: Observation
X Z

Kd-tree traversal: Observation

B
X

DC
Y

Y Z

A

Y Z

A B C D

C t l f’ t N t l f’ iCurrent leaf’s tmax = Next leaf’s min
=

Kd tree traversal: ObservationKd-tree traversal: Observation

Eli i t t k ti• Eliminate stack operations
• How?

– If the traversal reaches a leaf and
fails to find a hit:

• Restart the search at the root
• With tmin advanced to the end of the

leaf
• The first leaf intersected by the

modified range is the next leaf thatmodified range is the next leaf that
needs to be traversed

Kd tree traversal: RestartKd-tree traversal: Restart

continue-search(leaf, ray, tmin, tmax)
{{

if(tmax == global-tmax)
fail()

{else {
tmin = tmax
tmax = global tmaxtmax = global-tmax
search-node(tree.root, ray, tmin, tmax)

}}
}

ObservationObservation

B

X Z

XB

Y

X

DC

A

Y
Y Z

A

A B C DA B C D

Ancestor of A is parent of ZAncestor of A is parent of Z

Kd tree: ObservationKd-tree: Observation

B

X Z

XB

Y

X

DC

A

Y
Y Z

A

A B C DA B C D

Ancestor of A is parent of ZAncestor of A is parent of Z

Kd tree: Backtrack
• In the traditional, a node pushed onto the stack is always

Kd-tree: Backtrack
the other (second) child of one of the current node’s
ancestors

• Thus, possible to reach the parent of the node atop theThus, possible to reach the parent of the node atop the
stack by following a chain of parent links (which we can
store in the nodes of the tree) from the current node.

• If we again employ the tactic of advancing tmin to the end• If we again employ the tactic of advancing tmin to the end
of the last leaf visited, then we will be able to recognize
the appropriate parent as the closest ancestor that has a
nonempty intersection with the remaining (tmin; tmax)nonempty intersection with the remaining (tmin; tmax)
range.

• Bounding boxes are stored with internal nodesg
• Parents links are stored in all nodes
• Increase per-node storage

KD Backtrack
i h(l f i) {

KD-Backtrack
continue-search(leaf, ray, tmin, tmax) {

if(tmax == global-tmax)
fail()

else {else {
tmin = tmax
tmax = global-tmax
backtrack(leaf.parent, ray, tmin, tmax)

{{
}

backtrack(split, ray, tmin, tmax) {backtrack(split, ray, tmin, tmax) {
(t0,t1) = intersect(split.bounds, ray, tmin, tmax)
if(no-intersection)

backtrack(split.parent, ray, tmin, tmax)
lelse

search(split, ray, t0, t1)
}

BSP TreeBSP Tree

• Generalization of kd-
ttrees
• Splitting plane is not

i li daxis aligned
• Used in games:
DOOMDOOM

BSP treeBSP tree
• A Binary Space Partitioning (BSP) tree data structurea y Space a t t o g (S) t ee data st uctu e

– Recursive, Hierarchical subdivision of n-
dimensional space into convex subspaces.p p

• BSP tree construction
– Partition a subspace by a hyper-plane that p y yp p

touches the edge of the subspace.
– The result is two new subspaces that can be

further partitioned by recursive application of the
method.

• A "hyperplane" in an n-dimensional space is an n-1
dimensional object which can be used to divide the
space into two half spacesspace into two half-spaces.

BSP tree
• example:

In three dimensional space

BSP tree
– In three dimensional space,

the "hyperplane" is a plane.
– In two dimensional space,

it is a line.
• BSP trees are extremely versatile, because they

are powerful sorting and classification structuresare powerful sorting and classification structures.
– Hidden surface removal
– Ray tracing hierarchies
– Solid modeling
– Robot motion planning.

• Intensive time and space preprocessing vs.Intensive time and space preprocessing vs.
linear display algorithm.

Building a BSP treeBuilding a BSP tree
• Given a set of polygons in three dimensional space, we

would like to build a BSP tree which contains all of the
polygonspolygons.

• The algorithm to build a BSP tree:
Select a partition plane– Select a partition plane.

– Partition the set of polygons with the plane.
Recurse with each of the two new sets– Recurse with each of the two new sets.

• The choice of partition plane depends on how the tree
will be used and what sort of efficiency criteria you havewill be used, and what sort of efficiency criteria you have
for the construction.

Building a BSP treeBuilding a BSP tree
F it i i t t h th titi l• For some purposes, it is appropriate to choose the partition plane
from the input set of polygons
– Scan-conversion

• Other applications may benefit more from axis aligned orthogonal
partitions
– Ray tracingy g
– Space subdivision.

• It is desirable to have a balanced tree, where each leaf contains
roughly the same number of polygonsroughly the same number of polygons.

