
 1

LA METHODE DU LANCER

DE RAYON

Kadi BOUATOUCH

En anglais :

 RAY TRACING

 RAY CASTING

 2

PRINCIPE

- Trace a primary ray passing through a pixel
- P : intersection point
- Compute the contribution of the sources to P by tracing

shadow rays toward the light sources.
- If a shadow ray intersects an opaque object between P and

the light source then P is shadowed
- Compute the contribution to P of other points within the

scene by tracing secondary rays: reflected and refracted
- A reflected ray is traced only if the material is specular
- A refracted ray is traced only if the material is transparent
- A secondary ray intersects the scene at a point P’
- Again compute the contribution of the sources to P’ by

tracing shadow rays toward the light sources.
- Repeat the process
- Each ray brings its contribution to the luminance of a point

View point
Screen

Reflected ray

Shadow ray

Normal
Primary ray

Refracted ray

 3

THE ILLUMINATION MODEL

The specular reflection

- Ir = ks . <N,H>n . Isource

- If the surface is perfectly specular n is very

large

- <N,H>n is not negligible only for (N,H) = 0

- Thus Ir = ks . Isource

- (N,H) = 0 means that the incident and reflection
angles are equal

N

L

H

V

 4

THE ILLUMINATION MODEL

Reciprocity of the reflection model

- Suppose (L’,N) = (V,N) and (V’,N) = (L,N)

- Then : (N,H) = (N,H’)

- Ir = ks . <N,H>n . Is

- Ir’ = ks . <N’,H’>n . Is’

- Thus : ks . <N,H>n = ks . <N,H’>n

- This is the reciprocity of the reflection model

N
R

L
V

H R’ N
L’

V’

H’

 5

THE ILLUMINATION MODEL

Ambient term

- The indirect diffuse component Iid due to multiple

reflections is supposed to be the result of the diffuse
reflection of an ambient term Ia

- Ia is the same for all the surfaces

- I id = kd. Iobj . Ia

Ia

Ia

Ia

Ia
Ia

Ia

N

 6

THE ILLUMINATION MODEL

The different components

- H1 : bisecting line of angle S P3 P2
- H2 : bisecting line of angle S P2 P1
- H1 : bisecting line of angle S P1 O
- Idai : intensity due to direct lighting and the ambient term

for point Pi
- Idai = kdi . Ci . Ia
 + kdi . Ci . Is . cos(Li,Ni)
 + ksi . Is . cos(Ni,Hi)n

- I3 = Ida3

- I2 = Ida2 + ks2 . I3

- I1 = Ida1 + ks1 . I2

N1
N2

N3

L1
L2L3

P2

P3
P1

I1

I2
I3

O
SIj

 7

THE ILLUMINATION MODEL

The complete illumination model

- Legend :

- dd : direct diffuse
- ds : direct specular
- is : indirect specular
- t : transmitted or refracted
- Iref : intensity carried by the reflected ray
- Itran : intensity carried by the refracted ray
- Ci : object’s color
- Ij : intensity of light source j

- I = Iamb + Idd + Ids + Iis + It

- Iamb = kd. Ci . Ia

- Idd = kdi . Ci . Σj Ij . cos(Li,Ni)

- Ids = ks. Σj Ij. cos(Ni,Hi)n

- Iis = ks . Iref

- It = kt . Itran

- For a material : kd + ks + kt = 1

 8

THE ILLUMINATION MODEL

The illumination algorithm

- Ray r : equation P = P0 + t . D

- I(r) = Iamb (inter(r,Scene))

 + Σj Idd (j, inter(r,Scene))

 + Σj Ids (j, inter(r,Scene))

 + ks . I (reflected_ray)

 + kt . I (refracted_ray)

- I(r) : recursive function calculating the global intensity

brought by a ray r

- Iamb , Idd and Ids are functions computing the ambient,

direct-diffuse and direct-specular components respectively

- Scene : data structure representing the scene

- Each source is indexed by j

 9

THE ILLUMINATION MODEL

How to stop tracing rays ?

