
 OpenGL VRML W3D

 Home Tutorials Books Applications Tools Docs Models Textures

 Bugs GLSL Tutorial

GLSL Tutorial

Index
Introduction

The Graphics Pipeline
Pipeline Overview
Vertex Processor
Fragment Processor

OpenGL Setup for GLSL
Overview
Creating a Shader
Creating a Program
Source Code
Trouble Shooting: the InfoLog
Cleaning Up

Comm. OpenGL=> GLSL
Comm. Introduction
Uniform Variables
Attribute Variables

Shader Basics
Data Types and Variables
Statments and Functions
Varying Variables

Shader Examples
Shader Examples List

GLSL Hello World

Color Shader

Flatten Shader

Toon Shader
Toon Shader - Version I
Toon Shader - Version II
Toon Shader - Version III

Lighting
OpenGL Directional Light I
OpenGL Directional Light II
Directional Light per Pixel
Point Light Per Pixel
Spot Light Per Pixel

Simple Texture
Combine Texture + Fragment
Multitexturing

[Previous] [Next: Pipeline Overview]

GLSL Tutorial

Introduction

In this tutorial shader programming using GLSL will be covered.
Shaders are a hot topic and 3D games have shown that they can be
put to good use to get remarkable effects. This tutorial aims at
providing an introduction to the world of shaders.

There is an introduction to the specification, but reading the OpenGL
2.0 and GLSL official specs is always recommended if you get serious
about this. It is assumed that the reader is familiar with OpenGL
programming, as this is required to understand some parts of the
tutorial.

GLSL stands for GL Shading Language, often referred as glslang, and
was defined by the Architectural Review Board of OpenGL, the
governing body of OpenGL.

I won't go into disputes, or comparisons, with Cg, Nvidia's proposal for
a shading language that is also compatible with OpenGL. The only
reason I chose GLSL and not Cg for this tutorial, is GLSL closeness to
OpenGL.

Before writing shaders, in any language, it is a good idea to understand
the basics of the graphics pipeline. This will provide a context to
introduce shaders, what types of shaders are available, and what
shaders are supposed to do. It will also show what shaders can't do,
which is equally important.

After this introduction the OpenGL setup for GLSL is discussed. The
necessary steps to use a shader in an OpenGL application are
discussed in some detail. Finally it is shown how an OpenGL
application can feed data to a shader making it more flexible and
powerful.

Some basic concepts such as data types, variables, statements and
function definition are then introduced.

The tutorial covers both the ARB extensions and OpenGL 2.0 versions.
The former for greater compatibility; and the latter, because in the near
future it will be the standard solution. The differences are small, and
mostly have to do with slightly different function names and constants.
Color coding has been used to help the reader to distinguish between
them. The ARB stuff is presented in grey, and the OpenGL 2.0 in
orange.

This dual coverage is prone to mistakes, so please let me know if you

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?intro

1 sur 2 25/01/2009 13:56

Notes
The gl_NormalMatrix
Normalization Issues

OpenGLTutorials @
Lighthouse3d.com

Led Shader
View Frustum Culling
GLSL Tutorial
Maths Tutorial
Billboarding Tutorial
Picking Tutorial
Terrain Tutorial
Display Lists Tutorial
GLUT Tutorial

Ads by Google
 OpenGL
 OpenGL 3D Tutorial
 Free 3D Models
 3D Tools
 Autodesk 3D Studio

find something wrong.

Please bear in mind that this is work in progress and therefore bugs
are likely to be present in the text or demos. Let me know if you find
any bug, regardless of how insignificant, so that I can clean them up.
Also suggestions are more than welcome. I hope you enjoy the tutorial.

[Previous] [Next: Pipeline Overview]

Site designed and maintained by António Ramires Fernandes
Your comments, suggestions and references to further material are welcome!

Lighthouse 3D privacy statement

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?intro

2 sur 2 25/01/2009 13:56

 OpenGL VRML W3D

 Home Tutorials Books Applications Tools Docs Models Textures

 Bugs GLSL Tutorial

GLSL Tutorial

Index
Introduction

The Graphics Pipeline
Pipeline Overview
Vertex Processor
Fragment Processor

OpenGL Setup for GLSL
Overview
Creating a Shader
Creating a Program
Source Code
Trouble Shooting: the InfoLog
Cleaning Up

Comm. OpenGL=> GLSL
Comm. Introduction
Uniform Variables
Attribute Variables

Shader Basics
Data Types and Variables
Statments and Functions
Varying Variables

Shader Examples
Shader Examples List

GLSL Hello World

Color Shader

Flatten Shader

Toon Shader
Toon Shader - Version I
Toon Shader - Version II
Toon Shader - Version III

Lighting
OpenGL Directional Light I
OpenGL Directional Light II
Directional Light per Pixel
Point Light Per Pixel
Spot Light Per Pixel

Simple Texture
Combine Texture + Fragment
Multitexturing

Notes
The gl_NormalMatrix
Normalization Issues

[Previous: Introduction] [Next: Vertex Processor]

GLSL Tutorial

Pipeline Overview

The following figure is a (very) simplified diagram of the pipeline stages and the data that
travels amongst them. Although extremely simplified it is enough to present some important
concepts for shader programming. In this subsection the fixed functionality of the pipeline is
presented. Note that this pipeline is an abstraction and does not necessarily meet any
particular implementation in all its steps.

Vertex Transformation

In here a vertex is a set of attributes such as its location in space, as well as its color,
normal, texture coordinates, amongst others. The inputs for this stage are the individual
vertices attributes. Some of the operations performed by the fixed functionality at this stage
are:

Vertex position transformation
Lighting computations per vertex
Generation and transformation of texture coordinates

Primitive Assembly and Rasterization

The inputs for this stage are the transformed vertices, as well as connectivity information.
This latter piece of data tells the pipeline how the vertices connect to form a primitive. It is in
here that primitives are assembled.

This stage is also responsible for clipping operations against the view frustum, and back face
culling.

Rasterization determines the fragments, and pixel positions of the primitive. A fragment in
this context is a piece of data that will be used to update a pixel in the frame buffer at a

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?pipeline

1 sur 3 25/01/2009 13:57

OpenGLTutorials @
Lighthouse3d.com

Led Shader
View Frustum Culling
GLSL Tutorial
Maths Tutorial
Billboarding Tutorial
Picking Tutorial
Terrain Tutorial
Display Lists Tutorial
GLUT Tutorial

Ads by Google
 OpenGL Shader
 Tutorial 3D Studio
 OpenGL Update
 Texture Library
 Learning 3D Graphics

specific location. A fragment contains not only color, but also normals and texture
coordinates, amongst other possible attributes, that are used to compute the new pixel's
color.

The output of this stage is twofold:

The position of the fragments in the frame buffer
The interpolated values for each fragment of the attributes computed in the vertex
transformation stage

The values computed at the vertex transformation stage, combined with the vertex
connectivity information allow this stage to compute the appropriate attributes for the
fragment. For instance, each vertex has a transformed position. When considering the
vertices that make up a primitive, it is possible to compute the position of the fragments of
the primitive. Another example is the usage of color. If a triangle has its vertices with
different colors, then the color of the fragments inside the triangle are obtained by
interpolation of the triangle's vertices color weighted by the relative distances of the vertices
to the fragment.

Fragment Texturing and Coloring

Interpolated fragment information is the input of this stage. A color has already been
computed in the previous stage through interpolation, and in here it can be combined with a
texel (texture element) for example. Texture coordinates have also been interpolated in the
previous stage. Fog is also applied at this stage. The common end result of this stage per
fragment is a color value and a depth for the fragment.

Raster Operations

The inputs of this stage are:

The pixels location
The fragments depth and color values

The last stage of the pipeline performs a series of tests on the fragment, namely:

Scissor test
Alpha test
Stencil test
Depth test

If successful the fragment information is then used to update the pixel's value according to
the current blend mode. Notice that blending occurs only at this stage because the Fragment
Texturing and Coloring stage has no access to the frame buffer. The frame buffer is only
accessible at this stage.

Visual Summary of the Fixed Functionality

The following figure presents a visual description of the stages presented above:

Replacing Fixed Functionality

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?pipeline

2 sur 3 25/01/2009 13:57

Recent graphic cards give the programmer the ability to define the functionality of two of the
above described stages:

Vertex shaders may be written for the Vertex Transformation stage.
Fragment shaders replace the Fragment Texturing and Coloring stage's fixed
functionality.

In the next subsections these programmable stages, hereafter the vertex processor and the
fragment processor, are described.

[Previous: Introduction] [Next: Vertex Processor]

Site designed and maintained by António Ramires Fernandes
Your comments, suggestions and references to further material are welcome!

Lighthouse 3D privacy statement

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?pipeline

3 sur 3 25/01/2009 13:57

 OpenGL VRML W3D

 Home Tutorials Books Applications Tools Docs Models Textures

 Bugs GLSL Tutorial

GLSL Tutorial

Index
Introduction

The Graphics Pipeline
Pipeline Overview
Vertex Processor
Fragment Processor

OpenGL Setup for GLSL
Overview
Creating a Shader
Creating a Program
Source Code
Trouble Shooting: the InfoLog
Cleaning Up

Comm. OpenGL=> GLSL
Comm. Introduction
Uniform Variables
Attribute Variables

Shader Basics
Data Types and Variables
Statments and Functions
Varying Variables

Shader Examples
Shader Examples List

GLSL Hello World

Color Shader

Flatten Shader

Toon Shader
Toon Shader - Version I
Toon Shader - Version II
Toon Shader - Version III

Lighting
OpenGL Directional Light I
OpenGL Directional Light II
Directional Light per Pixel
Point Light Per Pixel
Spot Light Per Pixel

Simple Texture
Combine Texture + Fragment
Multitexturing

[Previous: Pipeline Overview] [Next: Fragment Processor]

GLSL Tutorial

Vertex Processor

The vertex processor is responsible for running the vertex shaders. The
input for a vertex shader is the vertex data, namely its position, color,
normals, etc, depending on what the OpenGL application sends.

The following OpenGL code would send to the vertex processor a color
and a vertex position for each vertex.

In a vertex shader you can write code for tasks such as:

Vertex position transformation using the modelview and
projection matrices
Normal transformation, and if required its normalization
Texture coordinate generation and transformation
Lighting per vertex or computing values for lighting per pixel
Color computation

There is no requirement to perform all the operations above, your
application may not use lighting for instance. However, once you write a
vertex shader you are replacing the full functionality of the vertex
processor, hence you can't perform normal transformation and expect
the fixed functionality to perform texture coordinate generation. When a
vertex shader is used it becomes responsible for replacing all the
needed functionality of this stage of the pipeline.

As can be seen in the previous subsection the vertex processor has no
information regarding connectivity, hence operations that require
topological knowledge can't be performed in here. For instance it is not
possible for a vertex shader to perform back face culling, since it
operates on vertices and not on faces. The vertex processor processes
vertices individually and has no clue of the remaining vertices.

The vertex shader is responsible for at least writing a variable:

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?vertexp

1 sur 2 25/01/2009 13:59

Notes
The gl_NormalMatrix
Normalization Issues

OpenGLTutorials @
Lighthouse3d.com

Led Shader
View Frustum Culling
GLSL Tutorial
Maths Tutorial
Billboarding Tutorial
Picking Tutorial
Terrain Tutorial
Display Lists Tutorial
GLUT Tutorial

gl_Position, usually transforming the vertex with the modelview and
projection matrices.

A vertex processor has access to OpenGL state, so it can perform
operations that involve lighting for instance, and use materials. It can
also access textures (only available in the newest hardware). There is
no access to the frame buffer.

[Previous: Pipeline Overview] [Next: Fragment Processor]

Site designed and maintained by António Ramires Fernandes
Your comments, suggestions and references to further material are welcome!

Lighthouse 3D privacy statement

Ads by Google
 OpenGL 3D Tutorial
 OpenGL
 DirectX
 3D Tools
 3D Game Creation

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?vertexp

2 sur 2 25/01/2009 13:59

 OpenGL VRML W3D

 Home Tutorials Books Applications Tools Docs Models Textures

 Bugs GLSL Tutorial

GLSL Tutorial

Index
Introduction

The Graphics Pipeline
Pipeline Overview
Vertex Processor
Fragment Processor

OpenGL Setup for GLSL
Overview
Creating a Shader
Creating a Program
Source Code
Trouble Shooting: the InfoLog
Cleaning Up

Comm. OpenGL=> GLSL
Comm. Introduction
Uniform Variables
Attribute Variables

Shader Basics
Data Types and Variables
Statments and Functions
Varying Variables

Shader Examples
Shader Examples List

GLSL Hello World

Color Shader

Flatten Shader

Toon Shader
Toon Shader - Version I
Toon Shader - Version II
Toon Shader - Version III

Lighting
OpenGL Directional Light I
OpenGL Directional Light II
Directional Light per Pixel
Point Light Per Pixel
Spot Light Per Pixel

Simple Texture
Combine Texture + Fragment
Multitexturing

[Previous: Vertex Processor] [Next: Overview]

GLSL Tutorial

Fragment Processor

The fragment processor is where the fragment shaders run. This unit is
responsible for operations like:

Computing colors, and texture coordinates per pixel
Texture application
Fog computation
Computing normals if you want lighting per pixel

The inputs for this unit are the interpolated values computed in the
previous stage of the pipeline such as vertex positions, colors, normals,
etc...

In the vertex shader these values are computed for each vertex. Now
we're dealing with the fragments inside the primitives, hence the need
for the interpolated values.

As in the vertex processor, when you write a fragment shader it
replaces all the fixed functionality. Therefore it is not possible to have a
fragment shader texturing the fragment and leave the fog for the fixed
functionality. The programmer must code all effects that the application
requires.

The fragment processor operates on single fragments, i.e. it has no
clue about the neighboring fragments. The shader has access to
OpenGL state, similar to the vertex shaders, and therefore it can
access for instance the fog color specified in an OpenGL application.

One important point is that a fragment shader can't change the pixel
coordinate, as computed previously in the pipeline. Recall that in the
vertex processor the modelview and projection matrices can be used to
transform the vertex. The viewport comes into play after that but before
the fragment processor. The fragment shader has access to the pixels
location on screen but it can't change it.

A fragment shader has two output options:

to discard the fragment, hence outputting nothing
to compute either gl_FragColor (the final color of the fragment),
or gl_FragData when rendering to multiple targets.

Depth can also be written although it is not required since the previous
stage already has computed it.

Notice that the fragment shader has no access to the frame buffer. This

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?fragmentp

1 sur 2 25/01/2009 13:58

Notes
The gl_NormalMatrix
Normalization Issues

OpenGLTutorials @
Lighthouse3d.com

Led Shader
View Frustum Culling
GLSL Tutorial
Maths Tutorial
Billboarding Tutorial
Picking Tutorial
Terrain Tutorial
Display Lists Tutorial
GLUT Tutorial

Ads by Google
 OpenGL
 Free 3D Models
 DirectX
 Tutorial 3D Studio
 3D Tools

implies that operations such as blending occur only after the fragment
shader has run.

[Previous: Vertex Processor] [Next: Overview]

Site designed and maintained by António Ramires Fernandes
Your comments, suggestions and references to further material are welcome!

Lighthouse 3D privacy statement

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?fragmentp

2 sur 2 25/01/2009 13:58

 OpenGL VRML W3D

 Home Tutorials Books Applications Tools Docs Models Textures

 Bugs GLSL Tutorial

GLSL Tutorial

Index
Introduction

The Graphics Pipeline
Pipeline Overview
Vertex Processor
Fragment Processor

OpenGL Setup for GLSL
Overview
Creating a Shader
Creating a Program
Source Code
Trouble Shooting: the InfoLog
Cleaning Up

Comm. OpenGL=> GLSL
Comm. Introduction
Uniform Variables
Attribute Variables

Shader Basics
Data Types and Variables
Statments and Functions
Varying Variables

Shader Examples
Shader Examples List

GLSL Hello World

Color Shader

Flatten Shader

Toon Shader
Toon Shader - Version I
Toon Shader - Version II
Toon Shader - Version III

Lighting
OpenGL Directional Light I
OpenGL Directional Light II
Directional Light per Pixel
Point Light Per Pixel
Spot Light Per Pixel

Simple Texture
Combine Texture + Fragment
Multitexturing

[Previous: Fragment Processor] [Next: Creating a Shader]

GLSL Tutorial

OpenGL Setup for GLSL -
Overview

This section, OpenGL Setup for GLSL, assumes you've got a pair of shaders,
a vertex shader and a fragment shader, and you want to use them in an
OpenGL application. If you're not ready yet to write your own shaders there
are plenty of places to get shaders from the internet. Try the site from the
Orange Book. The tools for shader development, namely Shader Designer or
Render Monkey, all have a lot of shader examples.

As far as OpenGL goes, setting your application is similar to the workflow of
writing a C program. Each shader is like a C module, and it must be compiled
separately, as in C. The set of compiled shaders, is then linked into a
program, exactly as in C.

Both the ARB extensions and OpenGL2.0 are being used in here. If you are
new to extensions or using OpenGL above version 1.1 (as supported by
Microsoft) I suggest you take a look at GLEW. GLEW simplifies the usage of
extensions and newer versions of OpenGL to a great deal since the new
functions can be used right away.