• It is desirable to minimize polygon splitting.
– Finding the optimal split is hard, we use a heuristic

• Testing the plane against a small random number of (5-6)
polygons for split.

BSP tree: PartitioningBSP tree: Partitioning
• Classify each member of the set with respect toClassify each member of the set with respect to

the plane.
• If a polygon lies entirely on one side of the• If a polygon lies entirely on one side of the

hyper-plane
It is added to the partition set for the proper– It is added to the partition set for the proper
side.

• If a polygon spans the plane – keep in the node
• If the polygon intersect the hyper-plane

– Split it as needed and add the parts the
proper sets.p ope sets

BSP tree: When to stop?BSP tree: When to stop?
• The decision to terminate the tree construction is a

matter of the specific application.
S li ti ill b fit f t i ti h– Some applications will benefit from termination when
the number of polygons in a leaf node is below a
maximum valuemaximum value.

– Other methods continue until every polygon is placed
in an internal node.a e a ode

• Another criteria that can be used is the maximum tree
depth.p

BSP tree: exampleBSP tree: example

• One of the most important properties of
BSP trees is that it is view independent.p

• For example, consider the following case:

2
3

1
3

4
5

6

BSP tree: exampleBSP tree: example

• Splitting the plane using the ordered lines
from the input we get the following:from the input, we get the following:

1
2

3
4

1

4
5

6

BSP tree: exampleBSP tree: example

1

1
2

3
4a 4b

front
1

24a
5

6
4b

BSP tree: exampleBSP tree: example

1

1
2

3
4a 4b

1

32

front back

4a
5

6
4b

BSP tree: exampleBSP tree: example

1

1
2

3
4a 4b

1

32

front back

4a
5

6
4b

4a

front

BSP tree: exampleBSP tree: example

11

321
2

3
4a 4b

front back

4a 4b 5

4a
5

6
4b front back front

6
front

BSP tree: exampleBSP tree: example
• Now we can choose several viewNow, we can choose several view

points, and choose the painting
order according to the tree we 1order according to the tree we
have created.

2V1

1

32

front back

1
2

3
4

V1

4a 4b 5

front back front

5
6

V2
6

front

V2

BSP tree: Hidden Surface
Removal

• Probably the most common application of BSP trees• Probably the most common application of BSP trees
is hidden surface removal in three dimension.

• BSP trees provide an elegant, efficient method for p g ,
sorting polygons via a depth first tree walk. This fact
can be exploited in a back to front "painter's
algorithm“algorithm .

• The idea behind the painter's algorithm is to draw
polygons far away from the eye first, followed by p yg y y , y
drawing those that are close to the eye.

• Hidden surfaces will be written over in the image as
the surfaces that obscure them are drawn.

• Can assist in 3D clipping.
• Can support Back Face Culling.

BSP tree: PaintingBSP tree: Painting

• One reason that BSP trees are so elegant for
the painter's algorithm is that the splitting of
complex polygons is an automatic part of tree
construction.

• When building a BSP tree specifically for hidden
surface removal, the partition planes are usually
chosen from the input polygon set.

• However, any arbitrary plane can be used ifHowever, any arbitrary plane can be used if
there are no intersecting or concave polygons.

BSP tree: Drawing the sceneBSP tree: Drawing the scene
• To draw the contents of the tree:

– Perform a back to front tree traversal.
– Begin at the root node and classify the eye position

with respect to the partition plane.
D th bt t th f hild f th• Draw the subtree at the far child from the eye

• Draw the polygons in this node
D h b• Draw the near subtree.

– Repeat this procedure recursively for each subtree.
• Front to back rendering is also possible.

BSP tree: Hidden Surface
Removal

• The painting order from V1:
– 3 5 1 4b 2 6 4a 13, 5, 1, 4b, 2, 6, 4a

• The painting order from V2:
1

32

front back

– 3, 5, 1, 4b, 2, 4a, 6
4a 4b 5

front back front

6
front

BSP tree: Ray TracingBSP tree: Ray Tracing

• Accelerating Ray Tracing

•Rectangular bounding volume of the scene:•Rectangular bounding volume of the scene:
recursively subdivided

•Subdivision: Splitting planes are axis aligned

•Each splitting plane splits a cell into two equally•Each splitting plane splits a cell into two equally
sized sub-cells

•Choose x, y and z axis one at a time (alternate)

OctreeOctree
Useful for reducing the number of ray object• Useful for reducing the number of ray-object

intersections.
• The bounded 3D world to be ray traced is y

subdivided into cells of varying size. Each cell
contains a list of objects (of approximately the
same length) which intersect it.g)

• Given a ray to be traced, a list of cells intersected
by the ray is determined. Intersection
calculations are performed only with thesecalculations are performed only with these
objects.

• Furthermore, if the cells may be accessed in the
d f d f th th dorder of advance of the ray, the procedure may

terminate once the first intersection is
discovered.