- I : Intensity due to this ray path :

 I = Ks0 . (Kt1 (Ks4 . E7 + E4) + E1)

 = Ks0 . Kt1 . Ks4 . E7 + Ks0 . .Kt1 . E4 + Ks0 . E1

- Ei : intensities due to the light sources ; direct lighting

- Stop tracing rays when the cumulative product is below a

certain threshold

E1

E8E7E6

E5E4

E0

E2

E9 E10

E3

Ks5Ks4Ks3

Ks2Ks1

Ks0 Kt0

Kt1

Kt4 Kt5

 10

Intersection computation : principle

- The scene is supposed to be expressed in the world coordinate

system (WCS).

- It may be: A set of independent objects

- An object may be a CSG tree (Constructive Solid Geometry)
which is a binary tree whose leaves are primitive objects like
sphere, cylinder, cone and whose nodes are boolean operators
like union, intersection and difference.

- The purpose is to intersect a scene by a ray whose equation is

given by :

 P = P0 + t . D

- where :
 P0 is the ray origin ;

 D = (dx, dy, dz) is the direction vector of the ray ;

- t > 0

- Intersection result = { ti / ti is a value of t corresponding to an

intersection point }.

- Only the closest point to the ray origin, is used to compute the

lights contribution and to shoot secondary rays.

 11

- To simplify the intersection computing, each object may
described in a local coordinates system (LCS)

y

z x

y

z x

x
z x

z

parallelepiped sphere

cone
cylinder

o

oo

o

 12

- In this case two transformation matrices are then associated

with each object :

- the first one allows the transformation of a point in the WCS
to a point in the local coordinates system,

 - the second one allows the inverse transformation.

- Ray-object intersection is performed in the LCS. With this
aim in view, the ray is transformed into the LCS.

- This simplifies both the computations of the ray-object

intersection and that of the normal.

- Since t is a scalar, its value is not affected by this
transformation.

- To compute the closest intersection point, the smallest value

of t is substituted in the ray equation expressed in the WCS.
The transformation LCS-WCS is then not necessary.

- As for the normal calculation, it is performed on the LCS,

then it is transformed onto the WCS.

 13

 Bounding volumes

- To reduce the amount of ray-object intersections, its is
absolutely necessary to use a hierarchical data structure .

- This data structure is a tree of bounding volumes.

- Bounding volumes are simple geometric objects which fit

around the objects.

- They are chosen to be simple to intersect with a ray, such as

spheres or parallelepipeds that have faces perpendicular to the
axes.

- The building of this hierarchy consists in picking some of

these bounding volumes and surrounding them with another
bounding volume. This process is repeated recursively until a
bounding volume is generated that surrounds the whole scene.

 14

Bounding volumes

Example of hierarchy of bounding volumes : binary tree.

parallelepiped sphere

cylinders

 15

Bounding volumes

Hierarchy

- It is very important to find a way to choose a tree that reduces

the rendering time.

- Trying to construct manually a tree is very tedious and not
efficient.

- A better method consists in dividing the scene into halves

along one axis and surround each half with a bounding
volume. This process is applied recursively on each half.

Median cut method

dmax[2]

dmax[1]

dmin[1] dmin[2]
5

4

1 3
2

 16

Bounding volumes

Hierarchy : Median cut method

1. Search for max slab
2. L= {liste of bounding volume numbers}
3. dmax[2] – dmin[2] or dmax[1] – dmin[1]
4. In this example : max = dmax[1] – dmin[1]
5. Then choose slab 1
6. Sort the bounding volumes with respect to increasing dmin[1]
7. We get a sorted list L = {1,5,3,2,4}
8. Spit L into two sub-lists L1 and L2
9. We get : L1 = {1,5,3} L2 = {2,4}
10. Go to 1 with L = L1 then L = L2

dmax[2]

dmax[1]

dmin[1] dmin[2]
5

4

1 3
2

 17

Bounding volumes

Hierarchy: Median cut

Data structures

TYPE

- ttab_ptr_obj = array|1..Nb_obj] of integer ;
- tvol_engl = struct { /* bounding volume type */
 dmin : arrray[1..N_Slab] of real ;
 dmax : array[1..N_Slab] of real ;
 }
- tengl_obj = struct { /* hierarchy node */

 tab : ttab_ptr_obj ;
 eng : tvol_engl ;
 number : integer;
 }

- obj = struct {
 vol_eng : tvol_engl ;
 par_geo : tparam_geom ;
 par_photo : tparam_photo ;
 }

- ttab_obj = array[1..Nb_obj] of object ;
- tHier = array[1..Nmax] of tengl_obj ;