If relying on extensions, because you have no support for OpenGL 2.0 yet,
then two extensions are required:

GL_ARB_fragment_shader
GL_ARB_vertex_shader

A small example of a GLUT program using GLEW to check the extensions
could be as shown below:

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?ogloverview

1 sur 3 25/01/2009 14:00

Notes
The gl_NormalMatrix
Normalization Issues

OpenGLTutorials @
Lighthouse3d.com

Led Shader
View Frustum Culling
GLSL Tutorial
Maths Tutorial
Billboarding Tutorial
Picking Tutorial
Terrain Tutorial
Display Lists Tutorial
GLUT Tutorial

Ads by Google
 OpenGL
 OpenGL 3D Tutorial
 DirectX
 3D Tools
 3D Game Maker

To check for OpenGL 2.0 availability you could try something like this

The figure bellow shows the necessary steps (in OpenGL 2.0 syntax) to create
the shaders, the functions used will be detailed in latter sections.

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?ogloverview

2 sur 3 25/01/2009 14:00

In the next subsections the steps to create a program are detailed.

[Previous: Fragment Processor] [Next: Creating a Shader]

Site designed and maintained by António Ramires Fernandes
Your comments, suggestions and references to further material are welcome!

Lighthouse 3D privacy statement

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?ogloverview

3 sur 3 25/01/2009 14:00

 OpenGL VRML W3D

 Home Tutorials Books Applications Tools Docs Models Textures

 Bugs GLSL Tutorial

GLSL Tutorial

Index
Introduction

The Graphics Pipeline
Pipeline Overview
Vertex Processor
Fragment Processor

OpenGL Setup for GLSL
Overview
Creating a Shader
Creating a Program
Source Code
Trouble Shooting: the InfoLog
Cleaning Up

Comm. OpenGL=> GLSL
Comm. Introduction
Uniform Variables
Attribute Variables

Shader Basics
Data Types and Variables
Statments and Functions
Varying Variables

Shader Examples
Shader Examples List

GLSL Hello World

Color Shader

Flatten Shader

Toon Shader
Toon Shader - Version I
Toon Shader - Version II
Toon Shader - Version III

Lighting
OpenGL Directional Light I
OpenGL Directional Light II
Directional Light per Pixel
Point Light Per Pixel
Spot Light Per Pixel

Simple Texture
Combine Texture + Fragment
Multitexturing

[Previous: Overview] [Next: Creating a Program]

GLSL Tutorial

OpenGL Setup for GLSL -
Creating a Shader

The following figure shows the necessary steps to create a shader.

The first step is creating an object which will act as a shader container.
The function available for this purpose returns a handle for the
container.

The OpenGL 2.0 syntax for this function is as follows:

GLuint glCreateShader(GLenum shaderType);

Parameter:

shaderType - GL_VERTEX_SHADER or
GL_FRAGMENT_SHADER.

The ARB extensions syntax for this function is as follows:

GLhandleARB glCreateShaderObjectARB(GLenum shaderType);

Parameter:

shaderType - GL_VERTEX_SHADER_ARB or
GL_FRAGMENT_SHADER_ARB.

You can create as many shaders as you want to add to a program, but

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?oglshader

1 sur 3 25/01/2009 14:46

Notes
The gl_NormalMatrix
Normalization Issues

OpenGLTutorials @
Lighthouse3d.com

Led Shader
View Frustum Culling
GLSL Tutorial
Maths Tutorial
Billboarding Tutorial
Picking Tutorial
Terrain Tutorial
Display Lists Tutorial
GLUT Tutorial

Ads by Google
 OpenGL Shader
 DirectX
 Free 3D Models
 OpenGL 3D Tutorial
 OpenGL Source Code

remember that there can only be a main function for the set of vertex
shaders and one main function for the set of fragment shaders in each
single program.

The following step is to add some source code. The source code for a
shader is a string array, although you can use a pointer to a single
string.

The syntax of the function to set the source code, in OpenGL 2.0
syntax, for a shader is:

void glShaderSource(GLuint shader, int numOfStrings, const char
**strings, int *lenOfStrings);

Parameters:

shader - the handler to the shader.
numOfStrings - the number of strings in the array.
strings - the array of strings.
lenOfStrings - an array with the length of each string, or NULL,
meaning that the strings are NULL terminated.

And using the ARB extensions:

void glShaderSourceARB(GLhandleARB shader, int numOfStrings,
const char **strings, int *lenOfStrings);

Parameters:

shader - the handler to the shader.
numOfStrings - the number of strings in the array.
strings - the array of strings.
lenOfStrings - an array with the length of each string, or NULL,
meaning that the strings are NULL terminated.

Finally, the shader must be compiled. The function to achieve this using
OpenGL 2.0 is:

void glCompileShader(GLuint shader);

Parameters:

shader - the handler to the shader.

And using the ARB extensions:

void glCompileShaderARB(GLhandleARB shader);

Parameters:

shader - the handler to the shader.

[Previous: Overview] [Next: Creating a Program]

Site designed and maintained by António Ramires Fernandes
Your comments, suggestions and references to further material are welcome!

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?oglshader

2 sur 3 25/01/2009 14:46

Lighthouse 3D privacy statement

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?oglshader

3 sur 3 25/01/2009 14:46

 OpenGL VRML W3D

 Home Tutorials Books Applications Tools Docs Models Textures

 Bugs GLSL Tutorial

GLSL Tutorial

Index
Introduction

The Graphics Pipeline
Pipeline Overview
Vertex Processor
Fragment Processor

OpenGL Setup for GLSL
Overview
Creating a Shader
Creating a Program
Source Code
Trouble Shooting: the InfoLog
Cleaning Up

Comm. OpenGL=> GLSL
Comm. Introduction
Uniform Variables
Attribute Variables

Shader Basics
Data Types and Variables
Statments and Functions
Varying Variables

Shader Examples
Shader Examples List

GLSL Hello World

Color Shader

Flatten Shader

Toon Shader
Toon Shader - Version I
Toon Shader - Version II
Toon Shader - Version III

Lighting
OpenGL Directional Light I
OpenGL Directional Light II
Directional Light per Pixel
Point Light Per Pixel
Spot Light Per Pixel

Simple Texture
Combine Texture + Fragment
Multitexturing

[Previous: Creating a Shader] [Next: Source Code]

GLSL Tutorial

OpenGL Setup for GLSL -
Creating a Program

The following figure shows the necessary steps to get a shader
program ready and going.

The first step is creating an object which will act as a program
container. The function available for this purpose returns a handle for
the container.

The syntax for this function, in OpenGL 2.0 syntax is as follows:

GLuint glCreateProgram(void);

And using the ARB extension is:

GLhandleARB glCreateProgramObjectARB(void);

You can create as many programs as you want. Once rendering, you
can switch from program to program, and even go back to fixed
functionality during a single frame. For instance you may want to draw

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?oglprogram

1 sur 3 25/01/2009 14:59

Notes
The gl_NormalMatrix
Normalization Issues

OpenGLTutorials @
Lighthouse3d.com

Led Shader
View Frustum Culling
GLSL Tutorial
Maths Tutorial
Billboarding Tutorial
Picking Tutorial
Terrain Tutorial
Display Lists Tutorial
GLUT Tutorial

Ads by Google
 OpenGL
 Free 3D Models
 DirectX
 OpenGL 3D Tutorial
 OpenGL Source Code

a teapot with refraction and reflection shaders, while having a cube
map displayed for background using OpenGL's fixed functionality.

The next step involves attaching the shaders created in the previous
subsection to the program you've just created. The shaders do not
need to be compiled at this time; they don't even have to have source
code. All that is required to attach a shader to a program is the shader
container.

To attach a shader to a program use the OpenGL 2.0 function:

void glAttachShader(GLuint program, GLuint shader);

Parameters:

program - the handler to the program.
shader - the handler to the shader you want to attach.

And using the ARB extension is:

void glAttachObjectARB(GLhandleARB program, GLhandleARB
shader);

Parameters:

program - the handler to the program.
shader - the handler to the shader you want to attach.

If you have a pair vertex/fragment of shaders you'll need to attach both
to the program. You can have many shaders of the same type (vertex
or fragment) attached to the same program, just like a C program can
have many modules. For each type of shader there can only be one
shader with a main function, also as in C.

You can attach a shader to multiple programs, for instance if you plan
to use the same vertex shader in several programs.

The final step is to link the program. In order to carry out this step the
shaders must be compiled as described in the previous subsection.

The syntax for the link function, in OpenGL 2.0, is as follows:

void glLinkProgram(GLuint program);

Parameters:

program - the handler to the program.

The syntax for the link function, using the ARB extensions, is:

void glLinkProgramARB(GLhandleARB program);

Parameters:

program - the handler to the program.

After the link operation the shader's source can be modified, and the
shaders recompiled without affecting the program.

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?oglprogram

2 sur 3 25/01/2009 14:59

As shown in the figure above, after linking the program, there is a
function to actually load and use the program, (ARB extension)
glUseProgramObjectARB, or (OpenGL 2.0) glUseProgram. Each
program is assigned an handler, and you can have as many programs
linked and ready to use as you want (and your hardware allows).

The syntax for this function is as follows (OpenGL 2.0 notation):

void glUseProgram(GLuint prog);

Parameters:

prog - the handler to the program you want to use, or zero to
return to fixed functionality

The syntax using the ARB extensions is as follows:

void glUseProgramObjectARB(GLhandleARB prog);

Parameters:

prog - the handler to the program you want to use, or zero to
return to fixed functionality

If a program is in use, and it is linked again, it will automatically be
placed in use again, so in this case you don't need to call this function
again. If the parameter is zero then the fixed functionality is activated.

[Previous: Creating a Shader] [Next: Source Code]

Site designed and maintained by António Ramires Fernandes
Your comments, suggestions and references to further material are welcome!

Lighthouse 3D privacy statement

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?oglprogram

3 sur 3 25/01/2009 14:59

 OpenGL VRML W3D

 Home Tutorials Books Applications Tools Docs Models Textures

 Bugs GLSL Tutorial

GLSL Tutorial

Index
Introduction

The Graphics Pipeline
Pipeline Overview
Vertex Processor
Fragment Processor

OpenGL Setup for GLSL
Overview
Creating a Shader
Creating a Program
Source Code
Trouble Shooting: the InfoLog
Cleaning Up

Comm. OpenGL=> GLSL
Comm. Introduction
Uniform Variables
Attribute Variables

Shader Basics
Data Types and Variables
Statments and Functions
Varying Variables

Shader Examples
Shader Examples List

GLSL Hello World

Color Shader

Flatten Shader

Toon Shader
Toon Shader - Version I
Toon Shader - Version II
Toon Shader - Version III

Lighting
OpenGL Directional Light I
OpenGL Directional Light II
Directional Light per Pixel
Point Light Per Pixel
Spot Light Per Pixel

Simple Texture
Combine Texture + Fragment
Multitexturing

Notes
The gl_NormalMatrix
Normalization Issues

OpenGLTutorials @

[Previous: Creating a Program] [Next: Trouble Shooting: the InfoLog]

GLSL Tutorial

OpenGL Setup for GLSL - Example

The following source code contains all the steps described previously. The variables p,f,v are
declared globally as (OpenGL 2.0 syntax) GLuint or (ARB extension syntax) GLhandleARB.

OpenGL 2.0 syntax:

ARB extension syntax:

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?oglexample1

1 sur 2 25/01/2009 14:59

Lighthouse3d.com

Led Shader
View Frustum Culling
GLSL Tutorial
Maths Tutorial
Billboarding Tutorial
Picking Tutorial
Terrain Tutorial
Display Lists Tutorial
GLUT Tutorial

Ads by Google
 OpenGL
 OpenGL 3D Tutorial
 OpenGL Source Code
 DirectX
 3D Tools

A complete GLUT example is available: OpenGL 2.0 syntax and ARB extension syntax,
containing two simple shaders, and the text file reading functions. A Unix version (ARB
extension syntax only) can be obtained here thanks to Wojciech Milkowski. Please let him
know if you use it: wmilkowski 'at' gazeta.pl

[Previous: Creating a Program] [Next: Trouble Shooting: the InfoLog]

Site designed and maintained by António Ramires Fernandes
Your comments, suggestions and references to further material are welcome!

Lighthouse 3D privacy statement

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?oglexample1

2 sur 2 25/01/2009 14:59

 OpenGL VRML W3D

 Home Tutorials Books Applications Tools Docs Models Textures

 Bugs GLSL Tutorial

GLSL Tutorial

Index
Introduction

The Graphics Pipeline
Pipeline Overview
Vertex Processor
Fragment Processor

OpenGL Setup for GLSL
Overview
Creating a Shader
Creating a Program
Source Code
Trouble Shooting: the InfoLog
Cleaning Up

Comm. OpenGL=> GLSL
Comm. Introduction
Uniform Variables
Attribute Variables

Shader Basics
Data Types and Variables
Statments and Functions
Varying Variables

Shader Examples
Shader Examples List

GLSL Hello World

Color Shader

Flatten Shader

Toon Shader
Toon Shader - Version I
Toon Shader - Version II
Toon Shader - Version III

Lighting
OpenGL Directional Light I
OpenGL Directional Light II
Directional Light per Pixel
Point Light Per Pixel
Spot Light Per Pixel

Simple Texture
Combine Texture + Fragment
Multitexturing

Notes
The gl_NormalMatrix
Normalization Issues

OpenGLTutorials @
Lighthouse3d.com

Led Shader
View Frustum Culling

[Previous: Source Code] [Next: Cleaning Up]

GLSL Tutorial

OpenGL Setup for GLSL - Troubleshooting:
The InfoLog

Debugging a shader is hard. There is no printf yet and probably never will be, although developer
tools with debugging capability are to be expected in the future. It is true that you can use some
tricks now but these are not trivial by any means. All is not lost and some functions are provided to
check if your code compiled and linked successfully.

The status of the compile steps can be queried in OpenGL 2.0 with the following function:

void glGetShaderiv(GLuint object, GLenum type, int *param);

Parameters:

object - the handler to the object. Either a shader or a program
type - GL_COMPILE_STATUS.
param - the return value, GL_TRUE if OK, GL_FALSE otherwise.

The status of the link step can be queried in OpenGL 2.0 with the following function:

void glGetProgramiv(GLuint object, GLenum type, int *param);

Parameters:

object - the handler to the object. Either a shader or a program
type - GL_LINK_STATUS.
param - the return value, GL_TRUE if OK, GL_FALSE otherwise.

With ARB extensions a single function is used to check both the compile and link status (depending
on a parameter):

oid glGetObjectParameterivARB(GLhandleARB object, GLenum type, int *param);

Parameters:

object - the handler to the object. Either a shader or a program
type - GL_OBJECT_LINK_STATUS_ARB or GL_OBJECT_COMPILE_STATUS_ARB.
param - the return value, 1 for OK, 0 for problems.

There are more options regarding the second parameter, type, however these won't be explored in
here. Check out the 3Dlabs site for the complete specification.

When errors are reported it is possible to get further information with the InfoLog. This log stores
information about the last operation performed, such as warnings and errors in the compilation,
problems during the link step. The log can even tell you if your shaders will run in software, meaning
your hardware does not support some feature you're using, or hardware, the ideal situation.
Unfortunately there is no specification for the InfoLog messages, so different drivers/hardware may
produce different logs.

In order to get the InfoLog for a particular shader or program in OpenGL 2.0 use the following
functions:

void glGetShaderInfoLog(GLuint object, int maxLen, int *len, char *log);
void glGetProgramInfoLog(GLuint object, int maxLen, int *len, char *log);

Parameters:

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?oglinfo

1 sur 3 25/01/2009 15:00

GLSL Tutorial
Maths Tutorial
Billboarding Tutorial
Picking Tutorial
Terrain Tutorial
Display Lists Tutorial
GLUT Tutorial

object - the handler to the object. Either a shader or a program
maxLen - The maximum number of chars to retrieve from the InfoLog.
len - returns the actual length of the retrieved InfoLog.
log - The log itself.

Again, using the ARB extensions, a single function is required to query both the shader and program
info logs:

void glGetInfoLogARB(GLhandleARB object, int maxLen, int *len, char *log);

Parameters:

object - the handler to the object. Either a shader or a program
maxLen - The maximum number of chars to retrieve from the InfoLog.
len - returns the actual length of the retrieved InfoLog.
log - The log itself.

The GLSL specification could have been nicer in here. You must know the length of the InfoLog to
retrieve it. To find this precious bit of information use the following functions (in OpenGL notation):

void glGetShaderiv(GLuint object, GLenum type, int *param);
void glGetProgramiv(GLuint object, GLenum type, int *param);

Parameters:

object - the handler to the object. Either a shader or a program
type - GL_INFO_LOG_LENGTH.
param - the return value, the length of the InfoLog.

Once again the ARB syntax is simpler. Only one function is required:

void glGetObjectParameterivARB(GLhandleARB object, GLenum type, int *param);

Parameters:

object - the handler to the object. Either a shader or a program
type - GL_OBJECT_INFO_LOG_LENGTH_ARB.
param - the return value, the length of the InfoLog.

The following functions can be used to print the contents of the infoLog in OpenGL 2.0:

Ads by Google
 OpenGL
 3D Modelling Tutorials
 Free 3D Models
 DirectX
 Autodesk 3D Studio

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?oglinfo

2 sur 3 25/01/2009 15:00

Using the ARB extension the process is the same for both shaders and programs:

[Previous: Source Code] [Next: Cleaning Up]

Site designed and maintained by António Ramires Fernandes
Your comments, suggestions and references to further material are welcome!

