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PRINCIPE 
 

 

 
- Trace a primary  ray passing through a pixel 
- P : intersection point 
- Compute the  contribution of the sources to P by tracing  

shadow rays toward the light sources. 
- If a shadow ray intersects an opaque object between P and 

the light source then P is shadowed 
- Compute the contribution to P of other points within the 

scene by tracing secondary rays: reflected and refracted 
- A reflected ray is traced only if the material is specular 
- A refracted ray is traced only if the material is transparent 
- A secondary ray intersects the scene at a point P’ 
- Again compute the  contribution of the sources to P’ by 

tracing  shadow rays toward the light sources. 
- Repeat the process 
- Each ray brings its contribution to the luminance of a point 
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Screen

Reflected ray

Shadow ray

Normal
Primary ray

Refracted ray



 3

THE ILLUMINATION  MODEL 
 
 
The specular reflection 
 

 
- Ir = ks . <N,H>n . Isource 
 
- If the surface is perfectly specular  n is very 

large 
 

- <N,H>n  is not negligible only for (N,H) = 0  
 

- Thus Ir = ks . Isource 
 

- (N,H) = 0  means that the incident and reflection 
angles are equal  
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THE ILLUMINATION  MODEL 
 
 
Reciprocity of the reflection model 
 

 
 
- Suppose (L’,N) = (V,N) and (V’,N) = (L,N) 
 
- Then : (N,H) = (N,H’) 
 
- Ir = ks . <N,H>n . Is  
 
- Ir’ = ks . <N’,H’>n . Is’ 
 
- Thus : ks . <N,H>n  = ks . <N,H’>n  
 
- This is the reciprocity of the reflection model 
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THE ILLUMINATION  MODEL 
 
 
Ambient term 
 
 
 

 
 
 
- The indirect diffuse component Iid due to multiple 

reflections is supposed to be the result of the diffuse 
reflection of an ambient term Ia 

 
- Ia is the same for all the surfaces 
 
- I id = kd. Iobj . Ia 
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THE ILLUMINATION  MODEL 
 
The different components 
 
 

- H1 : bisecting line of angle S P3 P2 
- H2 : bisecting line of angle S P2 P1 
- H1 : bisecting line of angle S P1 O 
- Idai : intensity due to  direct lighting and the ambient term 

for point Pi 
-  Idai = kdi . Ci . Ia 
            + kdi .  Ci . Is . cos(Li,Ni) 
             + ksi . Is . cos(Ni,Hi)n 

 
- I3 = Ida3  
 
- I2 =  Ida2 + ks2 . I3 
 
- I1 = Ida1 + ks1 . I2 
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THE ILLUMINATION  MODEL 

 
 

The complete  illumination model 
 
 
- Legend :  
 

- dd : direct diffuse 
- ds : direct specular 
- is : indirect specular 
- t : transmitted or refracted 
- Iref : intensity carried by the reflected ray 
- Itran : intensity carried by the refracted ray 
- Ci : object’s color 
- Ij : intensity of light source j 

- I =  Iamb + Idd + Ids + Iis + It 
 
- Iamb = kd. Ci . Ia 
 
- Idd = kdi . Ci . Σj Ij . cos(Li,Ni) 
 
- Ids = ks. Σj Ij. cos(Ni,Hi)n 
 
- Iis = ks . Iref 
 
- It  = kt . Itran 
 
- For a material : kd + ks + kt = 1 
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THE ILLUMINATION  MODEL 
 
 
 
The illumination algorithm  
 
 
- Ray r : equation  P = P0 + t . D 
 
 
- I(r) = Iamb (inter(r,Scene)) 
 

   +  Σj  Idd (j, inter(r,Scene)) 
 
   + Σj  Ids (j, inter(r,Scene)) 
 
   +  ks . I (reflected_ray) 
 
   +  kt . I (refracted_ray) 

 
- I(r) : recursive function calculating the global intensity 

brought by a ray r 
 
- Iamb , Idd and Ids are functions computing the ambient, 

direct-diffuse and direct-specular components respectively 
 
- Scene : data structure representing the scene 
 
- Each source is indexed by j 
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THE ILLUMINATION  MODEL 
 
  

How to stop tracing rays ? 
 