VAR

- tab_obj : ttab_obj ;
- Hier : tHier ;
- tabp : ttab_ptr_obj

 18

Bounding volumes

Hierarchy Median cut : Algorithm

Procedure create_Hierarchy(tabp : ttab_ptr_obj ;
 ind_beg, ind_end, depth : integer) ;
begin
/* Compute bounding volume for tabp */
/* Result : 2 arrays dmin and dmax */
bounding_vol(tabp, dmin, dmax, ind_beg,ind_end) ;
/* Hierarchy saved as a bin tree in an array Hier */
for i := ind_beg to ind_end {
 Hier[depth].tab[i-ind_deb+1] := tabp[i] ;
}
Hier[depth].eng.dmin := dmin ;
Hier[depth].eng.dmax := dmax ;
Hier[depth].number := ind_end – ind_beg + 1 ;
/* Stop splitting the list if the number of leaf’ objects is
smaller than Max_obj */
if (ind_end – ind_beg – 1) <= Max_obj { return };
index := 1 ;
d_partition := Huge_Negative_Number ;
for i :=1 to Nb_Slab {
 if (dmax[i] – dmin[i]) > d_partition
 { d_partition := dmax[i] – dmin[i] ; index := i }
}
/* List sorting with respect to increasing dmin[index] */
quick_sort_wrt_dmin(tabp, index) ;
m := ind_beg + n ;
create_Hierarchy(tabp, ind_beg, m, 2*depth) ;
create_Hierarchy(tabp, m + 1, ind_end, 2*depth + 1) ;
end

 19

Bounding volumes

Hierarchy : Goldsmith’s et al.’s method

- Interesting method: proposed by Goldsmith and Salmon .

- The used strategy is a heuristic tree search

- Objects are added successively and the tree is searched to find

a suitable insertion point for each new node.

- Since not all nodes of the tree can be considered as a point for
insertion, the search must follow only few paths.

- The choice of sub-trees to search from a given node is

determined by the smallest increase in surface area of the
node's bounding volume that would occur if the new node was
to be inserted as a child of it.

- During the search, at each level of the tree, the new node is

considered as a prospective child of each node that will be
searched.

- The tree is evaluated with the proposed insertion and the

location with the smallest increase in tree cost is saved.

- When the search reaches a leaf node, the new node and the
leaf node are proposed as children of a new non leaf node.

- Bottom-up evaluation after each insertion of a new node

 20

Bounding volumes

Hierarchy : Goldsmith’s et al.’s method

Example of hierarchy

1

2 3 4

1

2 3 4 5

1

2 3 4 5

1

2 6 4 5

3 7

insertion of
node 5

insertion of
node 7

leaves

leaves

leaves

leaves

a-

b-

 21

Bounding volumes

Hierarchy : CSG Model

Case of CSG tree modelled scenes

- Data structure of each leaf of the CSG tree is extended by

adding to it the bounding volume of the leaf.

- Bottom-up search of the tree in order to compute the

bounding volumes of the non leaf nodes.

- These bounding volumes are in their turn added to the data
structure of the associated nodes.

- Their evaluation depends on the boolean operator associated

with the nodes.

- The bounding volume of the root bounds the whole scene.

 22

Bounding volumes

Hierarchy : CSG Model

 Case of CSG tree modelled scenes

difference

union

 23

Ray-scene intersection test

 using the hierarchy

- Once the hierarchy of bounding volumes has been built, the

ray-scene intersection test is performed as follows.

- The hierarchy is searched from the root to the leaves.

- During this search, at a node N, the associated bounding
volume is checked for an intersection with the current ray.

- If the bounding volume of N is intersected, those of its

children node are in their turn checked for an intersection.

- This process is repeated recursively and ends up at the leaf
nodes.

- Else, if the bounding volume of N is not intersected by the

ray, the associated subtree is left out, that is, it is not searched.

 24

 Different kinds of bounding volumes

Parallelepiped

- For the sake of speed up, the faces of this bounding volume
are perpendicular to the axes of the World Coordinates
System.

- Its perspective projection onto the screen plane is often used

to filter the primary rays (rays starting at the eye location).

Sphere and Ellipsoid

- They may be used to filter the reflected and refracted rays and
those directed to the light sources.

 25

Different kinds of bounding volumes

Polyhedron : Intersection of Slabs

- The objects are bounded by polyhedra whose sizes may be
different but whose faces’ normals have constant direction
vectors.

