4 Last Time

» Re-using paths
— Irradiance Caching
— Photon Mapping
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i Today

» Radiosity
— A very important method in practice, because it is so much more
efficient than Monte Carlo for diffuse environments

— Can also be used in conjunction with Monte Carlo, if you’re very
careful about partitioning the LTE into different components
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Radiosity

* Radiosity is the total power leaving a surface, per unit
area on the surface
— Usually denoted B
— The outgoing version of irradiance

» To getit, integrate radiance over the hemisphere of outgoing

directions:
do
B(x)=—=j L(x,@,)cosdm,
dx JH@m)
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Exitance

» Light sources emit light, they are sources of radiance
» Exitance is the equivalent of radiosity for emitters:

E(x)= J.H o L. (x,»,)cos M,

 Distinguish exitance from radiosity to simplify equations
 Different from Intensity, which is power per unit solid angle
» Exitance is not ill-defined for point light sources
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7 Radiosity Algorithms

 Radiosity algorithms solve the global illumination equation
under a restrictive set of assumptions
— All surfaces are perfectly diffuse
— We only care about the radiosity at surfaces
« Some form of rendering pass is required to transfer to the image plane
— Surfaces can be broken into patches with constant radiosity
« Some algorithms extend this to linear combinations of basis functions
» These assumptions allow us to linearize the global
illumination equation
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7 Diffuse Surface Radiosity

» Diffuse surfaces, by definition, have outgoing radiance that
does not depend on direction
B(x)= _[H( . L(x,,)cosMw, = 2L, (x)
» Same can be said for diffuse emitters
E(x)= J.H( . L, (x,m,)cosw, = 7L, (x)

* And recall the definition of the diffuse BRDF in terms of
directional hemispheric reflectance

f(x):&
r
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L '_’ Radiosity Light Transport

» Simplifying the global illumination equation gives:

L(x,@,)=L,(x,@,)+ IQ f(x,,,®)L(x,w)cos M
A (x)= 2 (x)+ 7 pr() L(x,)cos &l
B(x)=E(x)+ o, (X)_[Q L(x,w)cos e

» We have removed almost all the angular dependence, but
we still have an integral of directions computing irradiance
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4 Switch the Domain

» We can convert the integral over the hemisphere of solid
angles into one over all the surfaces in a scene:

deo = cosfdy
r
1 if xand y are mutually visible
V(x,y)z .
0 otherwise

B(x)=E(x)+ pra (8], B 0L (s, )on
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Discretize Radiosity

» Assume world is broken
into N disjoint patches, P;,
i=1..N, each with area A,

» Assume radiosity is constant
over patches

. . 1
Define: B, _KLEH B(x)dx

E =%L€R E(x)dx
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sy Discrete Formulation

» Change the integral over surfaces to a sum over patches:

B(x)=E(x)+ praw)3 | BOI20 (x,y)ay

1 N 6coso’
X Jotske [ |8 o000 vy b
A xePR xePR, j=1 yeP] r
N '
Bi:Ei+piZ:Bji I I WV(x,y)dydx
j=1 xeP, yeP; 8
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4 The Form Factor

1 cos@cosé’
Fij - KJ.XEF} J.yer T\/ (X’ y)dydx

F;; is the proportion of the total power leaving
patch P; that is received by patch P;

* Note that we use it the other way: the form factor F; is used
in computing the energy arriving at |

» Also called the configuration factor
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4 Form Factor Properties

» Depends only on geometry
* Reciprocity: AF;=AF;;
* Additivity: Fi; 0=F; +Fj
* Reverse additivity is not true
* Sum to unity (all the power leaving patch i must get
somewhere): _ N
vi, ) F=1

j=1 i
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The Discrete Radiosity Equation

N
B =E +p ) FB,
j=1
» This is a linear equation!
B=E+FB
E=MB where M=(I-F)
» Dimension of M is given by the number of patches in the
scene: NxN
— It’s a big system
— But the matrix M has some special properties
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Solving for Radiosity

First compute all the form factors

— These are view-independent, so for many views this need only be
done once

— Many ways to compute form factors
» Compute the matrix M
* Solve the linear system
— A range of methods exist
* Render the result using Gourand shading, or some other
method — but no additional lighting, it’s baked in
— Each patch’s diffuse intensity is given by its radiosity
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'l ’f_’ Solving the Linear System

» The matrix is very large — iterative methods are preferred
 Start by expressing each radiance in terms of the others:

ij

N
ZlMiij:Ei, 1Si<N, Mij:5ij_pi|:
j=

VM E. :
B =-> 1B+, 1<i<N
=1 Mii Mii
J#i
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Ligab Relaxation Methods
A
* Jacobi relaxation: Start with a guess for B;, then (at
iteration m): N M.
B™ =-> A" +i, 1<i<N
. ) M.
j=1 ii i
j#i