Lighthouse 3D privacy statement

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?oglinfo

3 sur 3 25/01/2009 15:00

 OpenGL VRML W3D

 Home Tutorials Books Applications Tools Docs Models Textures

 Bugs GLSL Tutorial

GLSL Tutorial

Index
Introduction

The Graphics Pipeline
Pipeline Overview
Vertex Processor
Fragment Processor

OpenGL Setup for GLSL
Overview
Creating a Shader
Creating a Program
Source Code
Trouble Shooting: the InfoLog
Cleaning Up

Comm. OpenGL=> GLSL
Comm. Introduction
Uniform Variables
Attribute Variables

Shader Basics
Data Types and Variables
Statments and Functions
Varying Variables

Shader Examples
Shader Examples List

GLSL Hello World

Color Shader

Flatten Shader

Toon Shader
Toon Shader - Version I
Toon Shader - Version II
Toon Shader - Version III

Lighting
OpenGL Directional Light I
OpenGL Directional Light II
Directional Light per Pixel
Point Light Per Pixel
Spot Light Per Pixel

Simple Texture
Combine Texture + Fragment
Multitexturing

[Previous: Trouble Shooting: the InfoLog] [Next: Comm. Introduction]

GLSL Tutorial

OpenGL Setup for GLSL -
Cleaning Up

In a previous subsection a function to attach a shader to a program
was presented. A function to detach a shader from a program is also
available.

The OpenGL 2.0 syntax is as follows:

void glDetachShader(GLuint program, GLuint shader);

Parameter:

program - The program to detach from.
shader - The shader to detach.

And the ARB extension syntax is:

void glDetachObjectARB(GLhandleARB program, GLhandleARB
shader);

Parameter:

program - The program to detach from.
shader - The shader to detach.

Only shaders that are not attached can be deleted so this operation is
not irrelevant. To delete a shader, or a program, in OpenGL 2.0, use
the following functions:

void glDeleteShader(GLuint id);
void glDeleteProgram(GLuint id);

Parameter:

id - The handler of the shader or program to delete.

When using the ARB extensions, there is a single function to delete
both shaders and programs:

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?oglcleanup

1 sur 2 25/01/2009 15:01

Notes
The gl_NormalMatrix
Normalization Issues

OpenGLTutorials @
Lighthouse3d.com

Led Shader
View Frustum Culling
GLSL Tutorial
Maths Tutorial
Billboarding Tutorial
Picking Tutorial
Terrain Tutorial
Display Lists Tutorial
GLUT Tutorial

Ads by Google
 OpenGL
 OpenGL 3D Tutorial
 DirectX
 Free 3D Models
 3D Rendering Texture

void glDeleteObjectARB(GLhandleARB id);

Parameter:

id - The handler of the shader or program to delete.

In the case of a shader that is still attached to some (one or more)
programs, the shader is not actually deleted, but only marked for
deletion. The delete operation will only be concluded when the shader
is no longer attached to any program, i.e. it has been detached from all
programs it was attached to.

[Previous: Trouble Shooting: the InfoLog] [Next: Comm. Introduction]

Site designed and maintained by António Ramires Fernandes
Your comments, suggestions and references to further material are welcome!

Lighthouse 3D privacy statement

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?oglcleanup

2 sur 2 25/01/2009 15:01

 OpenGL VRML W3D

 Home Tutorials Books Applications Tools Docs Models Textures

 Bugs GLSL Tutorial

GLSL Tutorial

Index
Introduction

The Graphics Pipeline
Pipeline Overview
Vertex Processor
Fragment Processor

OpenGL Setup for GLSL
Overview
Creating a Shader
Creating a Program
Source Code
Trouble Shooting: the InfoLog
Cleaning Up

Comm. OpenGL=> GLSL
Comm. Introduction
Uniform Variables
Attribute Variables

Shader Basics
Data Types and Variables
Statments and Functions
Varying Variables

Shader Examples
Shader Examples List

GLSL Hello World

Color Shader

Flatten Shader

Toon Shader
Toon Shader - Version I
Toon Shader - Version II
Toon Shader - Version III

Lighting
OpenGL Directional Light I
OpenGL Directional Light II
Directional Light per Pixel
Point Light Per Pixel
Spot Light Per Pixel

Simple Texture
Combine Texture + Fragment
Multitexturing

[Previous: Cleaning Up] [Next: Uniform Variables]

GLSL Tutorial

OpenGL Setup for GLSL -
Communication OpenGL -> Shaders

An application in OpenGL has several ways of communicating with the
shaders. Note that this is a one way communication though, since the
only output from a shader is to render to some targets, usually the
color and depth buffers.

The shader has access to part of the OpenGL state, therefore when an
application alters this subset of the OpenGL state it is effectively
communicating with the shader. So for instance if an application wants
to pass a light color to the shader it can simply alter the OpenGL state
as it is normally done with the fixed functionality.

However, using the OpenGL state is not always the most intuitive way
of setting values for the shaders to act upon. For instance consider a
shader that requires a variable to tell the elapsed time to perform some
animation. There is no suitable named variable in the OpenGL state for
this purpose. True, you can use an unused lights specular cutoff angle
for this but it is highly counterintuitive.

Fortunately, GLSL allows the definition of user defined variables for an
OpenGL application to communicate with a shader. Thanks to this
simple feature you can have a variable for time keeping appropriately
called timeElapsed, or some other suitable name.

In this context, GLSL has two types of variable qualifiers (more
qualifiers are available to use inside a shader as detailed in Data Types
and Variables subsection):

Uniform
Attribute

Variables defined in shaders using these qualifiers are read-only as far
as the shader is concerned. In the following subsections the details of
how, and when to use these types of variables are detailed.

There is yet another way of sending values to shaders: using textures.
A texture doesn't have to represent an image; it can be interpreted as
an array of data. In fact, using shaders you're the one who decides
how to interpret your textures data, even when it is an image. The
usage of textures is not explored in this section since it is out of scope.

[Previous: Cleaning Up] [Next: Uniform Variables]

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?oglvariables

1 sur 2 25/01/2009 15:02

Notes
The gl_NormalMatrix
Normalization Issues

OpenGLTutorials @
Lighthouse3d.com

Led Shader
View Frustum Culling
GLSL Tutorial
Maths Tutorial
Billboarding Tutorial
Picking Tutorial
Terrain Tutorial
Display Lists Tutorial
GLUT Tutorial

Ads by Google
 OpenGL
 Free 3D Models
 DirectX
 OpenGL 3D Tutorial
 OpenGL Source Code

Site designed and maintained by António Ramires Fernandes
Your comments, suggestions and references to further material are welcome!

Lighthouse 3D privacy statement

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?oglvariables

2 sur 2 25/01/2009 15:02

 OpenGL VRML W3D

 Home Tutorials Books Applications Tools Docs Models Textures

 Bugs GLSL Tutorial

GLSL Tutorial

Index
Introduction

The Graphics Pipeline
Pipeline Overview
Vertex Processor
Fragment Processor

OpenGL Setup for GLSL
Overview
Creating a Shader
Creating a Program
Source Code
Trouble Shooting: the InfoLog
Cleaning Up

Comm. OpenGL=> GLSL
Comm. Introduction
Uniform Variables
Attribute Variables

Shader Basics
Data Types and Variables
Statments and Functions
Varying Variables

Shader Examples
Shader Examples List

GLSL Hello World

Color Shader

Flatten Shader

Toon Shader
Toon Shader - Version I
Toon Shader - Version II
Toon Shader - Version III

Lighting
OpenGL Directional Light I
OpenGL Directional Light II
Directional Light per Pixel
Point Light Per Pixel
Spot Light Per Pixel

Simple Texture
Combine Texture + Fragment
Multitexturing

[Previous: Comm. Introduction] [Next: Attribute Variables]

GLSL Tutorial

OpenGL Setup for GLSL -
Uniform Variables

A uniform variable can have its value changed by primitive only, i.e., its
value can't be changed between a glBegin / glEnd pair. This implies
that it can't be used for vertices attributes. Look for the subsection on
attribute variables if that is what you're looking for. Uniform variables
are suitable for values that remain constant along a primitive, frame, or
even the whole scene. Uniform variables can be read (but not written)
in both vertex and fragment shaders.

The first thing you have to do is to get the memory location of the
variable. Note that this information is only available after you link the
program. Note: with some drivers you may be required to be using the
program, i.e. you'll have to call (openGL 2.0) glUseProgram or (ARB
extensions) glUseProgramObjectARB before attempting to get the
location (it happens with my laptop ATI graphics card).

The syntax for OpenGL 2.0 and ARB extensions is very similar when
dealing with variables. BSasically just drop the "ARB" from the name of
the function if moving from an ARB extension application to an OpenGL
2.0 application.

The function to retrieve the location of an uniform variable given its
name, as defined in the shader, is (OpenGL 2.0 syntax):

GLint glGetUniformLocation(GLuint program, const char *name);

Parameters:

program - the handler to the program
name - the name of the variable.

And using ARB extensions:

GLint glGetUniformLocationARB(GLhandleARB program, const char
*name);

Parameters:

program - the handler to the program
name - the name of the variable.

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?ogluniform

1 sur 5 25/01/2009 15:03

Notes
The gl_NormalMatrix
Normalization Issues

OpenGLTutorials @
Lighthouse3d.com

Led Shader
View Frustum Culling
GLSL Tutorial
Maths Tutorial
Billboarding Tutorial
Picking Tutorial
Terrain Tutorial
Display Lists Tutorial
GLUT Tutorial

Ads by Google
 OpenGL
 3D Modelling Tutorials
 DirectX
 OpenGL Source Code
 C++

The return value is the location of the variable, which can then be used
to assign values to it. A family of functions is provided for setting
uniform variables, its usage being dependent on the data type of the
variable. A set of functions is defined for setting float values as
(OpenGL 2.0 notation):

void glUniform1f(GLint location, GLfloat v0);
void glUniform2f(GLint location, GLfloat v0, GLfloat v1);
void glUniform3f(GLint location, GLfloat v0, GLfloat v1, GLfloat v2);
void glUniform4f(GLint location, GLfloat v0, GLfloat v1, GLfloat v2,
GLfloat v3);

or

GLint glUniform{1,2,3,4}fv(GLint location, GLsizei count, GLfloat *v);

Parameters:

location - the previously queried location.
v0,v1,v2,v3 - float values.
count - the number of elements in the array
v - an array of floats.

Using the ARB extensions:

void glUniform1fARB(GLint location, GLfloat v0);
void glUniform2fARB(GLint location, GLfloat v0, GLfloat v1);
void glUniform3fARB(GLint location, GLfloat v0, GLfloat v1, GLfloat
v2);
void glUniform4fARB(GLint location, GLfloat v0, GLfloat v1, GLfloat v2,
GLfloat v3);

or

GLint glUniform{1,2,3,4}fvARB(GLint location, GLsizei count, GLfloat
*v);

Parameters:

location - the previously queried location.
v0,v1,v2,v3 - float values.
count - the number of elements in the array
v - an array of floats.

A similar set of function is available for data type integer, where "f" is
replaced by "i". There are no functions specifically for bools, or boolean
vectors. Just use the functions available for float or integer and set zero
for false, and anything else for true. In case you have an array of
uniform variables the vector version should be used.

For sampler variables, use the functions (OpenGL 2.0 notation)
glUniform1i, or glUniform1iv if setting an array of samplers.

When using the ARB extenstions use the functions glUniform1iARB, or
glUniform1ivARB if setting an array of samplers.

Matrices are also an available data type in GLSL, and a set of
functions is also provided for this data type:

GLint glUniformMatrix{2,3,4}fv(GLint location, GLsizei count,

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?ogluniform

2 sur 5 25/01/2009 15:03

GLboolean transpose, GLfloat *v);

Parameters:

location - the previously queried location.
count - the number of matrices. 1 if a single matrix is being set,
or n for an array of n matrices.
transpose - wheter to transpose the matrix values. A value of 1
indicates that the matrix values are specified in row major order,
zero is column major order
v - an array of floats.

And using the ARB extensions:

GLint glUniformMatrix{2,3,4}fvARB(GLint location, GLsizei count,
GLboolean transpose, GLfloat *v);

Parameters:

location - the previously queried location.
count - the number of matrices. 1 if a single matrix is being set,
or n for an array of n matrices.
transpose - wheter to transpose the matrix values. A value of 1
indicates that the matrix values are specified in row major order,
zero is column major order
v - an array of floats.

An important note to close this subsection, and before some source
code is presented: the values that are set with these functions will keep
their values until the program is linked again. Once a new link process
is performed all values will be reset to zero.

And now to some source code. Assume that a shader with the following
variables is being used:

In an OpenGL 2.0 application, the code for setting the variables could
be:

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?ogluniform

3 sur 5 25/01/2009 15:03

If the application uses ARB extensions then the code could be as
follows:

A working example, with source code, is available: OpenGL 2.0 syntax
or ARB syntax

Notice the difference between setting an array of values, as it is the
case of t or colors, and setting a vector with 4 values, as the
specColor. The count parameter (middle parameter of
glGetUniform{1,2,3,4}fv) specifies the number of array elements as
declared in the shader, not as declared in the OpenGL application. So
although specColor contains 4 values, the count of the function
glUniform4fv parameter is set to 1, because it is only one vector. An
alternative for setting the specColor variable could be:

Yet another possibility provided by GLSL is to get the location of a
variable inside an array. For instance, it is possible to get the location
of t[1]. The following snippet of code shows this approach to set the t
array elements.

Notice how the variable is specified in glGetUniformLocation using the
square brackets.

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?ogluniform

4 sur 5 25/01/2009 15:03

The ARB extensions variant to the code above is very similar (just add
"ARB" to the functions names) so it has been ommited in here.

[Previous: Comm. Introduction] [Next: Attribute Variables]

Site designed and maintained by António Ramires Fernandes
Your comments, suggestions and references to further material are welcome!

Lighthouse 3D privacy statement

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?ogluniform

5 sur 5 25/01/2009 15:03

 OpenGL VRML W3D

 Home Tutorials Books Applications Tools Docs Models Textures

 Bugs GLSL Tutorial

GLSL Tutorial

Index
Introduction

The Graphics Pipeline
Pipeline Overview
Vertex Processor
Fragment Processor

OpenGL Setup for GLSL
Overview
Creating a Shader
Creating a Program
Source Code
Trouble Shooting: the InfoLog
Cleaning Up

Comm. OpenGL=> GLSL
Comm. Introduction
Uniform Variables
Attribute Variables

Shader Basics
Data Types and Variables
Statments and Functions
Varying Variables

Shader Examples
Shader Examples List

GLSL Hello World

Color Shader

Flatten Shader

Toon Shader
Toon Shader - Version I
Toon Shader - Version II
Toon Shader - Version III

Lighting
OpenGL Directional Light I
OpenGL Directional Light II
Directional Light per Pixel
Point Light Per Pixel
Spot Light Per Pixel

Simple Texture
Combine Texture + Fragment
Multitexturing

Notes
The gl_NormalMatrix
Normalization Issues

[Previous: Uniform Variables] [Next: Data Types and Variables]

GLSL Tutorial

OpenGL Setup for GLSL -
Attribute Variables

As mentioned in subsection Uniform, uniform variables can only be set by
primitive, i.e., they can't be set inside a glBegin-glEnd.

If it is required to set variables per vertex then attribute variables must be
used. In fact attribute variables can be updated at any time. Attribute variables
can only be read (not written) in a vertex shader. This is because they contain
vertex data, hence not applicable directly in a fragment shader (see the
section on varying variables). As for uniform variables, first it is necessary to
get the location in memory of the variable. Note that the program must be
linked previously and some drivers may require that the program is in use.

In OpenGL 2.0 use the following function:

GLint glGetAttribLocation(GLuint program,char *name);

Parameters:

program - the handle to the program.
name - the name of the variable

And with the ARB extensions use:

GLint glGetAttribLocationARB(GLhandleARB program,char *name);

Parameters:

program - the handle to the program.
name - the name of the variable

The variable's location in memory is obtained as the return value of the above
function. The next step is to specify a value for it, potentially per vertex. As in
the uniform variables, there is a function for each data type.

OpenGL 2.0 syntax:

void glVertexAttrib1f(GLint location, GLfloat v0);
void glVertexAttrib2f(GLint location, GLfloat v0, GLfloat v1);
void glVertexAttrib3f(GLint location, GLfloat v0, GLfloat v1,GLfloat v2);
void glVertexAttrib4f(GLint location, GLfloat v0, GLfloat v1,,GLfloat v2,
GLfloat v3);

or

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?oglattribute

1 sur 4 25/01/2009 15:04

OpenGLTutorials @
Lighthouse3d.com

Led Shader
View Frustum Culling
GLSL Tutorial
Maths Tutorial
Billboarding Tutorial
Picking Tutorial
Terrain Tutorial
Display Lists Tutorial
GLUT Tutorial

Ads by Google
 OpenGL
 3D Modelling Tutorials
 C++ Play Wav
 OpenGL Source Code
 C++

GLint glVertexAttrib{1,2,3,4}fv(GLint location, GLfloat *v);

Parameters:

location - the previously queried location.
v0,v1,v2,v3 - float values.
v - an array of floats.

ARB extensions syntax:

void glVertexAttrib1fARB(GLint location, GLfloat v0);
void glVertexAttrib2fARB(GLint location, GLfloat v0, GLfloat v1);
void glVertexAttrib3fARB(GLint location, GLfloat v0, GLfloat v1,GLfloat v2);
void glVertexAttrib4fARB(GLint location, GLfloat v0, GLfloat v1,,GLfloat v2,
GLfloat v3);

or

GLint glVertexAttrib{1,2,3,4}fvARB(GLint location, GLfloat *v);

Parameters:

location - the previously queried location.
v0,v1,v2,v3 - float values.
v - an array of floats.

A similar set of functions is provided for integers and some other data types.
Note that the vector version is not available for arrays as is the case of
uniform variables. The vector version is just an option to submit the values of a
single attribute variable. This is similar to what happens in OpenGL with
glColor3f and glColor3fv.

A small example is now provided. It is assumed that the vertex shader declare
a float attribute named height. The setup phase, to be performed after
program link is:

In the rendering function the code could be something like:

The source code for the ARB extensions is very similar, just add "ARB" to the
functions.

