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Last Time

• Re-using paths
– Irradiance Caching
– Photon Mapping
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Today

• Radiosity
– A very important method in practice, because it is so much more 

efficient than Monte Carlo for diffuse environments
– Can also be used in conjunction with Monte Carlo, if you’re very 

careful about partitioning the LTE into different components
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Radiosity

• Radiosity is the total power leaving a surface, per unit 
area on the surface
– Usually denoted B
– The outgoing version of irradiance

• To get it, integrate radiance over the hemisphere of outgoing 
directions:
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Exitance

• Light sources emit light, they are sources of radiance
• Exitance is the equivalent of radiosity for emitters:

• Distinguish exitance from radiosity to simplify equations
• Different from Intensity, which is power per unit solid angle
• Exitance is not ill-defined for point light sources
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Radiosity Algorithms

• Radiosity algorithms solve the global illumination equation 
under a restrictive set of assumptions
– All surfaces are perfectly diffuse
– We only care about the radiosity at surfaces

• Some form of rendering pass is required to transfer to the image plane
– Surfaces can be broken into patches with constant radiosity

• Some algorithms extend this to linear combinations of basis functions

• These assumptions allow us to linearize the global 
illumination equation
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Diffuse Surface Radiosity

• Diffuse surfaces, by definition, have outgoing radiance that 
does not depend on direction

• Same can be said for diffuse emitters

• And recall the definition of the diffuse BRDF in terms of 
directional hemispheric reflectance
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Radiosity Light Transport

• Simplifying the global illumination equation gives:

• We have removed almost all the angular dependence, but 
we still have an integral of directions computing irradiance
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Switch the Domain

• We can convert the integral over the hemisphere of solid 
angles into one over all the surfaces in a scene:
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Discretize Radiosity

• Assume world is broken 
into N disjoint patches, Pi, 
i=1..N, each with area Ai

• Assume radiosity is constant 
over patches

• Define:
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Discrete Formulation

• Change the integral over surfaces to a sum over patches:
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The Form Factor

• Note that we use it the other way: the form factor Fij is used 
in computing the energy arriving at I

• Also called the configuration factor
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Fij is the proportion of the total power leaving 
patch Pi that is received by patch Pj
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Form Factor Properties

• Depends only on geometry
• Reciprocity: AiFij=AjFji

• Additivity: Fi(j∪k)=Fij +Fik

• Reverse additivity is not true
• Sum to unity (all the power leaving patch i must get 

somewhere):
1,
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The Discrete Radiosity Equation

• This is a linear equation!

• Dimension of M is given by the number of patches in the 
scene: NxN
– It’s a big system
– But the matrix M has some special properties
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Solving for Radiosity

• First compute all the form factors
– These are view-independent, so for many views this need only be 

done once
– Many ways to compute form factors

• Compute the matrix M
• Solve the linear system

– A range of methods exist

• Render the result using Gourand shading, or some other 
method – but no additional lighting, it’s baked in
– Each patch’s diffuse intensity is given by its radiosity
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Solving the Linear System

• The matrix is very large – iterative methods are preferred
• Start by expressing each radiance in terms of the others:
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Relaxation Methods

• Jacobi relaxation: Start with a guess for Bi, then (at 
iteration m):

• Gauss-Siedel relaxation: Use values already computed in 
this iteration:
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Gauss-Seidel Relaxation

• Allows updating in place
• Requires strictly diagonally dominant:

• It can be shown that the matrix M is diagonally dominant
– Follows from the properties of form factors
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Displaying the Results

• Color is handled by discretizing wavelength and solving 
each channel separately

• Smooth shading:
– Patch radiosities are mapped to vertex colors by averaging the 

radiosities of the patches incident upon the vertex
– Per-vertex colors then used to Gourand shade
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Value for Computation

• Most of the time is spent computing form factors - must 
solve N visibility problems

• However, same form factors for different illumination 
conditions, and no color dependence

• Result is view independent - have radiosities for all patches. 
May be good or may be wasteful
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Form Factors

• Computing form factors means solving an integral

• We have had plenty of practice at this kind of thing
• Also a point-patch form: the proportion of the power from a 

differential area about point x received by j
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Form Factor Computations

• Unoccluded patches:
– Direct integration
– Conversion to contour integration
– Form factor algebra – set operations on areas correspond to 

numerical operations on form factors – not really useful

• Occluded patches:
– Monte Carlo integration
– Projection methods (essentially numerical quadrature)

• Hemisphere
• Hemicube
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Direct Integration – e.g. Rect-Rect

• Note that we can do this only 
under the constant radiosity over 
patch assumption

• There is a formula for 2 isolated 
polygons, but it assumes they can 
see each other fully!
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Contour Integral

• Use Stokes’ theorem to convert the area integrals into 
contour integrals

• For point to polygon form factors, the contour integral is not 
too hard

• Care must be taken when r→0
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Projection Methods

• For patches that are far apart compared to their areas, the 
inner integral in the form factor doesn’t vary much
– That is, the form factor is similar from most points on a surface i

• So, compute point to patch form factors and weigh by area
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Nusselt’s Analogy

• Integrate over visible solid angle instead of visible patch 
area:
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Fx,P is the fraction of the area of the unit disc in the base 
plane obtained by projecting the surface patch P onto the 
unit sphere centered at x and then orthogonally down onto 
the base plane.
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Same Projection – Same Form Factor

• Any patches with the same 
projection onto the hemisphere 
have the same form factor
– Makes sense: put yourself at the point 

and look out – if you see equal 
amounts, they get equal power

• It doesn’t matter what you project 
onto: two patches that project the 
same have the same form factor
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Monte-Carlo Form Factors

• We can use Monte-Carlo methods to estimate the integral 
over visible solid angle

• Simplest method – cosine weighted sampling:
– Sample the disc about the point
– Project up onto the hemisphere, then cast a ray out from the point in 

that direction
– Form factor for each patch is the weighted sum of the number of 

rays that hit the patch

• There are even better Monte-Carlo methods that we will see 
later
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The Hemicube

• We have algorithms, and even 
hardware, for projecting onto 
planar surfaces

• The hemicube consists of 5 such 
faces

• A “pixel” on the cube has a certain 
projection, and hence a certain 
form factor

• Something that projects onto the 
pixel has the same form factor 222
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Hemicube, cont.

• Pretend each face of the hemicube is a screen, and project 
the world onto it

• Code each polygon with a color, and count the pixels of 
each color to determine C(j)

• Quality depends on hemicube resolution and z-buffer 
depth
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Next Time

• Progressive Radiosity