 
- I : Intensity due  to  this ray path : 
 
           I = Ks0 . (Kt1 ( Ks4 . E7 + E4) + E1) 
 
              = Ks0 . Kt1 . Ks4 . E7 + Ks0 . .Kt1 . E4 + Ks0 . E1 
 
- Ei : intensities due to the light sources ; direct lighting 
 
- Stop tracing rays when the cumulative product is below a 

certain threshold  
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Intersection computation : principle 

 
- The scene is supposed to be expressed in the world coordinate  

system (WCS).  
 

- It may be: A set of independent objects 
 

- An object may be a CSG tree (Constructive Solid Geometry) 
which is a binary tree whose leaves are primitive objects like 
sphere, cylinder, cone and whose nodes are boolean operators 
like union, intersection and difference.  

 
- The purpose is to intersect a scene by a ray whose equation is 

given by : 
 
        P = P0 + t . D 
 

- where : 
   P0 is the ray origin ; 
 
  D = (dx, dy, dz) is the direction vector of the ray ; 
 

- t  > 0 
 
- Intersection result = { ti / ti is a value of t corresponding to an 

intersection point }.  
 
- Only the closest point to the ray origin, is used to compute the 

lights contribution and to shoot secondary rays.  
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- To simplify the intersection computing, each object may 
described in a local coordinates system (LCS)  
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- In this case two transformation matrices are then associated 

with each object :  
 

- the first one allows the transformation of a point in the WCS 
to a point in the local coordinates system,   

 
 - the second one allows the inverse transformation. 
 

- Ray-object intersection is performed in the LCS. With this 
aim in view, the ray is transformed into the LCS.  

 
- This simplifies both the computations of the ray-object 

intersection and that of the normal.  
 

- Since t is a scalar, its value is not affected by this 
transformation.  

 
- To compute the closest intersection point, the smallest value 

of t is substituted in the ray equation expressed in the WCS. 
The transformation LCS-WCS is then not necessary.  

 
- As for the normal calculation, it is performed on the LCS, 

then it is transformed onto the WCS. 
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      Bounding volumes 
 
 
 

- To reduce the amount of ray-object intersections, its is 
absolutely necessary to use a hierarchical data structure .  

 
- This data structure is a tree of bounding volumes.  

 
- Bounding volumes are simple geometric objects which fit 

around the objects.  
 
- They are chosen to be simple to intersect with a ray, such as 

spheres or parallelepipeds that have faces perpendicular to the 
axes. 

 
- The building of this hierarchy consists in picking some of 

these bounding volumes and surrounding them with another 
bounding volume. This process is repeated recursively until a 
bounding volume is generated that surrounds the whole scene. 
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Bounding volumes 
 
 
 
 

 
Example  of hierarchy of bounding volumes : binary tree. 
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Bounding volumes 

 
Hierarchy 

 
- It is very important to find a way to choose a tree that reduces 

the rendering time.  
 

- Trying to construct manually a tree is very tedious and not 
efficient. 

 
- A better method consists in dividing the scene into halves 

along one axis and surround each half with a bounding 
volume. This process is applied recursively on each half. 

 
Median cut method 
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Bounding volumes 
 

Hierarchy : Median cut method 
 

1. Search for max slab 
2. L= {liste of bounding volume numbers} 
3. dmax[2] – dmin[2]   or  dmax[1] – dmin[1] 
4. In this example : max = dmax[1] – dmin[1] 
5. Then choose slab 1 
6. Sort the bounding volumes with respect to increasing dmin[1] 
7. We get a sorted list L = {1,5,3,2,4} 
8. Spit L into two sub-lists L1 and L2 
9. We get :  L1 = {1,5,3}    L2 = {2,4} 
10. Go to 1 with  L = L1 then L = L2 
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Bounding volumes 
 