The source code for a small working example is available: ARB extension
syntax or OpenGL 2.0 syntax.

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?oglattribute

2 sur 4 25/01/2009 15:04

Vertex Arrays can also be used together with attribute variables. The first
thing to be done is to enable the arrays. To do this for an attribute array use
the following function (OpenGL 2.0 syntax):

void glEnableVertexAttribArray(GLint loc);

Parameters:

loc - the location of the variable.

And using the ARB extensions:

void glEnableVertexAttribArrayARB(GLint loc);

Parameters:

loc - the location of the variable.

Next the pointer to the array with the data is provided using the following
functions.

OpenGL 2.0 syntax:

void glVertexAttribPointer(GLint loc, GLint size, GLenum type, GLboolean
normalized, GLsizei stride, const void *pointer);

Parameters:

loc - the location of the variable.
size - the number of components per element, for instance: 1 for float;
2 for vec2; 3 for vec3, and so on.
type - The data type associated: GL_FLOAT is an example.
normalized - if set to 1 then the array values will be normalized,
converted to a range from -1 to 1 for signed data, or 0 to 1 for
unsigned data.
stride - the spacing between elements. Exactly the same as in
OpenGL.
pointer - pointer to the array containing the data.

ARB extensions syntax:

void glVertexAttribPointerARB(GLint loc, GLint size, GLenum type, GLboolean
normalized, GLsizei stride, const void *pointer);

Parameters:

loc - the location of the variable.
size - the number of components per element, for instance: 1 for float;
2 for vec2; 3 for vec3, and so on.
type - The data type associated: GL_FLOAT is an example.
normalized - if set to 1 then the array values will be normalized,
converted to a range from -1 to 1 for signed data, or 0 to 1 for
unsigned data.
stride - the spacing between elements. Exactly the same as in
OpenGL.
pointer - pointer to the array containing the data.

And now to some source code. First the initialization step. Two arrays are
considered, the vertex and attribute arrays. It is assumed that the variable
heights is declared with appropriate scope, i.e. accessible both in here as well
as when rendering.

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?oglattribute

3 sur 4 25/01/2009 15:04

Rendering is exactly the same as before (OpenGL without shaders), just call
glDrawArrays for example. A small demo source code is available: ARB
extensions syntax or OpenGL 2.0 syntax.

[Previous: Uniform Variables] [Next: Data Types and Variables]

Site designed and maintained by António Ramires Fernandes
Your comments, suggestions and references to further material are welcome!

Lighthouse 3D privacy statement

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?oglattribute

4 sur 4 25/01/2009 15:04

 OpenGL VRML W3D

 Home Tutorials Books Applications Tools Docs Models Textures

 Bugs GLSL Tutorial

GLSL Tutorial

Index
Introduction

The Graphics Pipeline
Pipeline Overview
Vertex Processor
Fragment Processor

OpenGL Setup for GLSL
Overview
Creating a Shader
Creating a Program
Source Code
Trouble Shooting: the InfoLog
Cleaning Up

Comm. OpenGL=> GLSL
Comm. Introduction
Uniform Variables
Attribute Variables

Shader Basics
Data Types and Variables
Statments and Functions
Varying Variables

Shader Examples
Shader Examples List

GLSL Hello World

Color Shader

Flatten Shader

Toon Shader
Toon Shader - Version I
Toon Shader - Version II
Toon Shader - Version III

Lighting
OpenGL Directional Light I
OpenGL Directional Light II
Directional Light per Pixel
Point Light Per Pixel
Spot Light Per Pixel

Simple Texture
Combine Texture + Fragment
Multitexturing

Notes
The gl_NormalMatrix
Normalization Issues

[Previous: Attribute Variables] [Next: Statments and Functions]

GLSL Tutorial

Data Types and Variables

The following simple data types are available in GLSL:

float
bool
int

Float and int behave just like in C, whereas the bool type can take on the values of true or false.

Vectors with 2,3 or 4 components are also available for each of the simple data types mentioned
above. These are declared as:

vec{2,3,4} a vector of 2,3,or 4 floats
bvec{2,3,4} bool vector
ivec{2,3,4} vector of integers

Square matrices 2x2, 3x3 and 4x4 are provided since they are heavily used in graphics. The
respective data types are:

mat2
mat3
mat4

A set of special types are available for texture access. These are called samplers and are
required to access texture values, also known as texels. The data types for texture sampling are:

sampler1D - for 1D textures
sampler2D - for 2D textures
sampler3D - for 3D textures
samplerCube - for cube map textures
sampler1DShadow - for shadow maps
sampler2DShadow - for shadow maps

In GLSL, arrays can be declared using the same syntax as in C. However arrays can't be
initialized when declared. Accessing array's elements is done as in C.

Structures are also allowed in GLSL. The syntax is the same as C.

Variables

Declaring a simple variable is pretty much the same as in C, you can even initialize a variable
when declaring it.

Declaring the other types of variables follows the same pattern, but there are differences
between GLSL and C regarding initialization. GLSL relies heavily on constructor for initialization

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?data

1 sur 3 25/01/2009 15:05

OpenGLTutorials @
Lighthouse3d.com

Led Shader
View Frustum Culling
GLSL Tutorial
Maths Tutorial
Billboarding Tutorial
Picking Tutorial
Terrain Tutorial
Display Lists Tutorial
GLUT Tutorial

Ads by Google
 OpenGL Shader
 Texture Library
 OpenGL Update
 Pixel Shader
 Ocean Shader

and type casting.

GLSL is pretty flexible when initializing variables using other variables. All that it requires is that
you provide the necessary number of components. Look at the following examples.

Matrices also follow this pattern. You have a wide variety of constructors for matrices. For
instance the following constructors for initializing a matrix are available:

The declaration and initialization of structures is demonstrated below:

In GLSL a few extras are provided to simplify our lives, and make the code a little bit clearer.
Accessing a vector can be done using letters as well as standard C selectors.

As shown in the previous code snippet, it is possible to use the letters x,y,z,w to access vectors
components. If you're talking about colors then r,g,b,a can be used. For texture coordinates the
available selectors are s,t,p,q. Notice that by convention, texture coordinates are often referred
as s,t,r,q. However r is already being used as a selector for "red" in RGBA. Hence there was a
need to find a different letter, and the lucky one was p.

Matrix selectors can take one or two arguments, for instance m[0], or m[2][3]. In the first case
the first column is selected, whereas in the second a single element is selected.

As for structures the names of the elements of the structure can be used as in C, so assuming
the structures described above the following line of code could be written:

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?data

2 sur 3 25/01/2009 15:05

Variable Qualifiers

Qualifiers give a special meaning to the variable. The following qualifiers are available:

const - The declaration is of a compile time constant

attribute - Global variables that may change per vertex, that are passed from the OpenGL
application to vertex shaders. This qualifier can only be used in vertex shaders. For the
shader this is a read-only variable. See Attribute section

uniform - Global variables that may change per primitive (may not be set inside
glBegin,/glEnd), that are passed from the OpenGL application to the shaders. This
qualifier can be used in both vertex and fragment shaders. For the shaders this is a
read-only variable. See Uniform section

varying - used for interpolated data between a vertex shader and a fragment shader.
Available for writing in the vertex shader, and read-only in a fragment shader. See Varying
section

.

[Previous: Attribute Variables] [Next: Statments and Functions]

Site designed and maintained by António Ramires Fernandes
Your comments, suggestions and references to further material are welcome!

Lighthouse 3D privacy statement

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?data

3 sur 3 25/01/2009 15:05

 OpenGL VRML W3D

 Home Tutorials Books Applications Tools Docs Models Textures

 Bugs GLSL Tutorial

GLSL Tutorial

Index
Introduction

The Graphics Pipeline
Pipeline Overview
Vertex Processor
Fragment Processor

OpenGL Setup for GLSL
Overview
Creating a Shader
Creating a Program
Source Code
Trouble Shooting: the InfoLog
Cleaning Up

Comm. OpenGL=> GLSL
Comm. Introduction
Uniform Variables
Attribute Variables

Shader Basics
Data Types and Variables
Statments and Functions
Varying Variables

Shader Examples
Shader Examples List

GLSL Hello World

Color Shader

Flatten Shader

Toon Shader
Toon Shader - Version I
Toon Shader - Version II
Toon Shader - Version III

Lighting
OpenGL Directional Light I
OpenGL Directional Light II
Directional Light per Pixel
Point Light Per Pixel
Spot Light Per Pixel

Simple Texture
Combine Texture + Fragment
Multitexturing

Notes
The gl_NormalMatrix
Normalization Issues

[Previous: Data Types and Variables] [Next: Varying Variables]

GLSL Tutorial

Statements and Functions

Control Flow Statements

The available options are pretty much the same as in C. There are conditional
statements, like if-else, iteration statements like for, while and do-while.

Although these are already available in the specification of GLSL, only the if
statement is commonly available in current hardware.

A few jumps are also defined:

continue - available in loops, causes a jump to the next iteration of the loop

break - available in loops, causes an exit of the loop

discard

The discard keyword can only be used in fragment shaders. It causes the
termination of the shader for the current fragment without writing to the frame
buffer, or depth.

Functions

As in C a shader is structured in functions. At least each type of shader must
have a main function declared with the following syntax:

User defined functions may be defined. As in C a function may have a return
value, and should use the return statement to pass out its result. A function can
be void of course. The return type can have any type, but it can't be an array.

The parameters of a function have the following qualifiers available:

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?statements

1 sur 2 25/01/2009 15:06

OpenGLTutorials @
Lighthouse3d.com

Led Shader
View Frustum Culling
GLSL Tutorial
Maths Tutorial
Billboarding Tutorial
Picking Tutorial
Terrain Tutorial
Display Lists Tutorial
GLUT Tutorial

Ads by Google
 OpenGL
 OpenGL Source Code
 C++
 OpenGL How To
 3D Graphics

in - for input parameters
out - for outputs of the function. The return statement is also an option for
sending the result of a function.
inout - for parameters that are both input and output of a function

If no qualifier is specified, by default it is considered to be in.

A few final notes:

1. A function can be overloaded as long as the list of parameters is
different.

2. Recursion behavior is undefined by specification.

An example of a function concludes this subsection.

[Previous: Data Types and Variables] [Next: Varying Variables]

Site designed and maintained by António Ramires Fernandes
Your comments, suggestions and references to further material are welcome!

Lighthouse 3D privacy statement

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?statements

2 sur 2 25/01/2009 15:06

 OpenGL VRML W3D

 Home Tutorials Books Applications Tools Docs Models Textures

 Bugs GLSL Tutorial

GLSL Tutorial

Index
Introduction

The Graphics Pipeline
Pipeline Overview
Vertex Processor
Fragment Processor

OpenGL Setup for GLSL
Overview
Creating a Shader
Creating a Program
Source Code
Trouble Shooting: the InfoLog
Cleaning Up

Comm. OpenGL=> GLSL
Comm. Introduction
Uniform Variables
Attribute Variables

Shader Basics
Data Types and Variables
Statments and Functions
Varying Variables

Shader Examples
Shader Examples List

GLSL Hello World

Color Shader

Flatten Shader

Toon Shader
Toon Shader - Version I
Toon Shader - Version II
Toon Shader - Version III

Lighting
OpenGL Directional Light I
OpenGL Directional Light II
Directional Light per Pixel
Point Light Per Pixel
Spot Light Per Pixel

Simple Texture
Combine Texture + Fragment
Multitexturing

[Previous: Statments and Functions] [Next: Shader Examples List]

GLSL Tutorial

Varying Variables

As mentioned before we have two types of shaders: vertex and
fragment shaders. In order to compute values per fragment it is often
required to access vertex interpolated data. For instance, when
performing lighting computation per fragment, we need to access the
normal at the fragment. However in OpenGL, the normals are only
specified per vertex. These normals are accessible to the vertex
shader, but not to the fragment shader since they come from the
OpenGL application as an attribute variable.

After the vertices, including all the vertex data, are processed they
move on to the next stage of the pipeline (which still remains fixed
functionality) where connectivity information is available. It is in this
stage that the primitives are assembled and fragments computed. For
each fragment there is a set of variables that are interpolated
automatically and provided to the fragment shader. An example is the
color of the fragment. The color that arrives at the fragment shader is
the result of the interpolation of the colors of the vertices that make up
the primitive.

This type of variables, where the fragment receives interpolated, data
are "varying variables". GLSL has some predefined varying variables,
such as the above mentioned color. GLSL also allows user defined
varying variables. These must be declared in both the vertex and
fragment shaders, for instance:

A varying variable must be written on a vertex shader, where we
compute the value of the variable for each vertex. In the fragment
shader the variable, whose value results from an interpolation of the
vertex values computed previously, can only be read.

[Previous: Statments and Functions] [Next: Shader Examples List]

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?varying

1 sur 2 25/01/2009 15:07

Notes
The gl_NormalMatrix
Normalization Issues

OpenGLTutorials @
Lighthouse3d.com

Led Shader
View Frustum Culling
GLSL Tutorial
Maths Tutorial
Billboarding Tutorial
Picking Tutorial
Terrain Tutorial
Display Lists Tutorial
GLUT Tutorial

Ads by Google
 OpenGL
 OpenGL 3D Tutorial
 DirectX
 C++
 3D Tools

Site designed and maintained by António Ramires Fernandes
Your comments, suggestions and references to further material are welcome!

Lighthouse 3D privacy statement

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?varying

2 sur 2 25/01/2009 15:07

 OpenGL VRML W3D

 Home Tutorials Books Applications Tools Docs Models Textures

 Bugs GLSL Tutorial

GLSL Tutorial

Index
Introduction

The Graphics Pipeline
Pipeline Overview
Vertex Processor
Fragment Processor

OpenGL Setup for GLSL
Overview
Creating a Shader
Creating a Program
Source Code
Trouble Shooting: the InfoLog
Cleaning Up

Comm. OpenGL=> GLSL
Comm. Introduction
Uniform Variables
Attribute Variables

Shader Basics
Data Types and Variables
Statments and Functions
Varying Variables

Shader Examples
Shader Examples List

GLSL Hello World

Color Shader

Flatten Shader

Toon Shader
Toon Shader - Version I
Toon Shader - Version II
Toon Shader - Version III

Lighting
OpenGL Directional Light I
OpenGL Directional Light II
Directional Light per Pixel
Point Light Per Pixel
Spot Light Per Pixel

Simple Texture
Combine Texture + Fragment
Multitexturing

[Previous: Varying Variables] [Next: GLSL Hello World]

GLSL Tutorial

Shader Examples

Hello World

This pair of vertex/fragment shaders
is about the smallest pair we can
write. It performs only the standard
vertex transformation, and sets the
same color for all pixels. It shows
several ways of achieving the vertex
transformation, and introduces the
some of the matrices provided
available in GLSL.

Color Shader

A simple example of how to get the
color specified in an OpenGL
application, using glColor, all the way
to the fragment shader.

Flatten Shader

This is a simple example of vertex
manipulation. It starts out by flattening
a teapot, and it ends up with a vertex
shader that animates a wavy teapot,
based on a uniform variable to keep
track of time.

Toon Shader

In this tutorial it will be shown the
impact of placing certain
computations on the vertex shader vs.
the fragment shader. It uses varying
variables to establish communication
between shaders, and shows how to
access an OpenGL lights position.

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?shaders

1 sur 2 25/01/2009 15:08

Notes
The gl_NormalMatrix
Normalization Issues

OpenGLTutorials @
Lighthouse3d.com

Led Shader
View Frustum Culling
GLSL Tutorial
Maths Tutorial
Billboarding Tutorial
Picking Tutorial
Terrain Tutorial
Display Lists Tutorial
GLUT Tutorial

Ads by Google
 OpenGL Shader
 OpenGL Update
 OpenGL 3D Tutorial
 Code OpenGL
 OpenGL Language

Lighting Shaders

Lighting according to the
"Mathematics of OpenGL" (chapter of
the Red Book) lighting is presented in
here. The tutorials starts with a
directional light per vertex, i.e. as in
OpenGL fixed functionality, and then
moves on to per pixel
implementations of directional, point
and spot lights, all according to the
Red Book equations.

Texturing

This tutorial starts from basic
texturing, accessing texture
coordinates and texels, and moves on
to a multitexturing example where one
of the texture units is applied to give a
glow in the dark effect.

[Previous: Varying Variables] [Next: GLSL Hello World]

Site designed and maintained by António Ramires Fernandes
Your comments, suggestions and references to further material are welcome!

Lighthouse 3D privacy statement

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?shaders

2 sur 2 25/01/2009 15:08

 OpenGL VRML W3D

 Home Tutorials Books Applications Tools Docs Models Textures

 Bugs GLSL Tutorial

GLSL Tutorial

Index
Introduction

The Graphics Pipeline
Pipeline Overview
Vertex Processor
Fragment Processor

OpenGL Setup for GLSL
Overview
Creating a Shader
Creating a Program
Source Code
Trouble Shooting: the InfoLog
Cleaning Up

Comm. OpenGL=> GLSL
Comm. Introduction
Uniform Variables
Attribute Variables

Shader Basics
Data Types and Variables
Statments and Functions
Varying Variables

Shader Examples
Shader Examples List

GLSL Hello World

Color Shader

Flatten Shader

Toon Shader
Toon Shader - Version I
Toon Shader - Version II
Toon Shader - Version III

Lighting
OpenGL Directional Light I
OpenGL Directional Light II
Directional Light per Pixel
Point Light Per Pixel
Spot Light Per Pixel

Simple Texture
Combine Texture + Fragment
Multitexturing

Notes
The gl_NormalMatrix
Normalization Issues

[Previous: Shader Examples List] [Next: Color Shader]

GLSL Tutorial

Hello World in GLSL

This is kind of a Hello World for GLSL. A minimal shader that performs the most basic
tasks: transform the vertices and render the primitives in a single color. In here it this
shaders, vertex and fragment, are presented.