- These direction vectors as well as the number of faces are

chosen by the user before the synthesis phase.

- Example of polyhedral bounding volumes.

 normals

- It is easy to build a hierarchy with polyhedral bounding

volumes.

normals

 26

Intersection Test

Sphere

- Orthogonal distance d02 between the center of the sphere and
the ray

- If d02 is smaller than or equal to the square of the radius of
the sphere, then the ray intersects the sphere, otherwise it does
not intersect it

C

P0

P

d0

r

ray

distance to minimize

D

 .

- Let C be the center of the sphere and let P = P0 + t . D be the
ray equation. d0 is evaluated by minimizing the distance
between C and a point P on the ray.

- This gives
 d2 = || P0 + t . D - C ||2 = || P0 - C ||2 + 2t . (P0 - C) . D
 + t2 . || D ||2

- By setting to 0 the derivative of d2 , we obtain :

 t = ((P0 - C) . D / || D ||2) = - (P0 - C) . D

 - After substitution : d02 = || P0 - C ||2 - ((P - C) . D)2

 27

Intersection Test

Parallelepiped

- The faces of the parallelepiped are perpendicular to the axes of

the world coordinate system.
- First, the intersections between the ray and the faces x = x1 and x

= x2 are computed. Two values of t are then obtained

- t1 = (x1 - x0) / dx and t2 = (x2 - x0) / dx.

- Interval: [Ix, Mx] = [min(t1, t2), max(t1, t2)]

- Same processing applied to the faces perpendicular to the y and

z axes.
- The result is then an intersection interval given by :

 [I, M] = [max(Ix, Iy, Iz), min(Mx, My, Mz)]

- If I <= M then the ray intersects the parallelepipedic bounding

volume, otherwise it does not intersect it

t

t

t

t

Ix Mx

Iy My

Iz Mz

I M

 28

 Intersection Test

Polyhedron

- The intersection test is similar to the previous one, except that

the faces are not perpendicular to the axes of the eye coordinates
system

- Interval : [I, M]

- Let N be the normal of a face

- N . P + d = 0 the equation of the plane containing the face.

- The value of t corresponding to the intersection between the ray

and this face is computed by substituting the ray equation in that
of the plane : t = - (d + N . P0) / N . D

- For a slab i , N=Ni and

- Given a slab i, these values are the same for all the object
bounding volumes

DNi
PNii

DNi
i

idt i

•
•−

=

•
−

=

+∗=

0

1

β

α

βα

 29

Intersection with simple objects

Sphere

- Intersection points : solutions of the following equation

 || P0 - C ||2 + 2t . (P0 - C) . D + t2 . || D ||2 = r2

- Intersection : performed in the local coordinates system of the
sphere

- || P0 ||2 + 2t . P0 . D + t2 . || D ||2 = r2

Parallelepiped

- The way to compute the ray-parallelepiped intersection has
been shown previously.

- [I, M] : interval intersection.

- If I <= M then the intersection exists and in addition, I and M

are the values of the parameter t corresponding to the
intersection points. Otherwise it does not exist.

 30

Intersection with simple objects

Cylinder

r

h

z

y

x

 cylinder and its LCS.

- The cylinder is supposed to be the result of the intersection

between an infinite height cylinder and the subspace delimited by
two planes which equations are z = 0 and z= h

- The intersection between the ray an the infinite height cylinder is

first performed. This yields a first interval [t1,t2]

- The intersection with the two planes gives a second interval [t3,

t4].

- The final intersection interval [I, M] results from the

combination of these two intervals (as for the parallelepiped).

 31

Intersection with simple objects

Cylinder

 - obtaining [t1, t2]

- The equation of the infinite height cylinder :

 x2 + y2 = r2

- Substituting the ray equation in this equation we obtain :

t2 . (dx2 + dy2) + 2t . (x0 . dx + y0 . dy) + (x02 + y02 - r2) = 0

- Solving this equation gives the interval [t1, t2].

 - obtaining [t3, t4]

- Let A and B the two values of t resulting from the
intersection with the two planes :

 A = - z0 / dz and B = (h - z0) / z0

- We get :

 t3 = min(A,B) and t4 = max(A, B)

 32

Intersection with simple objects

Cone

- Intersection: performed in the LCS of the cone .

z

y

x

h

r

- Cone: intersection between an infinite height cone and the

subspace delimited by two planes, the equations of which are
z = 0 and z = h.