» Gauss-Siedel relaxation: Use values already computed in
this iteration:

i1 M. N M. E. .
Bi(m) _ N Tigm _ gy =i 1<i<N
;Mn ] jZi+:1Mii J M;
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Gauss-Seidel Relaxation

 Allows updating in place
* Requires strictly diagonally dominant:
N
IM; > IM; |, 1<i<N
E
* It can be shown that the matrix M is diagonally dominant
— Follows from the properties of form factors
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i Displaying the Results

» Color is handled by discretizing wavelength and solving
each channel separately
* Smooth shading:

— Patch radiosities are mapped to vertex colors by averaging the
radiosities of the patches incident upon the vertex

— Per-vertex colors then used to Gourand shade
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7 Value for Computation

* Most of the time is spent computing form factors - must
solve N visibility problems

« However, same form factors for different illumination
conditions, and no color dependence

* Result is view independent - have radiosities for all patches.
May be good or may be wasteful
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4 Form Factors

Computing form factors means solving an integral
cosé cos 0’
_J.XGP J.yEP ( )dydx

We have had plenty of practice at this kind of thing

Also a point-patch form: the proportion of the power from a
differential area about point x received by j

cosdcosd'
[ ==V (xy)dy
yeP 7ZI’

F =

X, ]
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T ]
iy Form Factor Computations

» Unoccluded patches:
— Direct integration
— Conversion to contour integration
— Form factor algebra — set operations on areas correspond to
numerical operations on form factors — not really useful
* Occluded patches:
— Monte Carlo integration
— Projection methods (essentially numerical quadrature)
e Hemisphere
¢ Hemicube
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'l ’{_’ Direct Integration — e.g. Rect-Rect

W

* Note that we can do this only
under the constant radiosity over

patch assumption v‘ . |
« There is a formula for 2 isolated |
polygons, but it assumes they can = 5
see each other fully! g

()
1

FL=”X{Xtan1[)l<j+Ytanl(¢)— x2+Y2tanl{ﬁj} | R
+1{m{(l”(z)(l”z)}xz|nhx2(l+xz+w)}+v2|n{Yz(“xzwz)}

47X 1+ X24Y? 1+ X2J X2 +Y?) [L+y?fx2+v?)
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Contour Integral

Use Stokes’ theorem to convert the area integrals into
contour integrals

1 -
F, = Mﬁi 35c,. Inrdx - dy

For point to polygon form factors, the contour integral is not
too hard

Care must be taken when r—0
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Projection Methods

For patches that are far apart compared to their areas, the
inner integral in the form factor doesn’t vary much

— That is, the form factor is similar from most points on a surface i
So, compute point to patch form factors and weigh by area

cosdcosd’
Fop = TV(X’ y)dy

yeP
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Nusselt’s Analogy

* Integrate over visible solid angle instead of visible patch
area:

1
F.,=—|cosdw
1 7Z- QP

F, p is the fraction of the area of the unit disc in the base
plane obtained by projecting the surface patch P onto the
unit sphere centered at x and then orthogonally down onto
the base plane.
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"'/ same Projection — Same Form Factor

Vv S

» Any patches with the same
projection onto the hemisphere
have the same form factor

— Makes sense: put yourself at the point
and look out — if you see equal
amounts, they get equal power

* It doesn’t matter what you project i
onto: two patches that project the ) J ‘

same have the same form factor

\\)

Na
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Monte-Carlo Form Factors

» We can use Monte-Carlo methods to estimate the integral
over visible solid angle

» Simplest method — cosine weighted sampling:
— Sample the disc about the point

— Project up onto the hemisphere, then cast a ray out from the point in
that direction

— Form factor for each patch is the weighted sum of the number of
rays that hit the patch

e There are even better Monte-Carlo methods that we will see
later
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The Hemicube

We have algorithms, and even
hardware, for projecting onto
planar surfaces

The hemicube consists of 5 such
faces

A “pixel” on the cube has a certain
projection, and hence a certain AA

form factor AFiop- face = 2L+ X2+ y2)?
Something that projects onto the ZAA
pixel has the same form factor AF e tace = PRI,

rl+z°+y°)
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7 Hemicube, cont.

F.r = D AF,
qeC ()

» Pretend each face of the hemicube is a screen, and project
the world onto it

» Code each polygon with a color, and count the pixels of
each color to determine C(j)

 Quality depends on hemicube resolution and z-buffer
depth
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) Next Time

» Progressive Radiosity
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