Vertex Shader

As mentioned before, a vertex shader is responsible for transforming the vertices. In here it
will be shown how to transform the vertices following the equations for the fixed
functionality.

The fixed functionality states that a vertex is to be transformed by the modelview and
projection matrices using the following equation:

In order to write such a statement in GLSL it is necessary to access the OpenGL state to
retrieve both matrices. As mentioned before, part of the OpenGL state is accessible in
GLSL, namely the above mentioned matrices. The matrices are provided through
predefined uniform variables declared as:

One more thing is needed: to access the incoming vertex. These vertices are suplied, one
by one, to the vertex shader through a predefined attribute variable:

In order to output the transformed vertex, the shader must write to the also predefined
variable gl_Position, declared as a vec4.

Given the above, it is now possible to write a vertex shader that will do nothing more than
transform vertices. Note that all other functionality will be lost, meaning, for instance, that
lighting computations will not be performed.

The vertex shader has to have a main function. The following code does the trick:

In the above code, the projection matrix is multiplied by the modelview matrix for every
vertex, which is a clear waste of time since these matrices do not change per vertex. The
matrices are uniform variables.

GLSL provides some derived matrices, namely the gl_ModelViewProjectionMatrix that is
the result of multiplying the above matrices. So the vertex shader could be written as:

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?minimal

1 sur 2 25/01/2009 15:09

OpenGLTutorials @
Lighthouse3d.com

Led Shader
View Frustum Culling
GLSL Tutorial
Maths Tutorial
Billboarding Tutorial
Picking Tutorial
Terrain Tutorial
Display Lists Tutorial
GLUT Tutorial

Ads by Google
 3D Modelling Tutorials
 OpenGL
 DirectX
 OpenGL Source Code
 3D Tools

The end result is of course the same. Does this guarantee the same transformation as in
the fixed functionality? Well in theory yes, but in practice the process of transforming the
vertices may not follow the same order as in here. This is normally a highly optimized task in
a graphic card, and a special function is provided to take advantage of that optimization.
Another reason for this function is due to the limit in the precision of the float data type.
When calculus is done in different orders, different results may be obtained due to this
limited precision. Hence the GLSL provides a function that guarantees that not only the best
performance is obtained but also that the result is always the same as when using the fixed
functionality. This magical function is:

This function returns the transformed incoming vertex, following the same steps as the fixed
functionality does. The shader could then be rewritten as:

Fragment Shader

The fragment shader also has a predefined variable to write the color of the fragment:
gl_FragColor. As in the case of vertex shaders, fragment shaders must also have a main
function. The following code is for a fragment shader that draws all fragments in a bluish
color:

The source code for this example can be obtained in here: ARB extensions syntax or
OpenGL 2.0 syntax.

[Previous: Shader Examples List] [Next: Color Shader]

Site designed and maintained by António Ramires Fernandes
Your comments, suggestions and references to further material are welcome!

Lighthouse 3D privacy statement

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?minimal

2 sur 2 25/01/2009 15:09

 OpenGL VRML W3D

 Home Tutorials Books Applications Tools Docs Models Textures

 Bugs GLSL Tutorial

GLSL Tutorial

Index
Introduction

The Graphics Pipeline
Pipeline Overview
Vertex Processor
Fragment Processor

OpenGL Setup for GLSL
Overview
Creating a Shader
Creating a Program
Source Code
Trouble Shooting: the InfoLog
Cleaning Up

Comm. OpenGL=> GLSL
Comm. Introduction
Uniform Variables
Attribute Variables

Shader Basics
Data Types and Variables
Statments and Functions
Varying Variables

Shader Examples
Shader Examples List

GLSL Hello World

Color Shader

Flatten Shader

Toon Shader
Toon Shader - Version I
Toon Shader - Version II
Toon Shader - Version III

Lighting
OpenGL Directional Light I
OpenGL Directional Light II
Directional Light per Pixel
Point Light Per Pixel
Spot Light Per Pixel

Simple Texture
Combine Texture + Fragment
Multitexturing

Notes
The gl_NormalMatrix

[Previous: GLSL Hello World] [Next: Flatten Shader]

GLSL Tutorial

Color Shader

GLSL has access to part of the OpenGL state. In this tutorial we'll see how to
access the color as set in an OpenGL application with glColor.

GLSL has an attribute variable where it keeps track of the current color. It also
provides varying variables to get the color from the vertex shader to the fragment
shader

The idea is as follows:

The OpenGL applications sends a color using the glColor function1.

The vertex shader receives the color value in the attribute gl_Color2.

The vertex shader computes the front face and back face colors, and
stores them in gl_FrontColor, and gl_BackColor respectively

3.

The fragment shader receives an interpolated color in the varying variable
gl_Color, depending on the orientation of the current primitive, i.e. the
interpolation is done using either the gl_FrontColor or the gl_BackColor
values.

4.

The fragment shader sets gl_FragColor based on the value of gl_Color5.

This is an exception to the "rule" where a varying variable should be declared with
the same name both in the vertex shader and the fragment shader. The concept in
here is that we have two variables in the vertex shader, namely gl_FrontColor and
gl_BackColor, and these are used to derive automatically the value of gl_Color
depending in the orientation of the current face. Note that there is no conflict
between the attribute gl_Color and the varying variable gl_Color, since the former
is visible only in the vertex shader, and the latter in the fragment shader.

Enough talk, the code for the vertex shader, where only the front face color is
computed is:

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?color

1 sur 2 25/01/2009 15:10

Normalization Issues

OpenGLTutorials @
Lighthouse3d.com

Led Shader
View Frustum Culling
GLSL Tutorial
Maths Tutorial
Billboarding Tutorial
Picking Tutorial
Terrain Tutorial
Display Lists Tutorial
GLUT Tutorial

Ads by Google
 OpenGL
 OpenGL 3D Tutorial
 DirectX
 OpenGL Source Code
 3D Tools

The fragment shader is also a very simple shader:

Source code based on GLUT and GLEW is available in here: ARB extensions
syntax or OpenGL 2.0 syntax.

[Previous: GLSL Hello World] [Next: Flatten Shader]

Site designed and maintained by António Ramires Fernandes
Your comments, suggestions and references to further material are welcome!

Lighthouse 3D privacy statement

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?color

2 sur 2 25/01/2009 15:10

 OpenGL VRML W3D

 Home Tutorials Books Applications Tools Docs Models Textures

 Bugs GLSL Tutorial

GLSL Tutorial

Index
Introduction

The Graphics Pipeline
Pipeline Overview
Vertex Processor
Fragment Processor

OpenGL Setup for GLSL
Overview
Creating a Shader
Creating a Program
Source Code
Trouble Shooting: the InfoLog
Cleaning Up

Comm. OpenGL=> GLSL
Comm. Introduction
Uniform Variables
Attribute Variables

Shader Basics
Data Types and Variables
Statments and Functions
Varying Variables

Shader Examples
Shader Examples List

GLSL Hello World

Color Shader

Flatten Shader

Toon Shader
Toon Shader - Version I
Toon Shader - Version II
Toon Shader - Version III

Lighting
OpenGL Directional Light I
OpenGL Directional Light II
Directional Light per Pixel
Point Light Per Pixel
Spot Light Per Pixel

Simple Texture
Combine Texture + Fragment
Multitexturing

Notes
The gl_NormalMatrix
Normalization Issues

OpenGLTutorials @
Lighthouse3d.com

Led Shader
View Frustum Culling
GLSL Tutorial
Maths Tutorial
Billboarding Tutorial
Picking Tutorial
Terrain Tutorial
Display Lists Tutorial
GLUT Tutorial

[Previous: Color Shader] [Next: Toon Shader]

GLSL Tutorial

Flatten Shader

Shader programming sets us free to explore new effects. This is a small example just to show that with shader programming vertices
can be manipulated in strange ways.

First we're going to flatten a 3D model, by setting its z coordinate to zero prior to applying the modelview transformation. The source
code for the vertex shader is:

First notice that we had to copy the gl_Vertex variable to a local variable. The gl_Vertex is an attribute variable provided by GLSL,
and hence it is a read only variable as far as the vertex shader is concerned. Hence to change the values of the incoming vertex
coordinates we had to copy it first to the local variable v.

The fragment shader only sets a color, so it's basically the same as the one presented in the Hello World section.

This shader sets the z coordinate of each vertex that is processed to zero. When applied to the teapot, the result is something like
the following pictures taken around the flattened teapot:

OK, let's play some more, now we're going to apply a sine function to the z coordinate, as a function of the x coordinate, so the
teapot appears wavy.

And finally to end this simple example we're going to add some vertex animation. In order to do this we need a variable to keep track
of time, or a frame counter. A vertex shader can't keep track of values between vertices, let alone between frames. Therefore we
need to define this variable in the OpenGL application, and pass it to the shader as a uniform variable. Let's assume that there is a
frame counter in the OpenGL application named "time", and that in the shader there is an uniform attribute with the same name.

The code for the vertex shader becomes something like:

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?flatten

1 sur 2 25/01/2009 15:11

Ads by Google
 OpenGL Shader
 Free 3D Models
 DirectX
 OpenGL 3D Tutorial
 OpenGL Programming

As mentioned in the Uniform Variables section, in the OpenGL application two steps are required:

setup: getting the location of the uniform variable
render: update the uniform variable

The setup phase is only:

Where p is the handler to the program, and "time" is the name of the uniform variable as defined in the vertex shader. The variable
loc is of type GLint and should be defined in a place where it is also accessible to the render function.

The render function could be something like:

where the variable time is initialized to some value in the initialization, and is incremented in each frame.

The source code for this last example, together with the shaders can be obtained in here: ARB extensions syntax or OpenGL 2.0
syntax.

Note: you'll need to have glew to run this. A Shader Designer project is also available in here. A mpeg showing the effect can be
downloaded here. This video was produced using a feature on Shader Designer that creates an AVI movie, and afterwards it was
converted to MPEG using Fx Mpeg Writer Free version.

[Previous: Color Shader] [Next: Toon Shader]

Site designed and maintained by António Ramires Fernandes
Your comments, suggestions and references to further material are welcome!

Lighthouse 3D privacy statement

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?flatten

2 sur 2 25/01/2009 15:11

 OpenGL VRML W3D

 Home Tutorials Books Applications Tools Docs Models Textures

 Bugs GLSL Tutorial

GLSL Tutorial

Index
Introduction

The Graphics Pipeline
Pipeline Overview
Vertex Processor
Fragment Processor

OpenGL Setup for GLSL
Overview
Creating a Shader
Creating a Program
Source Code
Trouble Shooting: the InfoLog
Cleaning Up

Comm. OpenGL=> GLSL
Comm. Introduction
Uniform Variables
Attribute Variables

Shader Basics
Data Types and Variables
Statments and Functions
Varying Variables

Shader Examples
Shader Examples List

GLSL Hello World

Color Shader

Flatten Shader

Toon Shader
Toon Shader - Version I
Toon Shader - Version II
Toon Shader - Version III

Lighting
OpenGL Directional Light I
OpenGL Directional Light II
Directional Light per Pixel
Point Light Per Pixel
Spot Light Per Pixel

Simple Texture
Combine Texture + Fragment
Multitexturing

[Previous: Flatten Shader] [Next: Toon Shader - Version I]

GLSL Tutorial

Toon Shading

Toon shading is probably the simplest non-photorealistic shader we can
write. It uses very few colors, usually tones, hence it changes abruptly
from tone to tone, yet it provides a sense of 3D to the model. The
following image shows what we're trying to achieve.

The tones in the teapot above are selected based on the angle, actually
on the cosine of the angle, between a virtual light's direction and the
normal of the surface.

So if we have a normal that is close to the light's direction, then we'll
use the brightest tone. As the angle between the normal and the light's
direction increases darker tones will be used. In other words, the
cosine of the angle provides an intensity for the tone.

In this tutorial we'll start with a version that computes the intensity per
vertex. Then we will move this computation to the fragment shader. It
will also be shown how to access OpenGL light's position.

[Previous: Flatten Shader] [Next: Toon Shader - Version I]

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?toon

1 sur 2 25/01/2009 15:12

Notes
The gl_NormalMatrix
Normalization Issues

OpenGLTutorials @
Lighthouse3d.com

Led Shader
View Frustum Culling
GLSL Tutorial
Maths Tutorial
Billboarding Tutorial
Picking Tutorial
Terrain Tutorial
Display Lists Tutorial
GLUT Tutorial

Ads by Google
 OpenGL
 Free 3D Models
 Tutorial 3D Studio
 DirectX
 3D Tools

Site designed and maintained by António Ramires Fernandes
Your comments, suggestions and references to further material are welcome!

Lighthouse 3D privacy statement

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?toon

2 sur 2 25/01/2009 15:12

 OpenGL VRML W3D

 Home Tutorials Books Applications Tools Docs Models Textures

 Bugs GLSL Tutorial

GLSL Tutorial

Index
Introduction

The Graphics Pipeline
Pipeline Overview
Vertex Processor
Fragment Processor

OpenGL Setup for GLSL
Overview
Creating a Shader
Creating a Program
Source Code
Trouble Shooting: the InfoLog
Cleaning Up

Comm. OpenGL=> GLSL
Comm. Introduction
Uniform Variables
Attribute Variables

Shader Basics
Data Types and Variables
Statments and Functions
Varying Variables

Shader Examples
Shader Examples List

GLSL Hello World

Color Shader

Flatten Shader

Toon Shader
Toon Shader - Version I
Toon Shader - Version II
Toon Shader - Version III

Lighting
OpenGL Directional Light I
OpenGL Directional Light II
Directional Light per Pixel
Point Light Per Pixel
Spot Light Per Pixel

Simple Texture
Combine Texture + Fragment
Multitexturing

Notes
The gl_NormalMatrix
Normalization Issues

[Previous: Toon Shader] [Next: Toon Shader - Version II]

GLSL Tutorial

Toon Shading - Version I

The first version presented in here computes an intensity per vertex. Then the fragment
shader uses the vertex interpolated intensity to compute a tone for the fragment. The vertex
shader must therefore declare a varying variable to store the intensity. The fragment shader
must declare the same variable, also using the varying qualifier, to receive the properly
interpolated value for the intensity.

The light direction could be defined in the vertex shader as a local variable or as a constant,
however having it as a uniform variable provides more freedom since it can be set arbitrarily
on the OpenGL application. The light's direction variable will be defined in the shader as

For now, lets assume that the light's direction is defined in world space.

The vertex shader has access to the normals, as specified in the OpenGL application,
through the attribute variable gl_Normal. This is the normal as defined in the OpenGL
application with the glNormal function, hence in model local space.

If no rotations or scales are performed on the model in the OpenGL application, then the
normal defined in world space, provided to the vertex shader as gl_Normal, coincides with
the normal defined in the local space. The normal is a direction and therefore it is not
affected by translations.

Because both the normal and the light's direction are specified in the same space, the vertex
shader can jump directly to the cosine computation between the light's direction, i.e. lightDir,
and the normal. The cosine can be computed using the following formula

where "." is the inner product, aka as the dot product. This can be simplified if both the
normal and lightDir are normalized, i.e.

Hence if these two conditions are guaranteed the computation for the cosine can be
simplified to

Since the variable lightDir is supplied by the OpenGL application we can assume that it
arrives at the shader already normalized. It would be a waste of time having to normalize it
for every vertex, instead of performing it only when the lightDir changes. Also it is reasonable
to expect that the normals from the OpenGL application are normalized.

Therefore the cosine, which we will store in a variable named intensity, can be computed with
the dot function provided by GLSL.

The only thing that's left to do in the vertex shader is to transform the vertex coordinates. The

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?toon1

1 sur 3 25/01/2009 15:13

OpenGLTutorials @
Lighthouse3d.com

Led Shader
View Frustum Culling
GLSL Tutorial
Maths Tutorial
Billboarding Tutorial
Picking Tutorial
Terrain Tutorial
Display Lists Tutorial
GLUT Tutorial

Ads by Google
 OpenGL
 DirectX
 Tutorial 3D Studio
 OpenGL Source Code
 3D Tools

complete code for the shader is as follows:

Now, in the fragment shader, all that's left to do is to define a color for the fragment based
on the intensity. The intensity must be passed on to the fragment shader, since it is the
fragment shader that is responsible for setting the colors for fragments. As mentioned
before, the intensity will be defined as a varying variable on both shaders, hence it must be
written in the vertex shader for the fragment shader to read it.

The color can be computed in the fragment shader as follows:

As can be seen from the code above, the brightest color is used when the cosine is larger
than 0.95 and the darker color is used for cosines smaller than 0.25. All there is left to do in
the fragment shader is to set the gl_FragColor based on the color. The code for the
fragment shader is:

The following image shows the end result, and it doesn't look very nice does it? The main
problem is that we're interpolating the intensity. This is not the same as computing the
intensity with the proper normal for the fragment. Go on to the next section to see toon
shading done properly!

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?toon1

2 sur 3 25/01/2009 15:13

[Previous: Toon Shader] [Next: Toon Shader - Version II]

Site designed and maintained by António Ramires Fernandes
Your comments, suggestions and references to further material are welcome!