- The intersection between the ray and the infinite height cone

is first performed. The equation of this cone is given by :

 h2 . (x2 + y2) - r2 . z2 = 0.

- Substituting the ray equation in this equation yields an interval
[t1, t2].

- Then the planes are in their turn intersected to give a second

interval [t3, t4] such that :

 t3 = min(A, B) and t4 = max(A, B)

- where A = - z0 / dz and B = (h - z0) / dz.
- The final interval is the combination of these two intervals (as

for the cylinder).

 33

Intersection with simple objects

 Polygon

- Several ray-polygon intersection methods have been proposed in

the literature.

- Only two of them are presented .

- For all these methods, the intersection process consists of two

steps :

- First step: Ray-Plane intersection test

- the goal of the first step is to perform the intersection
between the ray and the plane containing the polygon

- Inside - Outside test

- the second step tests if the resulting point is inside or

outside the polygon.

 34

Intersection with simple objects

Polygon

 Snyder's method

- Snyder's method method concerns the ray-triangle

intersection. It will be extended to a polygon.

- Let Pi be the vertices of a triangle and let Ni the associated
normals which are used for normal interpolation across the
triangle.

- Normal to the triangle: N = (P1 - P0) x (P2 - P0)

- A point P lying on the triangle plane satisfies :

 P . N + d = 0 where d = - P0 . N.

- An index i0 is computed to be equal either to 0 if | Nx | is
maximum or to 1 if | Ny | is maximum or to 2 if | Nz | is
maximum.

- To intersect a ray P = O + t . D with a triangle, first compute

the t parameter of the intersection between the ray and the
triangle plane :

 t = (d - N . O) / N . D.

 35

Intersection with simple objects

Polygon

 Snyder's method

- Let i1 and i2 (i1, i2 � {0, 1, 2}) be two unequal indices
different from i0. Compute the i1 and i2 components of the
intersection point I, by :

 Ii1 = Oi1 +t . Di1 and Ii2 = Oi2 + t . Di2

- The inside-outside test can be performed by computing scalars
ß0, ß1 and ß2 according to :

 ßi = [(Pi+2 - Pi+1) x (I - Pi+1)]i0 / [N]i0

- The ßi are the barycentric coordinates of the point where the
ray intersects the triangle plane.

- I is inside the triangle if and only if 0 ≤ ß ≤ 1 for i � {0, 1, 2}.

- The interpolated normal at point I is given by :

 N' = ß0 . N0 + ß1 . N1 + ß2 . N2.

- Snyder's method can be easily extended up to polygons.

- The main idea is to consider a polygon as a union of triangles.

 Intersection with simple objects

 36

Polygon

 Marchal’s method

u

v

P

P

P

P

P

I

0

1

2

3

4

M

- I is the ray-plane intersection point.

- The Pi are transformed to the two dimensional coordinates

system (u, v) whose origin is vertex P0.
- The plane of this coordinates system is the polygon plane.

- The inside-outside test determines if an edge PiPi+1 intersects

the v axis at a point M (this may occur when the u components
of Pi and Pi+1 have different signs).

- If so, and if P0I < P0M then I is inside the polygon, else it is

outside.
- On the other hand, if none of the edges intersect the v axis, then I

lies outside the polygon.

Intersection with simple objects

 37

Polygon

 Marchal’s method

- The interpolated normal at point I is given by :

 NI = (P0I / P0M) . NM + (1 - P0I / P0M) . N0

- where the normal NM at point M is given by :

 NM = (PiM / PiPi+1) . Ni+1 + (1 - PiM / PiPi+1) . Ni

- and Ni, Ni+1 are the normals at point Pi and Pi+1. PiPi+1 is
the intersected edge.

u

v

P

P

P

P

P

I

0

1

2

3

4

M

 38

Composite objects

- A composite object may be created by performing set
operations (union, difference, intersection) on simple or on
other composite objects.

- A CSG tree is an example of composite object.

- The ray-object intersection results in a list of intervals as

shown in the following figure .

- In this example, two objects are combined with each set
operator. The intersection result is a list of two intervals, the
length of which depends on the used set operation.

objet A

objet B

objet A union B

objet A inter B

objet A diff B

t

t

t

t

t

 .