Hierarchy: Median cut 
 

Data structures 
 
TYPE 
 
- ttab_ptr_obj = array|1..Nb_obj] of integer ; 
- tvol_engl = struct { /* bounding volume type  */ 
     dmin : arrray[1..N_Slab] of real ; 
     dmax : array[1..N_Slab] of real ; 
      } 
- tengl_obj = struct {  /* hierarchy node */ 

      tab : ttab_ptr_obj ; 
      eng : tvol_engl ; 
      number : integer; 
       } 

- obj = struct { 
      vol_eng : tvol_engl ; 
      par_geo : tparam_geom ; 
      par_photo : tparam_photo ; 
      }  

- ttab_obj = array[1..Nb_obj] of object ; 
- tHier = array[1..Nmax] of tengl_obj ; 

 
VAR 
 
- tab_obj : ttab_obj ; 
- Hier : tHier ; 
- tabp : ttab_ptr_obj 
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Bounding volumes 
 

Hierarchy Median cut : Algorithm 
 

 
Procedure create_Hierarchy(tabp : ttab_ptr_obj ;  
                              ind_beg, ind_end, depth : integer) ; 
begin 
/* Compute bounding volume for tabp */ 
/* Result : 2 arrays dmin and dmax */ 
bounding_vol(tabp, dmin, dmax, ind_beg,ind_end) ; 
/* Hierarchy saved as a bin tree in an array Hier */ 
for i := ind_beg to ind_end { 
  Hier[depth].tab[i-ind_deb+1] := tabp[i] ; 
} 
Hier[depth].eng.dmin := dmin ; 
Hier[depth].eng.dmax := dmax ; 
Hier[depth].number := ind_end – ind_beg + 1 ; 
/* Stop splitting the list if the number of leaf’ objects is 
smaller than Max_obj */ 
if (ind_end – ind_beg – 1) <= Max_obj { return  }; 
index := 1 ; 
d_partition := Huge_Negative_Number ; 
for i :=1 to Nb_Slab { 
   if (dmax[i] – dmin[i])  > d_partition  
          { d_partition := dmax[i] – dmin[i] ; index := i } 
} 
/* List sorting with respect to increasing dmin[index] */ 
quick_sort_wrt_dmin(tabp, index) ; 
m := ind_beg + n ;  
create_Hierarchy(tabp, ind_beg, m, 2*depth) ;  
create_Hierarchy(tabp, m + 1, ind_end, 2*depth + 1) ; 
end 
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Bounding volumes 
 

Hierarchy : Goldsmith’s et al.’s method 
 
 
- Interesting method: proposed by Goldsmith and Salmon . 

 
- The used strategy is a heuristic tree search  
 
- Objects are added successively and the tree is searched to find 

a suitable insertion point for each new node.  
 

- Since not all nodes of the tree can be considered as a point for 
insertion, the search must follow only few paths.  

 
- The choice of sub-trees to search from a given node is 

determined by the smallest increase in surface area of the 
node's bounding volume that would occur if the new node was 
to be inserted as a child of it.  

 
-  During the search, at each level of the tree, the new node is 

considered as a prospective child of each node that will be 
searched. 

 
- The tree is evaluated with the proposed insertion and the 

location with the smallest increase in tree cost is saved.  
 

- When the search reaches a leaf node, the new node and the 
leaf node are proposed as children of a new non leaf node. 

- Bottom-up evaluation after each insertion of a new node 
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Bounding volumes 
 
 
Hierarchy : Goldsmith’s et al.’s method 

 
 

Example of hierarchy  
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Bounding volumes 
 
 
 
Hierarchy : CSG Model 
 

  
Case of CSG tree modelled scenes     

 
- Data structure of each leaf of the CSG tree is extended by 

adding to it the bounding volume of the leaf.  
 
- Bottom-up  search of the tree in order to compute the 

bounding volumes of the non leaf nodes.  
 

- These bounding volumes are in their turn added to the data 
structure of the associated nodes.  

 
- Their evaluation depends on the boolean operator associated 

with the nodes.  
 

- The bounding volume of the root bounds the whole scene. 
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Bounding volumes 
 
Hierarchy : CSG Model 
 
 Case of CSG tree modelled scenes 
 
 
 

difference

union

 
 
      
 



 23

Ray-scene intersection test 
 

                                using the hierarchy 
 

 
- Once the hierarchy of bounding volumes has been built, the 

ray-scene intersection test is performed as follows. 
 