Lighthouse 3D privacy statement

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?toon1

3 sur 3 25/01/2009 15:13

 OpenGL VRML W3D

 Home Tutorials Books Applications Tools Docs Models Textures

 Bugs GLSL Tutorial

GLSL Tutorial

Index
Introduction

The Graphics Pipeline
Pipeline Overview
Vertex Processor
Fragment Processor

OpenGL Setup for GLSL
Overview
Creating a Shader
Creating a Program
Source Code
Trouble Shooting: the InfoLog
Cleaning Up

Comm. OpenGL=> GLSL
Comm. Introduction
Uniform Variables
Attribute Variables

Shader Basics
Data Types and Variables
Statments and Functions
Varying Variables

Shader Examples
Shader Examples List

GLSL Hello World

Color Shader

Flatten Shader

Toon Shader
Toon Shader - Version I
Toon Shader - Version II
Toon Shader - Version III

Lighting
OpenGL Directional Light I
OpenGL Directional Light II
Directional Light per Pixel
Point Light Per Pixel
Spot Light Per Pixel

Simple Texture
Combine Texture + Fragment
Multitexturing

Notes
The gl_NormalMatrix
Normalization Issues

[Previous: Toon Shader - Version I] [Next: Toon Shader - Version III]

GLSL Tutorial

Toon Shader - Version II

GLSL has access to part of the OpenGL state. In this tutorial we'll see how
to access the color as set in an OpenGL application with glColor.

GLSL has an attribute variable where it keeps track of the current color. In
this section we will do the toon shader effect per fragment. In order to do
that, we need to have access to the fragments normal per fragment. Hence
the vertex shader only needs to write the normal into a varying variable, so
that the fragment shader has access to the interpolated normal.

The vertex shader gets simplified, since the color intensity computation will
now be done in the fragment shader. The uniform variable lightDir also has
moved to the fragment shader, since it is no longer used in the vertex
shader. See the code bellow for the new vertex shader:

In the fragment shader we now need to declare the uniform variable lightDir
since the intensity is based on this variable. A varying variable is also
defined to receive the interpolated normal. The code for the fragment
shader then becomes:

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?toon2

1 sur 3 25/01/2009 15:13

OpenGLTutorials @
Lighthouse3d.com

Led Shader
View Frustum Culling
GLSL Tutorial
Maths Tutorial
Billboarding Tutorial
Picking Tutorial
Terrain Tutorial
Display Lists Tutorial
GLUT Tutorial

Ads by Google
 OpenGL Shader
 Free 3D Models
 DirectX
 Autodesk 3D Studio
 OpenGL 3D Tutorial

And the result is:

No, its not a bug! Its the same result as in the previous section. So what
happened?

Let's look closely at the differences between the two versions. In the first
version we computed an intensity in the vertex shader and used the
interpolated value in the fragment shader. In the second version we
interpolated the normal, in the vertex shader, for the fragment shader
where we computed the dot product. Interpolation and dot product are both
linear operations, so it doesn't matter if we compute the dot product first
and then interpolate, or if we interpolate first and then compute the dot
product.

What is wrong in here is the usage of the interpolated normal for the dot
product in the fragment shader! And it is wrong because the normal,
although it has the right direction, it most likely has a not unit length.

We know that the direction is right because we assumed that the normals
that arrived at the vertex shader were normalized, and interpolating
normalized vectors, provides a vector with the correct direction. However
the length is wrong in the general case because interpolating normalized
normals only yields a unit length vector if the normals being interpolated
have the same direction, which is highly unlikely in smooth surfaces. See
Normalization Issues for more details.

The main reason to move the intensity computation from the vertex shader
to the fragment shader was to compute it using the proper normal for the
fragment. We have a normal vector that has the correct direction but is not
unit length. In order to fix this all we have to do is to normalize the incoming
normal vector at the fragment shader. The following code is the correct and
complete toon shader:

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?toon2

2 sur 3 25/01/2009 15:13

The result for this version of the toon shader is depicted below. It looks
nicer, yet it is not perfect. It suffers from aliasing, but this is outside the
scope of this tutorial ;)

In the next section we will use an OpenGL light to set the light's direction of
the shader.

[Previous: Toon Shader - Version I] [Next: Toon Shader - Version III]

Site designed and maintained by António Ramires Fernandes
Your comments, suggestions and references to further material are welcome!

Lighthouse 3D privacy statement

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?toon2

3 sur 3 25/01/2009 15:13

 OpenGL VRML W3D

 Home Tutorials Books Applications Tools Docs Models Textures

 Bugs GLSL Tutorial

GLSL Tutorial

Index
Introduction

The Graphics Pipeline
Pipeline Overview
Vertex Processor
Fragment Processor

OpenGL Setup for GLSL
Overview
Creating a Shader
Creating a Program
Source Code
Trouble Shooting: the InfoLog
Cleaning Up

Comm. OpenGL=> GLSL
Comm. Introduction
Uniform Variables
Attribute Variables

Shader Basics
Data Types and Variables
Statments and Functions
Varying Variables

Shader Examples
Shader Examples List

GLSL Hello World

Color Shader

Flatten Shader

Toon Shader
Toon Shader - Version I
Toon Shader - Version II
Toon Shader - Version III

Lighting
OpenGL Directional Light I
OpenGL Directional Light II
Directional Light per Pixel
Point Light Per Pixel
Spot Light Per Pixel

Simple Texture
Combine Texture + Fragment
Multitexturing

Notes
The gl_NormalMatrix
Normalization Issues

[Previous: Toon Shader - Version II] [Next: Lighting]

GLSL Tutorial

Toon Shading - Version III

Before we finish this tutorial there is just one more thing: we're going to use an
OpenGL light instead of the variable lightDir. In this way we can define a light in the
OpenGL application and use that light's direction in our shader. Note: it is not
necessary to turn on the lights using glEnable, since we are not going to apply the
light in OpenGL.

We shall assume that the first light (GL_LIGHT0) in the OpenGL application is a
directional light.

GLSL provides access to part of the OpenGL state, namely the lights properties.
GLSL declares a C type struct for the lights properties, and an array to store these
properties for each of the lights.

This means that we can access the light's direction (using the position field of a
directional light) in the vertex shader. Again we shall assume that the light's direction
is normalized by the OpenGL application.

The OpenGL specification states that when a light position is set it is automatically
converted to eye space coordinates, i.e. camera coordinates. We can assume that
the light position stays normalized when automatically converted to eye space. This
will be true if we the upper left 3x3 sub matrix of the modelview matrix is orthogonal
(this is ensured if we set the camera using gluLookAt, and we don't use scales in our
application).

We have to convert the normal to eye space coordinates as well to compute the dot
product, as it only makes sense to compute angles, or cosines in this case, between
vectors in the same space, and as mentioned before the light position is stored in
eye coordinates.

To transform the normal to eye space we will use the pre-defined uniform variable
mat3 gl_NormalMatrix. This matrix is the transpose of the inverse of the 3x3 upper
left sub matrix from the modelview matrix. We will do the normal transformation per
vertex. The vertex shader then becomes:

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?toon3

1 sur 2 25/01/2009 15:14

OpenGLTutorials @
Lighthouse3d.com

Led Shader
View Frustum Culling
GLSL Tutorial
Maths Tutorial
Billboarding Tutorial
Picking Tutorial
Terrain Tutorial
Display Lists Tutorial
GLUT Tutorial

Ads by Google
 OpenGL Shader
 C++ Play Wav
 Free 3D Models
 OpenGL Update
 OpenGL 3D Tutorial

In the fragment shader we must access the light position to compute the intensity:

A Shader Designer project is available in here. Source code based no GLUT and
GLEW is available in here: ARB extensions syntax or OpenGL 2.0 syntax.

[Previous: Toon Shader - Version II] [Next: Lighting]

Site designed and maintained by António Ramires Fernandes
Your comments, suggestions and references to further material are welcome!

Lighthouse 3D privacy statement

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?toon3

2 sur 2 25/01/2009 15:14

 OpenGL VRML W3D

 Home Tutorials Books Applications Tools Docs Models Textures

 Bugs GLSL Tutorial

GLSL Tutorial

Index
Introduction

The Graphics Pipeline
Pipeline Overview
Vertex Processor
Fragment Processor

OpenGL Setup for GLSL
Overview
Creating a Shader
Creating a Program
Source Code
Trouble Shooting: the InfoLog
Cleaning Up

Comm. OpenGL=> GLSL
Comm. Introduction
Uniform Variables
Attribute Variables

Shader Basics
Data Types and Variables
Statments and Functions
Varying Variables

Shader Examples
Shader Examples List

GLSL Hello World

Color Shader

Flatten Shader

Toon Shader
Toon Shader - Version I
Toon Shader - Version II
Toon Shader - Version III

Lighting
OpenGL Directional Light I
OpenGL Directional Light II
Directional Light per Pixel
Point Light Per Pixel
Spot Light Per Pixel

Simple Texture
Combine Texture + Fragment
Multitexturing

Notes
The gl_NormalMatrix
Normalization Issues

OpenGLTutorials @
Lighthouse3d.com

Led Shader

[Previous: Toon Shader - Version III] [Next: OpenGL Directional Light I]

GLSL Tutorial

Lighting

In OpenGL there are three types of lights: directional, point, and spotlight. In this tutorial we'll start to
implement a directional light. First we'll start with an implementation in GLSL that mimics the OpenGL way
of lighting.

We'll build the shader incrementally starting with ambient light up to specular lighting.

Ambient Ambient + Diffuse Specular

Then we'll move on to lighting per pixel in order to get better results.

Next we'll implement point and spot lights per pixel. These last tutorials are heavily based on the directional
lights tutorial because most of the code is common.

Point Light Spot Light

As mentioned in the toon shader tutorial GLSL offers access to the OpenGL state that contains data for the
light setting. This data describes the individual light's setting as well as global parameters.

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?lights

1 sur 2 25/01/2009 15:14

View Frustum Culling
GLSL Tutorial
Maths Tutorial
Billboarding Tutorial
Picking Tutorial
Terrain Tutorial
Display Lists Tutorial
GLUT Tutorial

Ads by Google
 OpenGL
 Free 3D Models
 DirectX
 OpenGL 3D Tutorial
 OpenGL Source Code

Material properties are accessible in GLSL as well:

Most of these parameters, both for lighting and materials are familiar to those used to build applications in
OpenGL. We shall use these properties to implement our directional light.

[Previous: Toon Shader - Version III] [Next: OpenGL Directional Light I]

Site designed and maintained by António Ramires Fernandes
Your comments, suggestions and references to further material are welcome!

Lighthouse 3D privacy statement

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?lights

2 sur 2 25/01/2009 15:14

 OpenGL VRML W3D

 Home Tutorials Books Applications Tools Docs Models Textures

 Bugs GLSL Tutorial

GLSL Tutorial

Index
Introduction

The Graphics Pipeline
Pipeline Overview
Vertex Processor
Fragment Processor

OpenGL Setup for GLSL
Overview
Creating a Shader
Creating a Program
Source Code
Trouble Shooting: the InfoLog
Cleaning Up

Comm. OpenGL=> GLSL
Comm. Introduction
Uniform Variables
Attribute Variables

Shader Basics
Data Types and Variables
Statments and Functions
Varying Variables

Shader Examples
Shader Examples List

GLSL Hello World

Color Shader

Flatten Shader

Toon Shader
Toon Shader - Version I
Toon Shader - Version II
Toon Shader - Version III

Lighting
OpenGL Directional Light I
OpenGL Directional Light II
Directional Light per Pixel
Point Light Per Pixel
Spot Light Per Pixel

Simple Texture
Combine Texture + Fragment
Multitexturing

Notes
The gl_NormalMatrix
Normalization Issues

OpenGLTutorials @
Lighthouse3d.com

Led Shader
View Frustum Culling

[Previous: Lighting] [Next: OpenGL Directional Light II]

GLSL Tutorial

OpenGL Directional Lights I

The equations in here are from the chapter "The Mathematics of Lighting" from the book "OpenGL
Programming Guide", aka the Red Book.

We'll start with the diffuse term. The diffuse lighting in OpenGL assumes that the light is perceived
with the same intensity regardless if the viewers position. Its intensity is proportional to both the lights
diffuse intensity as well as material's diffuse reflection coefficient. The intensity is also proportional to
the angle between the light direction and the normal of the surface.

The following formula is used in OpenGL to compute the diffuse term:

where I is the reflected intensity, Ld is the light's diffuse color (gl_LightSource[0].diffuse), and Md is
the material's diffuse coefficient (gl_FrontMaterial.diffuse).

This is known as Lambertian Reflection. 'Lambert's cosine law' states that the brightness of a
diffusely radiating plane surface is proportional to the cosine of the angle formed by the line of sight
and the normal to the surface. This was more than 200 years ago (Johann Heinrich Lambert,
1728-1777)!

The vertex shader to implement this formula will use the lights properties, namely its position, and
diffuse intensity. It will also use the materials diffuse setting. Hence to use this shader just set the light
as usual in OpenGL. Note however that since we're not using the fixed functionality, there is no need
to enable the lights.

Since we need to compute a cosine, first we're going to make sure that the normal vector and the
light direction vector (gl_LightSource[0].position) are normalized, and then we'll use the dot product to
get the cosine. Note that, for directional lights, OpenGL stores the light direction as the vector from
the vertex to the light source, which is the opposite to what is shown in the above figure.

OpenGL stores the lights direction in eye space coordinates; hence we need to transform the normal
to eye space in order to compute the dot product. To transform the normal to eye space we will use
the pre-defined uniform variable mat3 gl_NormalMatrix. This matrix is the transpose of the inverse of
the 3x3 upper left sub matrix from the modelview matrix.

The following vertex shader shows the GLSL code to achieve this.

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?ogldir1

1 sur 3 25/01/2009 15:15

GLSL Tutorial
Maths Tutorial
Billboarding Tutorial
Picking Tutorial
Terrain Tutorial
Display Lists Tutorial
GLUT Tutorial

Ads by Google
 3D Modelling Tutorials
 C++ Play Wav
 Light Scatter
 DirectX
 OpenGL

Now in the fragment shader all there is left to do is setting the fragments color, using the varying
gl_Color variable.

The following image shows this shader applied to the teapot. Note that the bottom of the teapot is too
dark. This is because we're not taking into account the ambient lighting terms available in OpenGL.

Incorporating the ambient terms is also easy to do. There is a global ambient term and a light ambient
term. The formula for the ambient term is as follows:

The vertex shader needs to add a few instructions to compute the ambient term:

The following image shows the end result. Adding an ambient term washes out color, but it's a cheap
workaround for the lack of a global illumination model where light bounces, and hence it affects
surfaces not directly affected by the light source.

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?ogldir1

2 sur 3 25/01/2009 15:15

Move on to the next section for the specular component.

[Previous: Lighting] [Next: OpenGL Directional Light II]

Site designed and maintained by António Ramires Fernandes
Your comments, suggestions and references to further material are welcome!

Lighthouse 3D privacy statement

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?ogldir1

3 sur 3 25/01/2009 15:15

 OpenGL VRML W3D

 Home Tutorials Books Applications Tools Docs Models Textures

 Bugs GLSL Tutorial

GLSL Tutorial

Index
Introduction

The Graphics Pipeline
Pipeline Overview
Vertex Processor
Fragment Processor

OpenGL Setup for GLSL
Overview
Creating a Shader
Creating a Program
Source Code
Trouble Shooting: the InfoLog
Cleaning Up

Comm. OpenGL=> GLSL
Comm. Introduction
Uniform Variables
Attribute Variables

Shader Basics
Data Types and Variables
Statments and Functions
Varying Variables

Shader Examples
Shader Examples List

GLSL Hello World

Color Shader

Flatten Shader

Toon Shader
Toon Shader - Version I
Toon Shader - Version II
Toon Shader - Version III

Lighting
OpenGL Directional Light I
OpenGL Directional Light II
Directional Light per Pixel
Point Light Per Pixel
Spot Light Per Pixel

Simple Texture
Combine Texture + Fragment
Multitexturing

Notes
The gl_NormalMatrix
Normalization Issues

OpenGLTutorials @
Lighthouse3d.com

Led Shader
View Frustum Culling
GLSL Tutorial
Maths Tutorial
Billboarding Tutorial

[Previous: OpenGL Directional Light I] [Next: Directional Light per Pixel]

GLSL Tutorial

OpenGL Directional Lights II

Time for the specular component of the OpenGL directional light. The lighting model used is the Blinn-Phong
model, which is a simplification of the Phong model. We shall take a peek at the Phong model since it makes it
easier to understand the Blinn-Phong model.

The Phong model says that the specular component is proportional to the cosine between the light reflection vector
and the eye vector. The following image shows this graphically:

L is the vector from the light to the vertex being shaded. N is the normal vector, and Eye is the vector from the
vertex to the eye, or camera. R is the vector L mirror reflected on the surface. The specular component is
proportional to the cosine of alpha.

If the eye vector coincides with the reflection vector then we get the maximum specular intensity. As the eye vector
diverges from the reflection vector the specular intensity decays. The rate of decay is controlled by a shininess
factor. The higher the shininess factor the faster the decay. This means that with a high shininess the bright spot
caused by the specular component is smaller than with a low shininess value. Simply put, the shininess (a value
between 0 and 128 in OpenGL) controls the size of the bright spot.

Shininess = 8 Shininess = 64 Shininess = 128

The formula for the reflection vector is as follows:

And the specular component in OpenGL using the Phong model would be:

Where the s exponent is the shininess value, Ls is the lights specular intensity, and Ms is the materials specular
coefficient.

Blinn proposed a simpler and faster model, knows as the Blinn-Phong model that is based on the half-vector. The
half-vector is a vector with a direction half-way between the eye vector and the light vector as shown in the
following figure:

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?ogldir2

1 sur 2 25/01/2009 15:16

Picking Tutorial
Terrain Tutorial
Display Lists Tutorial
GLUT Tutorial

Ads by Google
 3D Modelling Tutorials
 DirectX
 OpenGL
 OpenGL Source Code
 3D Equations

The intensity of the specular component is now based on the cosine of the angle between the half vector and the
normal. The formula for the half-vector is much simpler than for the reflection vector:

And the specular component in OpenGL using the Blinn-Phong model is:

This is the actual stuff as commonly used in the fixed pipeline of the graphics hardware. Since we want to emulate
the OpenGL's directional light, we're going to use this last equation in our shader. There is a good news: OpenGL
computes the half-vector for us! So the following snippet of code should do the trick:

The full source of the shaders, in a Shader Designer project can be found in here.