 39

 Intersection with algebraic surfaces

- An algebraic surface is defined by :

 l m n
 S(x, y, z) = ∑ ∑ ∑ aij . xi yj zk (6)
 i=0 j=0 k=0

- The substitution in S(x, y, z) of the ray equation, gives a

polynomial equation S*(t), the degree of which is
 d = l + m +n :

 d
 S*(t) = ∑ ai . ti .
 i=0

- S*(t) may be solved with non linear programming techniques,

such as the one of Laguerre, Newton or Bairstow.

- Thes techniques are iterative and converge only if they start from

an initial value of t close to the exact root.

- To find a good initial value of t, one must isolate the roots by

recursively subdividing the range of t into two equal sized
subintervals, and by seeing if the resulting subintervals contain at
least one root.

- This process terminates when the width of an interval is less than

a given threshold.

 40

Root isolation methods

Several root isolation methods are proposed in the literature. Only
two of them are discussed :

 - interval methods

 - Collins's method

 41

Interval method

- An interval is defined by an ordered pair of real numbers

 [a, b] with a < b .
- Interval method allows performing arithmetic operations on

intervals using the operators +, -, * and / .
- Let op be an operator :

 [a, b] op [c, d] = { x op y , such that x � [a, b] and y � [c, d] }

- These operations can be performed algebraicly using the

endpoints of the intervals, as shown in the following :

 [a, b] + [c, d] = [a + c, b + d]

 [a, b] - [c, d] = [a - c, b - d]

 [a, b] * [c, d] = [min(a*c, a*d, b*c, b*d),
 max(a*c, a*d, b*c, b*d)]

 [a, b] / [c, d] = [a, b] * [1/d, 1/c] provided that 0 � [c, d]

- The division by an interval containing 0 may be defined as :

 1 / [a, b] = [1/b, +∞] if a = 0,

 = [-∞, 1/a] if b =0,

 = [-∞, 1/a] union [1/b, +∞] if a ≤ 0 ≤ b,

 = [1/b, 1/a] if a > 0 or if b < 0 .

 42

Interval method

- Let f(x1,…, xn) be a rational function, and let F be the

corresponding interval rational function.
- If for each i, 1 ≤ i ≤ n, xi ranges over [ai, bi] then

 F([a1, b1],…, [an, bn]) � { f(x1,…, xn) such that
 xi � [ai, bi], 1 ≤ i ≤ n }
 = range of f .

 43

How the interval method can be used to solve a polynomial
equation ?

- First, the range T of variable t, is determined by intersecting the

ray with the bounding volume of the surface.

- After that, the method checks the possibility for the interval T

(and its subintervals) to contain the value 0.

- This is done by interval evaluation of the polynomial equation .

- If this evaluation contains 0, then there is some chance for the

polynomial to have real zeros.

- In this case, T is subdivided into two subintervals and the process

is repeated for the subintervals in a recursion fashion.

- The recursion terminates when the width of the current

subinterval is smaller than a threshold (in case of isolation) or
when it can be treated as a single point which is a real root of the
polynomial.

 44

How the interval method can be used to solve a system of non

linear equations ?

- The same technique can be used to isolate or to find the solutions

of a system of non linear equations .

- For the sake of simplicity, consider a system of two polynomial

equations where the two unknowns are u and v ranging
respectively over U = [u1, u2] and V = [v1, v2] :

 f(u,v) = 0 with (u,v) � I

 g(u,v) = 0 with (u,v) � I.

- I = [u1, u2] x [v1, v2]

- The method checks the possibility for a solution to lie within the

entire domain of the 2D interval I.

- This is done by interval evaluation of the functions f(u, v) and

g(u, v).

- If both the evaluations contain 0, then there is some chance for
the solution to exist.

- If so, I is subdivided into 2D subintervals and the process is

repeated recursively as pointed out above.

 45

Root isolation methods

 Collins's method

 n
- Let P(x) = ∑ ai . xi

 i=0

- Descartes' rule states that the number of sign variations var(an,

an-1,…, a0) exceeds the number of positive zeros, multiplicities
counted, by an even non negative integer.

- Hence if var(P) is equal to 0, P has exactly no positive roots, and

if var(P) is equal to 1, P has exactly one positive root.