- The hierarchy is searched from the root to the leaves.  
 

- During this search, at a node N, the associated bounding 
volume is checked for an intersection with the current ray.  

 
- If the bounding volume of N is intersected, those of its 

children node are in their turn checked for an intersection.  
 

- This process is repeated recursively and ends up at the leaf 
nodes.  

 
- Else, if the bounding volume of  N is not intersected by the 

ray, the associated subtree is left out, that is, it is not searched. 
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  Different kinds of bounding volumes 
 
  

Parallelepiped 
 

- For the sake of speed up, the faces of this bounding volume 
are perpendicular to the axes of the World Coordinates 
System.  

 
- Its perspective projection onto the screen plane is often used 

to filter the primary rays (rays starting at the eye location). 
 
Sphere and Ellipsoid  
 

- They may be used to filter the reflected and refracted rays and 
those directed to the light sources. 
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Different kinds of bounding volumes 
 

 
 

Polyhedron : Intersection of Slabs 
 

- The objects are bounded by polyhedra whose sizes may be 
different but whose faces’ normals have constant direction 
vectors.  

 
- These direction vectors as well as the number of faces are 

chosen by the user before the synthesis phase. 
 
- Example of polyhedral bounding volumes. 

 

 normals
 

 
- It is easy to build a hierarchy with polyhedral bounding 

volumes. 
 
 

normals  
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Intersection Test 
 
   

Sphere 
 

- Orthogonal distance d02 between the center of the sphere and 
the ray 

- If d02 is smaller than or equal to the square of the radius of 
the sphere, then the ray intersects the sphere, otherwise it does 
not intersect it 

 

C

P0

P

d0

r

ray

distance to minimize

D

 
    . 

- Let C be the center of the sphere and let P = P0 + t . D be the 
ray equation. d0 is evaluated by minimizing the distance 
between C and a point P on the ray.  

- This gives 
        d2 = || P0 + t . D - C ||2 = || P0 - C ||2 + 2t . (P0 - C) . D 
                                   + t2 . || D ||2      

- By setting to 0 the derivative of  d2 , we obtain : 
 

         t = (( P0 - C ) . D  / || D ||2 ) = - ( P0 - C) . D 
 

 - After substitution  :  d02 = || P0 - C ||2 - (( P - C ) . D )2 
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Intersection Test 

 
Parallelepiped 
 
- The faces of the parallelepiped are perpendicular to the axes of 

the world coordinate system.  
- First, the intersections between the ray and the faces x = x1 and x 

= x2 are computed. Two values of t are then obtained  
 

- t1 = ( x1 - x0 ) / dx and t2 = ( x2 - x0 ) / dx. 
 
- Interval: [ Ix, Mx ] = [ min( t1, t2 ), max( t1, t2 ) ] 
 
- Same processing  applied to the faces perpendicular to the y and 

z axes.  
- The result is then an intersection interval given by : 
 
 [ I, M ] = [ max( Ix, Iy, Iz ), min( Mx, My, Mz ) ] 
 
- If I <= M then the ray intersects the parallelepipedic bounding 

volume, otherwise it does not intersect it  
 

t
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I M
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     Intersection Test 
 

 

 
Polyhedron  
 
- The intersection test is similar to the previous one, except that 

the faces are not perpendicular to the axes of the eye coordinates 
system 

 
- Interval : [I, M] 
 
- Let N be the normal of a face  

 
- N . P + d = 0 the equation of the plane containing the face. 
 
- The value of t corresponding to the intersection between the ray 

and this face is computed by substituting the ray equation in that 
of the plane :   t = - ( d + N . P0 ) / N . D 

- For a slab i , N=Ni and  
 

- Given a slab i, these values are the same for all the object 
bounding volumes 
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Intersection with simple objects 
 
  

Sphere 
 

- Intersection points : solutions of the following equation  
 
 || P0 - C ||2 + 2t . ( P0 - C ) . D + t2 . || D ||2 = r2 
  

- Intersection : performed in the local coordinates system of the 
sphere 

-  ||  P0 ||2 + 2t . P0 . D + t2 . || D ||2 = r2 
 
 
 

Parallelepiped 
 

- The way to compute the ray-parallelepiped intersection has 
been shown previously.  