[Previous: OpenGL Directional Light I] [Next: Directional Light per Pixel]

Site designed and maintained by António Ramires Fernandes
Your comments, suggestions and references to further material are welcome!

Lighthouse 3D privacy statement

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?ogldir2

2 sur 2 25/01/2009 15:16

 OpenGL VRML W3D

 Home Tutorials Books Applications Tools Docs Models Textures

 Bugs GLSL Tutorial

GLSL Tutorial

Index
Introduction

The Graphics Pipeline
Pipeline Overview
Vertex Processor
Fragment Processor

OpenGL Setup for GLSL
Overview
Creating a Shader
Creating a Program
Source Code
Trouble Shooting: the InfoLog
Cleaning Up

Comm. OpenGL=> GLSL
Comm. Introduction
Uniform Variables
Attribute Variables

Shader Basics
Data Types and Variables
Statments and Functions
Varying Variables

Shader Examples
Shader Examples List

GLSL Hello World

Color Shader

Flatten Shader

Toon Shader
Toon Shader - Version I
Toon Shader - Version II
Toon Shader - Version III

Lighting
OpenGL Directional Light I
OpenGL Directional Light II
Directional Light per Pixel
Point Light Per Pixel
Spot Light Per Pixel

Simple Texture
Combine Texture + Fragment
Multitexturing

Notes
The gl_NormalMatrix
Normalization Issues

OpenGLTutorials @
Lighthouse3d.com

Led Shader
View Frustum Culling
GLSL Tutorial
Maths Tutorial
Billboarding Tutorial

[Previous: OpenGL Directional Light I] [Next: Directional Light per Pixel]

GLSL Tutorial

OpenGL Directional Lights II

Time for the specular component of the OpenGL directional light. The lighting model used is the Blinn-Phong
model, which is a simplification of the Phong model. We shall take a peek at the Phong model since it makes it
easier to understand the Blinn-Phong model.

The Phong model says that the specular component is proportional to the cosine between the light reflection vector
and the eye vector. The following image shows this graphically:

L is the vector from the light to the vertex being shaded. N is the normal vector, and Eye is the vector from the
vertex to the eye, or camera. R is the vector L mirror reflected on the surface. The specular component is
proportional to the cosine of alpha.

If the eye vector coincides with the reflection vector then we get the maximum specular intensity. As the eye vector
diverges from the reflection vector the specular intensity decays. The rate of decay is controlled by a shininess
factor. The higher the shininess factor the faster the decay. This means that with a high shininess the bright spot
caused by the specular component is smaller than with a low shininess value. Simply put, the shininess (a value
between 0 and 128 in OpenGL) controls the size of the bright spot.

Shininess = 8 Shininess = 64 Shininess = 128

The formula for the reflection vector is as follows:

And the specular component in OpenGL using the Phong model would be:

Where the s exponent is the shininess value, Ls is the lights specular intensity, and Ms is the materials specular
coefficient.

Blinn proposed a simpler and faster model, knows as the Blinn-Phong model that is based on the half-vector. The
half-vector is a vector with a direction half-way between the eye vector and the light vector as shown in the
following figure:

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?ogldir2

1 sur 2 25/01/2009 15:16

Picking Tutorial
Terrain Tutorial
Display Lists Tutorial
GLUT Tutorial

Ads by Google
 3D Modelling Tutorials
 DirectX
 OpenGL
 OpenGL Source Code
 3D Equations

The intensity of the specular component is now based on the cosine of the angle between the half vector and the
normal. The formula for the half-vector is much simpler than for the reflection vector:

And the specular component in OpenGL using the Blinn-Phong model is:

This is the actual stuff as commonly used in the fixed pipeline of the graphics hardware. Since we want to emulate
the OpenGL's directional light, we're going to use this last equation in our shader. There is a good news: OpenGL
computes the half-vector for us! So the following snippet of code should do the trick:

The full source of the shaders, in a Shader Designer project can be found in here.

[Previous: OpenGL Directional Light I] [Next: Directional Light per Pixel]

Site designed and maintained by António Ramires Fernandes
Your comments, suggestions and references to further material are welcome!

Lighthouse 3D privacy statement

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?ogldir2

2 sur 2 25/01/2009 15:16

 OpenGL VRML W3D

 Home Tutorials Books Applications Tools Docs Models Textures

 Bugs GLSL Tutorial

GLSL Tutorial

Index
Introduction

The Graphics Pipeline
Pipeline Overview
Vertex Processor
Fragment Processor

OpenGL Setup for GLSL
Overview
Creating a Shader
Creating a Program
Source Code
Trouble Shooting: the InfoLog
Cleaning Up

Comm. OpenGL=> GLSL
Comm. Introduction
Uniform Variables
Attribute Variables

Shader Basics
Data Types and Variables
Statments and Functions
Varying Variables

Shader Examples
Shader Examples List

GLSL Hello World

Color Shader

Flatten Shader

Toon Shader
Toon Shader - Version I
Toon Shader - Version II
Toon Shader - Version III

Lighting
OpenGL Directional Light I
OpenGL Directional Light II
Directional Light per Pixel
Point Light Per Pixel
Spot Light Per Pixel

Simple Texture
Combine Texture + Fragment
Multitexturing

Notes
The gl_NormalMatrix
Normalization Issues

[Previous: OpenGL Directional Light II] [Next: Point Light Per Pixel]

GLSL Tutorial

Directional Light per Pixel

In this section we'll modify the previous shaders to compute the directional light per pixel.
Basically we're going to split the work between the two shaders, so that some operations
are done per pixel.

First lets take a look at the information we receive per vertex:

normal
half vector
light direction

We have to transform the normal to eye space, and normalize it. We also have to
normalize both the half vector and the light direction, both of which are already in eye
space. These normalized vectors are to be interpolated and then sent to the fragment
shader so we need to declare varying variables to hold the normalized vectors.

We can also perform some computations combining the lights settings with the materials in
the vertex shader, hence helping to split the load between the vertex and fragment shader.

The vertex shader could be:

Now for the fragment shader. The same varying variables have to be declared. We have
to normalize again the normal. Note that there is no need to normalize again the light

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?dirlightpix

1 sur 3 25/01/2009 15:18

OpenGLTutorials @
Lighthouse3d.com

Led Shader
View Frustum Culling
GLSL Tutorial
Maths Tutorial
Billboarding Tutorial
Picking Tutorial
Terrain Tutorial
Display Lists Tutorial
GLUT Tutorial

Ads by Google
 3D Modelling Tutorials
 C++ Play Wav
 OpenGL
 DirectX
 3D Tools

direction. This last vector is common to all vertices since we're talking about a directional
light. The interpolation between two equal vectors yields the same vector, so there is no
need to normalize again. Then we compute the dot product between the interpolated
normalized normal and the light direction.

If the dot product NdotL is greater than zero then we must compute the diffuse
component, which is the diffuse setting we received from the vertex shader multiplied by
the dot product. We must also compute the specular term. To compute the specular
component we must first normalize the halfvector we received from the vertex shader, and
also compute the dot product between the normalized halfvector and the normal.

The following images show the difference in terms of visual results between computing the
lighting per vertex versus per pixel.

Per Vertex Per Pixel

A Shader Designer project containing the shaders for the directional light per pixel can be
found in here.

[Previous: OpenGL Directional Light II] [Next: Point Light Per Pixel]

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?dirlightpix

2 sur 3 25/01/2009 15:18

Site designed and maintained by António Ramires Fernandes
Your comments, suggestions and references to further material are welcome!

Lighthouse 3D privacy statement

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?dirlightpix

3 sur 3 25/01/2009 15:18

 OpenGL VRML W3D

 Home Tutorials Books Applications Tools Docs Models Textures

 Bugs GLSL Tutorial

GLSL Tutorial

Index
Introduction

The Graphics Pipeline
Pipeline Overview
Vertex Processor
Fragment Processor

OpenGL Setup for GLSL
Overview
Creating a Shader
Creating a Program
Source Code
Trouble Shooting: the InfoLog
Cleaning Up

Comm. OpenGL=> GLSL
Comm. Introduction
Uniform Variables
Attribute Variables

Shader Basics
Data Types and Variables
Statments and Functions
Varying Variables

Shader Examples
Shader Examples List

GLSL Hello World

Color Shader

Flatten Shader

Toon Shader
Toon Shader - Version I
Toon Shader - Version II
Toon Shader - Version III

Lighting
OpenGL Directional Light I
OpenGL Directional Light II
Directional Light per Pixel
Point Light Per Pixel
Spot Light Per Pixel

Simple Texture
Combine Texture + Fragment
Multitexturing

Notes
The gl_NormalMatrix
Normalization Issues

OpenGLTutorials @
Lighthouse3d.com

Led Shader
View Frustum Culling
GLSL Tutorial
Maths Tutorial
Billboarding Tutorial
Picking Tutorial
Terrain Tutorial
Display Lists Tutorial
GLUT Tutorial

[Previous: Directional Light per Pixel] [Next: Spot Light Per Pixel]

GLSL Tutorial

Point Light Per Pixel

This tutorial is based on the directional lights tutorial as most (99%) of the code comes from there. The tutorial is based
on the difference between a directional light and a point light. A directional light is assumed to be infinitely far away, so
that the light rays are parallel when they reach the object. In contrast, a point light has a position, and sends rays in all
directions. Furthermore, in a point light, the intensity decays with the distance to the vertex.

From an OpenGL application point of view there are two differences between the two:

the w component of the light position field: in a directional light it is zero to indicate that the position is in fact a
direction (or vector), where as in a point light the w component of the light position field is 1.
The attenuation is specified based on three coefficients: a constant term, a linear term, and a quadratic term

From a computational point of view these differences must be taken care of. For a directional light, the direction of the
light rays is constant for every vertex, whereas for a point light it is the vector from the vertex to the lights position.
Hence, all that needs to change in the vertex shader is the computation of the lights direction.

The attenuation is computed based on the following formula in OpenGL:

where k0 is the constant attenuation, k1 is the linear attenuation, k2 is the quadratic attenuation and d is the distance
from the light's position to the vertex.

Note that the attenuation does not vary linearly with distance, hence we can't compute the attenuation per vertex and use
the interpolated value in the fragment shader. We can however compute the distance in the vertex shader and use the
interpolated distance in the fragment shader to compute the attenuation.

The equation for the color using a point light is:

As shown in the above equation, the ambient term must be spitted in two: one global ambient term using the lighting
model ambient setting and a light specific ambient term. The vertex shader must separate the computation of the ambient
term accordingly. The new vertex shader is:

The fragment shader needs to compute the attenuation. It also needs to normalize the interpolated light direction, since

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?pointlight

1 sur 2 25/01/2009 15:19

Ads by Google
 Free 3D Models
 OpenGL
 Tutorial 3D Studio
 OpenGL Source Code
 DirectX

the direction is potentially different for every vertex.

The following images show the difference between a point light as computed by the fixed functionality, i.e. per vertex, and
using the shader in this tutorial, i.e. per pixel.

Fixed Functionality Per Pixel

The full source of the shaders, in a Shader Designer project can be found in here.

[Previous: Directional Light per Pixel] [Next: Spot Light Per Pixel]

Site designed and maintained by António Ramires Fernandes
Your comments, suggestions and references to further material are welcome!

Lighthouse 3D privacy statement

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?pointlight

2 sur 2 25/01/2009 15:19

 OpenGL VRML W3D

 Home Tutorials Books Applications Tools Docs Models Textures

 Bugs GLSL Tutorial

GLSL Tutorial

Index
Introduction

The Graphics Pipeline
Pipeline Overview
Vertex Processor
Fragment Processor

OpenGL Setup for GLSL
Overview
Creating a Shader
Creating a Program
Source Code
Trouble Shooting: the InfoLog
Cleaning Up

Comm. OpenGL=> GLSL
Comm. Introduction
Uniform Variables
Attribute Variables

Shader Basics
Data Types and Variables
Statments and Functions
Varying Variables

Shader Examples
Shader Examples List

GLSL Hello World

Color Shader

Flatten Shader

Toon Shader
Toon Shader - Version I
Toon Shader - Version II
Toon Shader - Version III

Lighting
OpenGL Directional Light I
OpenGL Directional Light II
Directional Light per Pixel
Point Light Per Pixel
Spot Light Per Pixel

Simple Texture
Combine Texture + Fragment
Multitexturing

Notes
The gl_NormalMatrix
Normalization Issues

OpenGLTutorials @
Lighthouse3d.com

Led Shader
View Frustum Culling
GLSL Tutorial
Maths Tutorial
Billboarding Tutorial
Picking Tutorial

[Previous: Point Light Per Pixel] [Next: Simple Texture]

GLSL Tutorial

Spot Light Per Pixel

This tutorial is based on the previous tutorial as most (99%) of the code comes from there. The only thing
new in a spot light, when compared to a point light, is that in the former the light rays are restricted to a
cone of light where as in the latter the rays are emitted in all directions.

From an OpenGL application point of view the differences between the two are:

The spot light, besides the position has a direction, spotDirection, which represents the axis of the
cone.
There is an angle of the cone. GLSL offers both the angle, as specified in the application, as well as
the cosine which is a derived variable, spotCosCutoff.
Finally we have a rate of decay, spotExponent, i.e. a measure of how the light intensity decreases
from the center to the walls of the cone.

The vertex shader is the same as in the point light. It's in the fragment shader that we're going to make
some changes. The diffuse, specular and ambient components will only have an effect if the fragment being
shaded is inside the light's cone. Hence the first thing we must do is to check this.

The cosine of the angle between the light to vertex vector and the spot direction must be larger than
spotCosCutofff otherwise the fragment is outside the cone and will only receive the global ambient term.

The computation of the illumination is pretty much the same as in the point light case, the only difference
being that the attenuation must be multiplied be the spotlight effect using the following equation:

where spotDirection is a field from the ligth state (see here), lightDir is the vector from the light source to
the vertex, and spotExp is the spot rate of decay. This is also provided by the OpenGL state (see here),
and controls how the lights intensity decays from the center of the cone it its borders. The larger the value
the faster de decay, with zero meaning constant light within the light cone.

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?spotlight

1 sur 2 25/01/2009 15:19

Terrain Tutorial
Display Lists Tutorial
GLUT Tutorial

The following images show the difference between a point light as computed by the fixed functionality, i.e.
per vertex, and using the shader in this tutorial, i.e. per pixel.

Fixed Functionality Per Pixel

The full source of the shaders, in a Shader Designer project can be found in here.

[Previous: Point Light Per Pixel] [Next: Simple Texture]

Site designed and maintained by António Ramires Fernandes
Your comments, suggestions and references to further material are welcome!

Lighthouse 3D privacy statement

Ads by Google
 3D Modelling Tutorials
 DirectX
 OpenGL
 3D Tools
 3D Game Maker

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?spotlight

2 sur 2 25/01/2009 15:19

 OpenGL VRML W3D

 Home Tutorials Books Applications Tools Docs Models Textures

 Bugs GLSL Tutorial

GLSL Tutorial

Index
Introduction

The Graphics Pipeline
Pipeline Overview
Vertex Processor
Fragment Processor

OpenGL Setup for GLSL
Overview
Creating a Shader
Creating a Program
Source Code
Trouble Shooting: the InfoLog
Cleaning Up

Comm. OpenGL=> GLSL
Comm. Introduction
Uniform Variables
Attribute Variables

Shader Basics
Data Types and Variables
Statments and Functions
Varying Variables

Shader Examples
Shader Examples List

GLSL Hello World

Color Shader

Flatten Shader

Toon Shader
Toon Shader - Version I
Toon Shader - Version II
Toon Shader - Version III

Lighting
OpenGL Directional Light I
OpenGL Directional Light II
Directional Light per Pixel
Point Light Per Pixel
Spot Light Per Pixel

Simple Texture
Combine Texture + Fragment
Multitexturing

Notes
The gl_NormalMatrix
Normalization Issues

[Previous: Spot Light Per Pixel] [Next: Combine Texture + Fragment]

GLSL Tutorial

Simple Texture

In order to perform texturing operations in GLSL we need to have access to
the texture coordinates per vertex. GLSL provides some attribute variables,
one for each texture unit:

GLSL also provides access to the texture matrices for each texture unit in an
uniform array.

The vertex shader has access to the attributes defined above to get the
texture coordinates specified in the OpenGL application. Then it must
compute the texture coordinate for the vertex and store it in the pre defined
varying variable gl_TexCoord[i], where i indicates the texture unit.

The simple following instruction sets the vertex texture coordinate for texture
unit 0 just by copying the texture coordinate specified in the OpenGL
application.

A simple example of a vertex shader to setup texture coordinates for a
texture, using texture unit 0, could be:

If we wanted to use the texture matrix then we could write:

As mentioned before gl_TexCoord is a varying variable, i.e. it will be used in

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?texture

1 sur 2 25/01/2009 15:20

OpenGLTutorials @
Lighthouse3d.com

Led Shader
View Frustum Culling
GLSL Tutorial
Maths Tutorial
Billboarding Tutorial
Picking Tutorial
Terrain Tutorial
Display Lists Tutorial
GLUT Tutorial

Ads by Google
 3D Modelling Tutorials
 Free 3D Models
 OpenGL
 Autodesk 3D Studio
 3D Tools

the fragment shader to access the interpolated texture coordinate.