- A surprising theorem which Uspensky attributes to Vincent in

1886 , shows that after a finite number of transformations

 P'(x) = P(x+1) and P*(x) = (x + 1)n * P(1 / (x + 1))

 one arrives at polynomial having sign variation 1 or 0.

 46

Root isolation methods

 Collins's method : Algorithm

procedure real_root_isolation(P : polynomial ; var L :
 list_of_intervals) ;
var
 bound : real ;
 B : polynomial ;
 L' : list_of_intervals ;

begin

 { bound the positive roots of P by bound }

 bound := 2k ;
 if k >= 0 then B(x) := P(bound * x)
 else B(x) := (1 / (bound*2n)) * P(bound * x) ;

 { call the isolation procedure which gives a list L' of
 isolation intervals of B }

 isolation_proc(B, 0, 1, 1, L') ;

 { call the procedure replace_L'_by_L to replace each interval
 [ai, bi] by [bound * ai, bound * bi] }

 replace_L'_by_L(L, L') ;

end;

 47

procedure isolation_proc(B : polynomial ; min_int, max_int :
 real ; width : real ;var L : list_of_intervals) ;

var
 L1, L2 : list_of_intervals ;
 B*, B', B" : polynomial ;
 I : interval ;

 { min_int and max_int are respectively the smallest and largest
 endpoints of the current interval }

 begin
 { transform the zeros of B in [0, 1] onto the zeros of B* in
 [0, ∞] }

 B*(x) := (x + 1)n * B(1 / (x + 1)) ;

 { end of recursion }

 if var(B*) = 0 then begin
 L := empty ;
 return ;
 end
 else if (var(B*) = 1) and (width <= threshold) then
 begin
 I := [min_int, max_int] ;
 insert_in_L(I) ;
 end ;

 { process the left-half subinterval by transforming the zeros of B in [0, 1/2]
 on the zeros of B in [0, 1] }

 B'(x) := 2n * B(x / 2) ;
 isolation_proc(B', min_int, max_int - width / 2, width / 2, L1) ;

 { process the right-half subinterval by transforming the zeros of B in [1/2, 1]
 on the zeros of B in [0, 1] }

 B"(x) := B'(x + 1) ;
 isolation_proc(B", min_int + width / 2, max_int, width / 2, L2) ;

 { put the two lists L1 and L2 in L }

 add_list (L, L1) ;
 add_list (L, L2) ;
end ;

 48

Intersecting Bicubic surfaces

- Q(u,v) = [x(u, v), y (u, v), z (u, v)]

 3 3
 = ∑ ∑ Bi(u) . Bj(v). Pij (7)
 i=0 j=0

- where Pij are the control points of the surface, and Bi(u) , Bj(v)

the blending functions which determine the type of surface (B-
spline, Bezier, Beta-spline…).

- These blending functions depend on the two parameters u and v

which both range over [0, 1].

- A ray may be considered as intersection of two planes defined by

:

 [A1, B1, C1] . [x, y, z] = D1

 [A2, B2, C2] . [x, y, z] = D2

- The ray equation iexpressed as :

 [x, y, z] = [x0, y0, z0] + t . [dx, dy, dz]

 49

Intersecting Bicubic surfaces

- The two planes can be determined as follows :

 [A1, B1, C1] = [x0, y0, z0] x [dx, dy, dz]

 [A2, B2, C2] = [A1, B1, C1] x [dx, dy, dz]

 D1 = [A1, B1, C1] x [x0, y0, z0]

 D2 = [A2, B2, C2] x [x0, y0, z0]

- After substitution we obtain the following system :

3 3
∑ ∑ ([A1, B1, C1] . Pij) . Bi(u) . Bj(v) - D1 = 0
i=0 j=0
 (11)
 3 3
∑ ∑ ([A2, B2, C2] . Pij) . Bi(u) . Bj(v) - D2 = 0
i=0 j=0

 50

Intersecting Bicubic surfaces

- Once these equations have been stated, ray-surface intersection

may be performed by means of one of the existing methods. At
least, three methods can be used :

- method which decomposes a patch into a set of planar polygons,

- method which subdivides recursively a patch into four patches.

The recursion terminates when the bounding volume of a
subpatch is intersected by the current ray and satisfies a size
criterion.

- method which uses numerical techniques. The resultant method

may be used (see Kajiya).