 
- [ I, M ] : interval intersection.  

 
- If  I <=  M then the intersection exists and in addition, I and M 

are the values of the parameter t corresponding to the 
intersection points.  Otherwise it does not exist.  
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Intersection with simple objects 
 
 
Cylinder 
 
 

r

h

z

y

x
 

 
      cylinder and its LCS. 
 
- The cylinder is supposed to be the result of the intersection 

between an infinite height cylinder and the subspace delimited by 
two planes which equations are z = 0 and  z= h 

 
- The intersection between the ray an the infinite height cylinder is 

first performed. This yields a first interval [t1,t2] 
 
- The intersection with the two planes gives a second interval [ t3, 

t4 ].  
 
- The final intersection interval [ I, M ] results from the 

combination of these two intervals ( as for the parallelepiped). 
 



 31

Intersection with simple objects 
 
 
Cylinder 
 
 
 - obtaining [ t1, t2 ] 
 

- The equation of the infinite height cylinder : 
 

                       x2 + y2 = r2 
 

- Substituting the ray equation in this equation we obtain : 
 
t2 . ( dx2 + dy2 ) + 2t . (x0 . dx + y0 . dy ) + ( x02 + y02 - r2 ) = 0 

 
- Solving this equation gives the interval [ t1, t2 ]. 

 
 - obtaining [ t3, t4 ] 
 

- Let A and B the two values of t resulting from the 
intersection with the two planes : 

 
              A = - z0 / dz  and  B = ( h - z0 ) / z0 
 

- We get : 
 
  t3 = min( A,B )  and  t4 = max( A, B ) 
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Intersection with simple objects 
 
Cone 
 

- Intersection: performed in the LCS of the cone . 
 

z

y

x

h

r

    
- Cone: intersection between an infinite height cone and the 

subspace delimited by two planes, the equations of which are 
z = 0 and z = h.  

 
- The intersection between the ray and the infinite height cone 

is first performed. The equation of this cone is given by : 
 
                     h2 . ( x2 + y2 ) - r2 . z2 = 0. 
 

- Substituting the ray equation in this equation yields an interval 
[ t1, t2 ].  

 
- Then the planes are in their turn intersected to give a second 

interval [ t3, t4 ] such that : 
 
       t3 = min( A, B )   and    t4 = max( A, B ) 
 

- where  A = - z0 / dz  and  B = ( h - z0 ) / dz. 
- The final interval is the combination of these two intervals (as 

for the cylinder). 
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Intersection with simple objects 
 

 Polygon 
 
 
- Several ray-polygon intersection methods have been proposed in 

the literature.  
 
- Only two of them are presented . 

 
- For all these methods, the intersection process consists of two 

steps : 
 

- First step: Ray-Plane intersection test  
 

- the goal of the first step is to perform the intersection 
between the ray and the plane containing the polygon  

 
- Inside - Outside test 

 
- the second step tests if the resulting point is inside or 

outside the polygon. 
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Intersection with simple objects 
 

Polygon 
 
 Snyder's method  

 
- Snyder's method method concerns the ray-triangle 

intersection. It will be extended  to a polygon. 
 

- Let Pi be the vertices of a triangle and let Ni the associated 
normals which are used for normal interpolation across the 
triangle. 

 
- Normal to the triangle:     N = (P1 - P0) x (P2 - P0) 

 
- A point P lying on the triangle plane satisfies : 
 

            P . N + d = 0 where   d = - P0 . N. 
 

- An index i0 is computed to be equal  either to 0 if | Nx | is 
maximum or to 1 if | Ny | is maximum or to 2 if | Nz | is 
maximum. 