In order to access the texture values it is necessary to declare a special type
of variable in the frament shader. For a 2D texture we could write:

Data types for 1D and 3D textures are also available, the general format is:
sampleriD, where i is the dimensionality of the texture. The user defined tex
variable contains the texture unit we are going to use, in this case 0. The
function that gives us a texel, a pixel in the texture image, is texture2D. This
function receives a sampler2D, the texture coordinates, and it returns the
texel value. The signature is as follows:

The returned value takes into account all the texture settings as defined in the
OpenGL application, for instance the filtering, mipmap, clamp, etc... Our
fragment shader can then be written as:

Notice the usage of selector st when accessing gl_TexCoord. As mentioned in
section Data Types and Variables, when accessing texture coordinates the
following selectors can be used: s,t,p,q. (Note that r is not used to avoid
conlficts with rgb selectors).

Texture Textured Cube

A Shader Designer project is available in here.

[Previous: Spot Light Per Pixel] [Next: Combine Texture + Fragment]

Site designed and maintained by António Ramires Fernandes
Your comments, suggestions and references to further material are welcome!

Lighthouse 3D privacy statement

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?texture

2 sur 2 25/01/2009 15:20

 OpenGL VRML W3D

 Home Tutorials Books Applications Tools Docs Models Textures

 Bugs GLSL Tutorial

GLSL Tutorial

Index
Introduction

The Graphics Pipeline
Pipeline Overview
Vertex Processor
Fragment Processor

OpenGL Setup for GLSL
Overview
Creating a Shader
Creating a Program
Source Code
Trouble Shooting: the InfoLog
Cleaning Up

Comm. OpenGL=> GLSL
Comm. Introduction
Uniform Variables
Attribute Variables

Shader Basics
Data Types and Variables
Statments and Functions
Varying Variables

Shader Examples
Shader Examples List

GLSL Hello World

Color Shader

Flatten Shader

Toon Shader
Toon Shader - Version I
Toon Shader - Version II
Toon Shader - Version III

Lighting
OpenGL Directional Light I
OpenGL Directional Light II
Directional Light per Pixel
Point Light Per Pixel
Spot Light Per Pixel

Simple Texture
Combine Texture + Fragment
Multitexturing

Notes
The gl_NormalMatrix
Normalization Issues

OpenGLTutorials @
Lighthouse3d.com

Led Shader
View Frustum Culling

[Previous: Simple Texture] [Next: Multitexturing]

GLSL Tutorial

Combine Texture + Fragment

OpenGL allows us to combine the texture color with the fragments color in several ways. In the next
table some of the available modes for the RGBA mode are presented:

GL_REPLACE C = Ct A = At

GL_MODULATE C = Ct*Cf A = At*Af

GL_DECAL C = Cf * (1 - At) + Ct * At A = Af

In the table above Ct and At represent the color and alpha value of the texture element, Cf and Af
represent the color and alpha value of the fragment (prior to applying the texture), and finaly C and A
represent the final color and alpha.

The example provided in the previous section is the equivalent of GL_REPLACE. Now we're going to
implement the equivalent of GL_MODULATE on a lit cube. The shaders will only compute the diffuse
and ambient component with a white diffuse directional light. For the full material definition please
see the lighting section.

Since we're using lights, and therefore normals, the vertex shader msut do some extra work. Namely
it must transform into eye space and normalize the normal, and it must also normalize the light
direction (the light direction has already been transformed into eye space by OpenGL). The vertex
shader is now:

In the fragment shader the color and alpha of the lit fragment is computed into cf and af respectively.
The rest of the shader is just computing the GL_MODULATE formulas presented above.

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?textureComb

1 sur 2 25/01/2009 15:21

GLSL Tutorial
Maths Tutorial
Billboarding Tutorial
Picking Tutorial
Terrain Tutorial
Display Lists Tutorial
GLUT Tutorial

Ads by Google
 3D Modelling Tutorials
 OpenGL
 Free 3D Models
 Autodesk 3D Studio
 OpenGL Source Code

GL_REPLACE GL_MODULATE

A Shader Designer project is available in here.

[Previous: Simple Texture] [Next: Multitexturing]

Site designed and maintained by António Ramires Fernandes
Your comments, suggestions and references to further material are welcome!

Lighthouse 3D privacy statement

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?textureComb

2 sur 2 25/01/2009 15:21

 OpenGL VRML W3D

 Home Tutorials Books Applications Tools Docs Models Textures

 Bugs GLSL Tutorial

GLSL Tutorial

Index
Introduction

The Graphics Pipeline
Pipeline Overview
Vertex Processor
Fragment Processor

OpenGL Setup for GLSL
Overview
Creating a Shader
Creating a Program
Source Code
Trouble Shooting: the InfoLog
Cleaning Up

Comm. OpenGL=> GLSL
Comm. Introduction
Uniform Variables
Attribute Variables

Shader Basics
Data Types and Variables
Statments and Functions
Varying Variables

Shader Examples
Shader Examples List

GLSL Hello World

Color Shader

Flatten Shader

Toon Shader
Toon Shader - Version I
Toon Shader - Version II
Toon Shader - Version III

Lighting
OpenGL Directional Light I
OpenGL Directional Light II
Directional Light per Pixel
Point Light Per Pixel
Spot Light Per Pixel

Simple Texture
Combine Texture + Fragment
Multitexturing

Notes
The gl_NormalMatrix
Normalization Issues

[Previous: Combine Texture + Fragment] [Next: The gl_NormalMatrix]

GLSL Tutorial

MultiTexture

Multitexturing is also really easy in GLSL. All we have to do is to access both textures.
And since in here we're going to use the same texture coordinates we don't even have to
rewrite the vertex shader. The fragment shader also suffers a minor change to add both
textures colors.

Texture Unit 0 Texture Unit 1 Textured Cube

And now for something a little different: a glow in the dark effect. We want the second
texture to glow in the dark, i.e. it will be fully bright when the light doesn't hit, and it will
be dimmed as it gets more light.

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?textureMulti

1 sur 2 25/01/2009 15:21

OpenGLTutorials @
Lighthouse3d.com

Led Shader
View Frustum Culling
GLSL Tutorial
Maths Tutorial
Billboarding Tutorial
Picking Tutorial
Terrain Tutorial
Display Lists Tutorial
GLUT Tutorial

Ads by Google
 OpenGL
 Free 3D Models
 DirectX
 Tutorial 3D Studio
 OpenGL Source Code

Additive Multi-Texture Glowing Multi-Texture

We have to recompute the final color in two steps: first we compute a color which is the
first texture modulated with the fragments color, and afterwards we add the second
texture unit depending on the intensity.

If intensity is zero then we want the second texture in its full strength. When the intensity
is 1 we only want a 10% contribution of the second texture unit. For all the other values
of intensity we want to interpolate. We can achieve this with the smoothstep function.
This function has the following signature:

The result will be zero if x <= edge0, 1 if x >= edge1 and performs smooth Hermite
interpolation between 0 and 1 when edge0 < x < edge1. In our case we want to call the
function as follows:

The following fragment shader does the trick:

A Shader Designer project is available in here.

[Previous: Combine Texture + Fragment] [Next: The gl_NormalMatrix]

Site designed and maintained by António Ramires Fernandes
Your comments, suggestions and references to further material are welcome!

Lighthouse 3D privacy statement

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?textureMulti

2 sur 2 25/01/2009 15:21

 OpenGL VRML W3D

 Home Tutorials Books Applications Tools Docs Models Textures

 Bugs GLSL Tutorial

GLSL Tutorial

Index
Introduction

The Graphics Pipeline
Pipeline Overview
Vertex Processor
Fragment Processor

OpenGL Setup for GLSL
Overview
Creating a Shader
Creating a Program
Source Code
Trouble Shooting: the InfoLog
Cleaning Up

Comm. OpenGL=> GLSL
Comm. Introduction
Uniform Variables
Attribute Variables

Shader Basics
Data Types and Variables
Statments and Functions
Varying Variables

Shader Examples
Shader Examples List

GLSL Hello World

Color Shader

Flatten Shader

Toon Shader
Toon Shader - Version I
Toon Shader - Version II
Toon Shader - Version III

Lighting
OpenGL Directional Light I
OpenGL Directional Light II
Directional Light per Pixel
Point Light Per Pixel
Spot Light Per Pixel

Simple Texture
Combine Texture + Fragment
Multitexturing

Notes
The gl_NormalMatrix
Normalization Issues

[Previous: Multitexturing] [Next: Normalization Issues]

GLSL Tutorial

The gl_NormalMatrix

The gl_NormalMatrix is present in many vertex shaders. In here some light is shed on
what is this matrix and what is it for. This section was inspired by the excellent book by
Eric Lengyel "Mathematics for 3D Game Programming and Computer Graphics".

Many computations are done in eye space. This has to do with the fact that lighting
needs to be performed in this space, otherwise eye position dependent effects, such as
specular lights would be harder to implement.

Hence we need a way to transform the normal into eye space. To transform a vertex to
eye space we can write:

So why can't we just do the same with a normal vector? First a normal is a vector of 3
floats and the modelview matrix is 4x4. This could be easily overcome with the following
code:

So, gl_NormalMatrix is just a shortcut to simplify code writing? No, not really. The
above line of code will work in some circunstances but not all.

Lets have a look at a potential problem:

In the above figure we see a triangle, with a normal and a tangent vectors. The
following figure shows what happens when the modelview matrix contains a non-uniform
scale.

Note: if the scale was uniform, then the direction of the normal would have been

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?normalmatrix

1 sur 3 25/01/2009 15:22

OpenGLTutorials @
Lighthouse3d.com

Led Shader
View Frustum Culling
GLSL Tutorial
Maths Tutorial
Billboarding Tutorial
Picking Tutorial
Terrain Tutorial
Display Lists Tutorial
GLUT Tutorial

Ads by Google
 3D Modelling Tutorials
 C++ Play Wav
 DirectX
 OpenGL
 OpenGL Source Code

preserved, The length would have been affected but this can be easily fixed with a
normalization.

In the above figure the modelview matrix was applied to all the vertices as well as to
the normal and the result is clearly wrong: the normal is no longer perpendicular to the
surface.

So now we know that we can't apply the modelview in all cases to transform the normal
vector. The question is then, what matrix should we apply?

We know that, prior to the matrix transformation T.N = 0, since the vectors are by
definition perpendicular. We also know that after the transformation N'.T' must remain
equal to zero, since they must remain perpendicular to each other. Let's assume that
the matrix G is the correct matrix to transform the normal vector. T can be multiplied
safely by the upper left 3x3 submatrix of the modelview (T is a vector, hence the w
component is zero). This is because T can be computed as the difference between two
vertices, therefore the same matrix that is used to transform the vertices can be used
to transform T. Hence the following equation:

The dot product can be transformed into a product of vectors, therefore:

Note that the transpose of the first vector must be considered since this is required to
multiply the vectors. We also know that the transpose of a multiplication is the
multiplication of the transposes, hence:

We started by stating that the dot product between N and T was zero, so if the
following equation is true then we are on the right track.

Applying a little algebra yieds

Therefore the correct matrix to transform the normal is the transpose of the inverse of
the M matrix. OpenGL computes this for us in the gl_NormalMatrix.

In the beginning of this section it was stated that using the modelview matrix would
work in some cases. Whenever the 3x3 upper left submatrix of the modelview is
orthogonal we have:

This is because with an orthogonal matrix, the transpose is the same as the inverse. So
what is an orthogonal matrix? An orthogonal matrix is a matrix where all columns/rows
are unit length, and are mutually perpendicular. This implies that when two vectors are
multiplied by such a matrix, the angle between them after transformation by an
orthogonal matrix is the same as prior to that transformation. Simply put the
transformation preserves the angle relation between vectors, hence normals remain
perpendicular to tangents! Furthermore it preserves the length of the vectors as well.

So when can we be sure that M is orthogonal? When we limit our geometric operations
to rotations and translations, i.e. when in the OpenGL application we only use glRotate
and gl_Translate and not glScale. These operations guarantee that M is orthogonal.
Note: gluLookAt also creates an orthogonal matrix!

[Previous: Multitexturing] [Next: Normalization Issues]

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?normalmatrix

2 sur 3 25/01/2009 15:22

Site designed and maintained by António Ramires Fernandes
Your comments, suggestions and references to further material are welcome!

Lighthouse 3D privacy statement

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?normalmatrix

3 sur 3 25/01/2009 15:22

 OpenGL VRML W3D

 Home Tutorials Books Applications Tools Docs Models Textures

 Bugs GLSL Tutorial

GLSL Tutorial

Index
Introduction

The Graphics Pipeline
Pipeline Overview
Vertex Processor
Fragment Processor

OpenGL Setup for GLSL
Overview
Creating a Shader
Creating a Program
Source Code
Trouble Shooting: the InfoLog
Cleaning Up

Comm. OpenGL=> GLSL
Comm. Introduction
Uniform Variables
Attribute Variables

Shader Basics
Data Types and Variables
Statments and Functions
Varying Variables

Shader Examples
Shader Examples List

GLSL Hello World

Color Shader

Flatten Shader

Toon Shader
Toon Shader - Version I
Toon Shader - Version II
Toon Shader - Version III

Lighting
OpenGL Directional Light I
OpenGL Directional Light II
Directional Light per Pixel
Point Light Per Pixel
Spot Light Per Pixel

Simple Texture
Combine Texture + Fragment
Multitexturing

[Previous: The gl_NormalMatrix] [Next]

GLSL Tutorial

Normalization Issues

Vertex Shader

The dot product is commonly used to compute the cosine of the angle
between two vectors. As we know this will only hold if both vectors are
normalized. This is why we use the normalization operation in many
shaders. In here we will see when we can skip this step, and we must
use it.

When a normal vector arrives at a vertex shader is common to
normalize it

The multiplication by the gl_NormaMatrix transforms the incoming
normal to eye-space. The normalization guarantees a unit length vector
as required to compute the cosine with a dot product.

So can we avoid the normalization? We'll in some cases we can. If the
gl_NormaMatrix is orthogonal then we know that the length of the
incoming vector is preserved, i.e. the length of normal is equal to the
length of gl_Normal. Therefore, if the normals from the OpenGL
application are normalized, which is common, we can avoid the
normalization in the shader.

In practice this means that if we use gluLookAt to set the camera, and
then perform only rotations and translations on our models, we can skip
the normalization of the normal vector in the shader. It also means that
a directional light will have its direction already normalized.

Fragment Shader

In the fragment shader we often find ourselves normalizing a vector
which was just normalized in the vertex shader. Do we really need to do
this? Well, the answer is yes, in most cases we do.

Consider a triangle with three different per vertex normal vectors. The
fragment shader receives an interpolated normal, based on the
distance from the fragment to the three vertices. The problem is that
the interpolated vector, although it has the right direction, it doesn't
have unit length.

The following diagram shows why this is the case. The black lines
represent the faces (in 2D), the normals at the vertices are represented
in blue. The green vector represents an interpolated normal at the

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?normalization

1 sur 2 25/01/2009 15:23

Notes
The gl_NormalMatrix
Normalization Issues

OpenGLTutorials @
Lighthouse3d.com

Led Shader
View Frustum Culling
GLSL Tutorial
Maths Tutorial
Billboarding Tutorial
Picking Tutorial
Terrain Tutorial
Display Lists Tutorial
GLUT Tutorial

Ads by Google
 3D Modelling Tutorials
 OpenGL
 DirectX
 OpenGL Source Code
 C++

fragment (represented with a dot). All interpolated normals will lie the
dotted line. As can be seen in the figure, the green vector is smaller
than the blue vectors (which are unit length, at least that was my
intention :)).

Note that if the vertex normals were not normalized, not only the length
would be different from one, but also the direction would be worng in
the general case. Hence, even if a vector isn't used on a vertex shader,
if we need to have it normalized in the fragment shader, we must also
normalize it on the vertex shader.

There is however a case when normalization can be skipped in the
fragment shader, as long as the vectors per vertex are normalized. This
is when the vectors per vertex all share the same direction, i.e. they are
equal. The interpolation of such vectors would yield exactly the same
vertex as the per vertex vectors, hence normalized (we assumed that
the vertex vectors were normlized).

A simple example is when one considers a directional light. The
direction is constant for all fragments, so if the direction is previously
normalized, we can skip the normalization step in the fragment shader.

[Previous: The gl_NormalMatrix] [Next]

Site designed and maintained by António Ramires Fernandes
Your comments, suggestions and references to further material are welcome!

Lighthouse 3D privacy statement

OpenGL Shading Language @ Lighthouse 3D - GLSL Tutorial http://www.lighthouse3d.com/opengl/glsl/index.php?normalization

2 sur 2 25/01/2009 15:23

	intro
	coursLigghthouseGLSL
	pipeline2
	vertexProc3
	fragmentProc4
	setUpOverview5
	setUpCreatingShader6
	setUpCreatingProgram7
	setUpSourceCode8
	setUpInfoLog9
	setUpCleaningUp10
	commOpenGlShader11
	commOpenGlShaderUniformVariables12
	commOpenGlShaderAttributeVariables13
	ShaderBasicTypesVariables14
	ShaderBasicStatementFucntion15
	ShaderBasicVaryingVariables16
	ShaderExamples17
	ShaderExamplesHello18
	ShaderExamplesColor19
	ShaderExamplesFlatten20
	ShaderExamplesToon21
	ShaderExamplesToon1_22
	ShaderExamplesToon2_23
	ShaderExamplesToon3_24
	Lighting25
	directtLighting1_26
	directtLighting2_27
	directtLighting2_27
	directtLightingPerPixel_28
	pointLightingPerPixel_29
	spotLightingPerPixel_30
	simpleTexture_31
	combineFragTexture_32
	multiTexture_33
	NormalMatrix_34
	NormalizeIssues_35