 51

SPATIAL SUBDIVISION

Principle

- The rectangular bounding volume of the scene is subdivided

into 3D cells

- Each cell contains a small portion of the scene

- When a ray enters a cell, we check the objects within this

cell for an intersection with the ray

- If the intersection process ends up with success then no

need to check the rest of the objects

- If the ray fails to hit any object in the cell then it moves to

the next 3D cell

Two procedures

- A procedure which performs a spatial subdivision of the

scene into 3D cells, each of them containing a small
portion of the database

- A second procedure which determines the next cell along a

ray

 52

SPATIAL SUBDIVISION

Subdivision into a 3D uniform grid

Subdivision

- The rectangular bounding volume of the scene is subdivided

into a uniform 3D grid of rectangular cells
- The grid is represented by a 3D array, the indices of which

are i, j and k corresponding to the x, y and z axes
respectively

- Each cell is represented by a data structure containing a
pointer to the objets partially or totally within the cell

- Example

 53

SPATIAL SUBDIVISION

Subdivision into a 3D uniform grid

- Next cell along a ray : classical method

- Let G[i][j][k] be the 3D array representing the 3D grid
- Let P the point where the ray leaves the current cell

and D the ray direction
- P is the outgoing point
- Let w be the axis perpendicular to the face which

contains P
- Let u (x, y or z) be the index (i, j or k) of the current

cell corresponding to w
- If Dw > 0 then the index u of the next cell is u = u + 1,

the other indices are unchanged
- Else it is : u = u – 1
- Example :

- If w = z then u = k
- If Dz > 0then the index of the next cell along the

ray is k = k + 1, while the other indices do not
change

- If the current cell is G[i][j][k] then the next cell
along the ray is G[i][j][k + 1] if Dz > 0, or
G[i][j][k - 1] if Dz < 0

 54

SPATIAL SUBDIVISION

Subdivision into a 3D uniform grid

Next cell along a ray : Amanatides’s method

tx = tx + tDeltax

ty = ty + tDeltay

tDeltax

tDeltay

tx

ty

Initial Voxel

 55

- Initialization

- Ray equation : P = P0 + t . D
- Identify the voxel containing the ray origin O
- If O is outside the grid, find the point through which the

ray enters the grid and determine the adjacent voxel
- X, Y and Z : voxel indices
- StepX, stepY and stepZ : initialized to 1, incremented or

decremented as the ray crosses the voxel boundaries
- tx, ty and tz : values of t corresponding to the points

resulting from the intersection between the ray and 3
faces of the initial voxel

- tDeltaX, tDeltaY and tDeltaZ : distance travelled by the
ray between two successive faces perpendicular to the x,
y and z faces respectively

tx = tx + tDeltax

ty = ty + tDeltay

tDeltax

tDeltay

tx

ty

Initial Voxel

 56

Algorithm

Min = min(tx,ty,tz) ;

switch(Min)
{
 case tx :
 X += stepX ;
 tx += tDeltax ;
 break ;
 case ty
 Y += stepY ;
 ty += tDeltay ;
 break ;
 case ty
 Z += stepZ ;
 tz += tDeltaz ;
 break ;
}

tx = tx + tDeltax

ty = ty + tDeltay

tDeltax

tDeltay

tx

ty

Initial Voxel

 57

SPATIAL SUBDIVISION

Subdivision into a non uniform grid

Subdivision

- The rectangular bounding volume of the scene is

recursively sliced by 3 planes perpendicular to the x, y and
z axes one after the other

- Each slicing plane divides a space (a 3D cell) into two

subspaces (a3D cells) of equal dimensions

- The subdivision process stops either when a cell contains

partially or totally a minimum number of objects or the
maximum subdivision level is reached for each axis

- The result is a linear array of rectangular cells

- Each cell is identified by a number

- Each cell is represented by a data structure containing a

pointer to the objets partially or totally within it

 58

SPATIAL SUBDIVISION

Subdivision into a non uniform grid

Subdivision

 59

SPATIAL SUBDIVISION

Subdivision into a non uniform grid

Next cell along the ray

- P : out going point
- Push P along the normal to the outgoing face
- The results is another point P’
- Pushing consists in adding to the P’s coordinates a value

deltax (resp. deltay, deltaz) which is equal to half the
length of the x side (resp. y, z) of the smallest cell.

- Determine the cell containing P’
- If P is on an edge or a vertex of a cell, push it

simultaneously in the directions of the normals of the faces
sharing it

P’P