OctreeOctree
• Each node of the tree has eight

hild di t h l ichildren, corresponding to halving
the space along all of the three
axes.

• A node is a leaf if the subspace it• A node is a leaf if the subspace it
represents intersects at most a
given number of objects.

• The two basic operations neededThe two basic operations needed
for ray tracing octrees are:
– Locating the leaf cell

containing a given 3D point
(point location).

– Locating the next cell
intersecting a given ray.
f• The first is a standard octree

traversal. The second is
accomplished by repeating the first
with a point along the ray justwith a point along the ray just
outside the current cell.

OctreeOctree
O t i th• Octrees ignore the
directionality of objects.
S bdi ision is al a s in• Subdivision is always in
predefined directions and
placesplaces.

• Advantage: Simple
construction Point location isconstruction. Point location is
easy.

• Disadvantage: Non-optimal• Disadvantage: Non-optimal
subdivision (large trees).

Octree: exampleOctree: example

z
Full

Empty

Partially Full

0 1 2 6 7y 3 5
x

0 1 2 3 4 5 6 7
object is resting

l 0 1 2 3 4 5 6 7 on x -y plane

Octree: traversalOctree: traversal
1. Determine the first intersection point F between the ray and the p y

scene’s axis aligned bounding box (SAABB)
2. Push F along the normal to the face containing it,
3. Pushing consists in adding to the P’s coordinates a value deltax g g

(resp. deltay, deltaz) which is equal to half the length of the x side
(resp. y, z) of the smallest cell.

4. Search for the cell (containing F) in the tree
5. If no intersection in the cell, compute outgoing point P
6. Push P along the normal to the cell’s face containing it
7. The results is another point P’p
8. Search for the cell (containing P’) in the tree
9. Go to 1 until intersection

Remark: If P is on an edge or a vertex of a cell, push it simultaneously
in the directions of the normals to the faces sharing it

Octree: traversalOctree: traversal

Uniform vs. Adaptive Subdivision

U if• Uniform:
too much
traversed
empty
cells

• Adaptive: dapt e
less
emptyempty
cells

Cells & PortalsCells & Portals

A
D

E

D
FCB G

H

EA

B C D F G

H

Cells & PortalsCells & Portals

A
D

E

D
FCB G

H

EA

B C D F G

H

Cells & PortalsCells & Portals

A
D

E

D
FCB G

H

EA

B C D F G

H

Cells & PortalsCells & Portals

A
D

E

D
FCB G

H

EA

B C D F G

H

Cells & PortalsCells & Portals

A
D

E

D
FCB G

H

EA

B C D F G

H

Cells & PortalsCells & Portals
T ll d S i ’ A hTeller and Sequin’s Approach

Decompose space into con e cells se• Decompose space into convex cells: use
walls as splitting polygons

• For each cell identify its boundary edges• For each cell, identify its boundary edges
into two sets: opaque or portal

• Precompute visibility among cellsPrecompute visibility among cells
• During viewing (eg, walkthrough phase), use

the precomputed Potentially Visible polygon
Set (PVS) of each cell to speed-up rendering

Cells & Portals: Space
Subdivision

Input Scene:

Spatial subdivision: Generated by computing
a k-d tree of the input facesa k-d tree of the input faces

D t i i Adj t I f tiDetermining Adjacent Information Finding SightlinesFinding Sightlines

Problem:

Given set of portals forming path from p g p
one portal to another, how do we
determine if there is a sightline that g
passes through all those portals?

Finding SightlinesFinding Sightlines

• Key insight: orient portalsy g p

• All portal left end points must be on p p
positive side of the line

• All portal right end points must be on
negative side of the line

Finding SightlinesFinding Sightlines

• Unknown line: S
• Constraints:

• S . L >= 0 for all portal left pointsp p
• S . R <= 0 for all portal right points

•This is a linear programming problem.g g

Cell to Cell VisibilityCell to Cell Visibility

• Given a cell and the sightline algorithm, we
need to find, for each cell, all cells visible
from it
• Use adjacency lists to traverse graph depth
First
• At each cell, recurse only if sightline test is
positive

Computing the PVS of a cellp g

S•R 0, L L
S R 0 R RLinear programming problem: S•R 0, R RLinear programming problem:

Find Visible Cells(cell C, portal sequence P, visible cell set V)Find_Visible_Cells(cell C, portal sequence P, visible cell set V)
V=V C
for each neighbor N of C

for each portal p connecting C and Np p g
orient p from C to N
P’ = P concatenate p
if Stabbing Line(P’) exists theng_ ()

Find_Visible_Cells (N, P’, V)

Eye-to-Cell VisibilityEye-to-Cell Visibility

The eye-to-cell visibility of any observer is
a subset of the cell-to-cell visibility for the cell
containing the observer

R ltResults