 
- To intersect a ray P = O + t . D with a triangle, first compute 

the t parameter of the intersection between the ray and the 
triangle plane : 

 

                                   t = ( d - N . O ) / N . D. 
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Intersection with simple objects 
 

Polygon 
 
 Snyder's method  

 
 

- Let i1 and i2 ( i1, i2 � {0, 1, 2} ) be two unequal indices 
different from i0. Compute the i1 and i2 components of the 
intersection point I, by : 

 
      Ii1  = Oi1 +t . Di1 and   Ii2  = Oi2 + t . Di2 
 

- The inside-outside test can be performed by computing scalars 
ß0, ß1 and ß2 according to : 

 
       ßi = [ ( Pi+2 - Pi+1 ) x ( I - Pi+1 )]i0  /  [ N ]i0  
 

- The ßi are the barycentric coordinates of the point where the 
ray intersects the triangle plane.  

 
- I is inside the triangle if and only if 0 ≤ ß ≤ 1 for i � {0, 1, 2}.  

 
- The interpolated normal at point I is given by : 
 

                     N' = ß0 . N0 + ß1 . N1 + ß2 . N2. 
 

- Snyder's method can be easily extended up to polygons.  
 
- The main idea is to consider a polygon as a union of triangles. 

 
  Intersection with simple objects 
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Polygon 
 
 Marchal’s method 
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- I is the ray-plane intersection point.  

 
- The Pi are transformed to the two dimensional coordinates 

system (u, v) whose origin is vertex P0. 
-  The plane of this coordinates system is the polygon plane.  
 
- The inside-outside test determines if an edge PiPi+1 intersects 

the v axis at a point M ( this may occur when the u components 
of Pi and Pi+1 have different signs ). 

 
- If so, and if P0I < P0M then I is inside the polygon, else it is 

outside.  
- On the other hand, if none of the edges intersect the v axis, then I 

lies outside the polygon. 
 
 

Intersection with simple objects 
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Polygon 
 
 Marchal’s method 

 
 

- The interpolated normal at point I is given by : 
 
  NI = ( P0I / P0M ) . NM + ( 1 - P0I / P0M ) . N0 

 
- where the normal NM at point M is given by : 
 

   NM = ( PiM / PiPi+1 ) . Ni+1  + ( 1 - PiM / PiPi+1  ) . Ni 
 

- and Ni, Ni+1 are the normals at point Pi and Pi+1. PiPi+1 is 
the intersected edge. 
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Composite objects 

 
 

- A composite object may be created by performing set 
operations (union, difference, intersection ) on simple or on 
other composite objects.  

 
- A CSG tree is an example of composite object.  
 
- The ray-object intersection results in a list of intervals as 

shown in the following figure .  
 

- In this example, two objects are combined with each set 
operator. The intersection result is a list of two intervals, the 
length of which depends on the used set operation. 
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   . 
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     Intersection with algebraic surfaces 
 
 
- An algebraic surface is defined by : 

 
              l  m        n 
 S(x, y, z) = ∑    ∑    ∑   aij . xi yj zk (6) 
           i=0    j=0      k=0 
 
- The substitution in S(x, y, z) of the ray equation, gives a 

polynomial equation S*(t), the degree of which is 
     d = l + m +n : 
 
            d 
   S*(t) = ∑   ai . ti . 
         i=0 
 
- S*(t) may be solved with non linear programming techniques, 

such as the one of Laguerre, Newton or Bairstow.  
 
- Thes techniques are iterative and converge only if they start from 

an initial value of t close to the exact root. 
 
- To find a good initial value of t, one must isolate the roots by 

recursively subdividing the range of t into two equal sized 
subintervals, and by seeing if the resulting subintervals contain at 
least one root.  

 
- This process terminates when the width of an interval is less than 

a given threshold. 
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Root isolation methods 
 
   
 
 
 
 
 
 
 
Several root isolation methods are proposed in the literature. Only 
two of them are discussed  : 
  
 - interval methods  
 
 - Collins's method  
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Interval method 
 
- An interval is defined by an ordered pair of real numbers 

 [a, b] with a < b .  
- Interval method allows performing arithmetic operations on 

intervals using the operators +, -, * and / . 
- Let op be an operator : 

 
 [a, b] op [c, d] = { x op y , such that x � [a, b] and y � [c, d] } 
 
- These operations can be performed algebraicly using the 

endpoints of the intervals, as shown in the following : 
 
