
GPU Algorithms for Radiosity
and Subsurface Scattering

Nathan A. Carr, Jesse D. Hall, John C. Hart

Graphics Hardware 2003

Matrix Radiosity &
Diffuse Subsurface Scattering

• Both can be solved using discretization of the scene into
patches.

• Both involve computation of light transport between pairs of
patches:
– Link: a connection between pairs of patches that may undergo light

interaction.
– Form Factor: percentage of light leaving a patch that reaches another

patch in the scene.

• Diffuse subsurface scattering is an easier problem:
– single integration of light across links.

• Radiosity requires iteration of moving light across links until
some form of convergence is reached.
– PDE equilibrium simulation (iterated light integration)

Radiosity: Overview
• Goal is to solve radiosity matrix KB=E on GPU

– Experiment to test recent GPU floating-point horsepower

– Leaves results on GPU for display

• Use Jacobi iteration for solution
– Converges slower than Gauss-Seidel

– But more parallelism than Gauss-Seidel

• Use natural representation
– Matrix is 2D texture, vectors are 1D textures

– Complexity limited by max Pbuffer size (2048 x 2048)

Jacobi v. Gauss-Seidel
• Jacobi iteration

– Classical: Bi
(k+1) = Ei – Σj≠i Kij Bj

(k)

– Dependence free: Bi
(k+1) = E – KB(k) + B(k)

• Gauss-Seidel
– Needs dependence: Bi = Ei – Σj≠i Kij Bj

– But converges 2x Jacobi!
• GPU Gauss-Seidel

– n passes (Kruger &
Westermann S03)

• GPU Jacobi
– n/254 passes (unrolled)

Kii = 1

Radiosity: Details
• Each Jacobi iteration requires multiple passes due to

fragment shader instruction limits

• First: (passes)

• Finally: (1 pass)

• Each output element is computed in parallel

• Could interpolate to vertices on GPU

∑
=

=
n

j
jiji BR

1

K

iiii REBB −+=′

 254/n

Radiosity: Results
CPU: Athlon 2800+

• Gauss-Seidel

• 40 iter/s, 190M flops

• Bandwidth-limited

GPU: GFFX 5900 Ultra

• Jacobi

• 30 iter/s, 141M flops

• Compute-limited

!

Radiosity: Conclusion
• Currently slower than on CPU

– Compute speed increases faster than bandwidth

• Better organization needed for complex scenes
– Could also make interpolating results easier
– Might improve performance (caching)

• Other radiosity methods
– GPU Progressive Refinement

(http://www.cs.unc.edu/~coombe/research/radiosity)

– Hierarchical Radiosity on the GPU?

Subsurface Scattering
• BRDF Model

– Inaccurate for many non-metal surfaces
– Assumption: Light leaves a surface at the same point it

impacted the surface.

• Developing A New Model…
– Hanrahan & Kreuger S93 (single scattering)
– Jensen et. al. S01 (complete model- BSSRDF)
– Jensen et. al. S02 (diffuse multiple scattering,

hierarchical)

• Towards Interactive Rates…
– Lenschet. al. PG02 (atlas, radiosity-like)
– Haoet. al. I3D03 (per-vertex local scatter)
– Sloan et. al. S03 (pre-computed radiance xfer)

Our Method: Advantages
• Diffuse multiple scattering (ala Jensen et al. S02)

– Removes dependence between incident and exiting light direction
– Reduces dimensionality of the problem
– Accurate to with a few percent

• Hierarchical
• Fully GPU based

– Fragment shader implementation
– Integrates with automatic mip-map

generation hardware

• Decouples shading frequency from
tessellation and screen resolution
– “Per-texel” shading

Surface Hierarchies and
Parameterization

• Provides Surface Hierarchy
• Obeys GPU rasterization

rules
– Render directly into texture

atlas using render to texture
No seams!

– Automatic mip-map
generation. (Fast integration).

• Supports GPU filtering for
anti-aliasing
– Bilinear
– Mip-mapping

Mip-mappable Texture Atlas
Carr & Hart. Meshed Atlases for Real-Time

Procedural Solid Texturing, TOG 2002.

Overview

Pass 3:

Final Result

Pass 2:

Scattered Irradiance Map

Pass1:

Transmitted Radiance Map

auto-mip-map

Links
-uv offset
-lod
-scale factor

Pre-process
Form factor calculation:

– Run a simulation
• Monte-carlo, ray-marching

• Support for non-homogenous
material

– Use Jensen’s analytic
approximation (SIGGRAPH
2001)

• Assumes surface is locally flat

• Easy to implement

• Results look good!

Pre-process:
Uniform Links

• Each texeli needs to represent
a link to all other texelsj

• Instead link texeli to a cluster j
• Fij� factor between texeli

and cluster j
• Store Fij records at each texel
• LOD, uv cluster location same for all

texels
– Store as fragment program constants

• Only requires storage of form factor
records per-texel

Pre-process:
Adaptive Links

• Create links adaptively per texel.
• Benefit:

– Higher accuracy for fewer links possible.
– More efficient..

• Subsurface scattering has exponential decay.
May not need to store links from to all surface
regions

• Downside:
– Varying uv offset and LOD per texel. More

texel records required
– Care must be taken in choosing link locations

to avoid seam artifacts

Implementation Details:
Storing Links

• Required texture space for link information is significant.
– Adaptive Link Locations:

• uv offset
• LOD –which mip-map level
• form factor

– Static Links (LOD, uv offset in constant registers)

• Vector Quantize form factors
– 256 rgb element code book – stored as 1D texture
– Each form factor is reduced to an 8 bit value.
– Additional texture lookup required in fragment shader

• Place uv offsets + lod in lookup table
– (offset + lod) may be reduced to 8 bit value
– Extra texture lookup required

Pass 1: Radiosity Map
• No restriction on lighting model/method

– Shadow maps, shadow volumes.
– Bump mapping
– Environment maps
– Pre-computed radiance transfer. (Spherical Harmonics).
– Monte-carlo ray-tracing
– Radiosity

• Resolution of the map may be chosen arbitrarily (performance
versus quality)
– We tried both 512x512 and 1024x1024
– We found you can get away “cheap”.

• 512x512 map
• Per-vertex lighting, etc…

Pass 2: Scattered
Irradiance Map

• Size of map may be arbitrarily chosen
(quality versus performance).
– Subsurface scattered irradiance tends to be

low frequency.
– We used 512x512, and 1024x1024

• Most expensive pass
– Many texture lookups required per-texel

• High bandwidth cost
• Adaptive links more expensive

Pass 3: Final Rendering
• Compute the incident lighting

on the mesh.
– Do higher quality rendering (e.g.

per-pixel lighting)

• Texture map (add) the results
from pass 2 (scattered irradiance
map)
– modulated by Fresnel.

Results…
• A real-time demo..

– 512x512 map

– Static Links
• 16 (4 megabytes)

• 64 (16 megabytes)

Future Work
• Subsurface scattering on dynamically

deforming models.

• Adaptive refinement on the GPU
– Dynamic link creation and patch subdivision

– More efficient exploration of light paths

• Single Scattering on the GPU

Acknowledgements
Work supported by:

• NVIDIA Corp.

• NSF ITR ACI-0113968