 [a, b] + [c, d] = [a + c, b + d] 
 
 [a, b] - [c, d]  = [a - c, b - d] 
 
 [a, b] * [c, d] = [ min( a*c, a*d, b*c, b*d ),  
        max( a*c, a*d, b*c, b*d ) ] 
 
 [a, b] / [c, d]  = [a, b] * [ 1/d, 1/c ]  provided that 0 � [c, d]  
 
- The division by an interval containing 0 may be defined as : 
 
 1 / [a, b] = [1/b, +∞] if a = 0, 
 
         = [-∞, 1/a]  if  b =0, 
 
         = [-∞, 1/a] union [1/b, +∞] if a ≤ 0 ≤ b, 
   
         = [1/b, 1/a] if a > 0 or if b < 0 . 
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Interval method 
 
- Let f(x1,…, xn) be a rational function, and let F be the 

corresponding interval rational function.  
- If for each i, 1 ≤ i ≤ n, xi ranges over [ai, bi ] then  
 
 F( [a1, b1],…, [an, bn] )     � { f( x1,…, xn ) such that  
                 xi � [ai, bi ], 1 ≤ i ≤ n }  
                 = range of f . 
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How the interval method can be used to solve a polynomial 
equation ? 

 
               
- First, the range T of variable t, is determined by intersecting the 

ray with the bounding volume of the surface.  
 
- After that, the method checks the possibility for the interval T 

(and its subintervals) to contain the value 0. 
 
- This is done by interval evaluation of the polynomial equation . 
 
-  If this evaluation contains 0, then there is some chance for the 

polynomial to have real zeros.  
 
- In this case, T is subdivided into two subintervals and the process 

is repeated for the subintervals in a recursion fashion.  
 
- The recursion terminates when the width of the current 

subinterval is smaller than a threshold (in case of isolation) or 
when it can be treated as a single point which is a real root of the 
polynomial. 
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How the interval method can be used to solve a system of non 

linear equations ? 
 
 
 
 
- The same technique can be used to isolate or to find the solutions 

of a system of non linear equations .  
 
- For the sake of simplicity, consider a system of two polynomial 

equations where the two unknowns are u and v ranging 
respectively over U = [u1, u2] and V = [v1, v2] : 

 
 f(u,v) = 0  with (u,v) � I  
 
 g(u,v) = 0 with (u,v) � I.   
 
- I = [u1, u2] x [v1, v2] 

 
- The method checks the possibility for a solution to lie within the 

entire domain of the 2D interval I.  
 
- This is done by interval evaluation of the functions f(u, v) and 

g(u, v). 
 

-  If both the evaluations contain 0, then there is some chance for 
the solution to exist. 

 
-  If so, I is subdivided into 2D subintervals and the process is 

repeated recursively as pointed out above. 
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Root isolation methods 
 
 
 Collins's method 
 
            n 
- Let  P(x) =  ∑   ai . xi 

           i=0 
 
- Descartes' rule states that the number of sign variations var(an, 

an-1,…, a0) exceeds the number of positive zeros, multiplicities 
counted, by an even non negative integer. 

 
- Hence if var(P) is equal to 0, P has exactly no positive roots, and 

if var(P) is equal to 1, P has exactly one positive root.  
 
- A surprising theorem which Uspensky attributes to Vincent in 

1886 , shows that after a finite number of transformations  
 
 P'(x) = P(x+1) and  P*(x) = (x + 1)n * P(1 / (x + 1)) 
 
     one arrives at polynomial having sign variation 1 or 0.  
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Root isolation methods 

 
 
 Collins's method : Algorithm 
 
 
procedure real_root_isolation( P : polynomial ; var L :   
               list_of_intervals) ; 
var 
 bound : real ; 
 B : polynomial ; 
 L' : list_of_intervals ; 
 
begin 
 
 { bound the positive roots of P by bound } 
 
 bound := 2k ; 
 if k  >= 0 then B(x) := P(bound * x)  
   else  B(x) := (1 / ( bound*2n ) ) * P(bound * x) ; 
 
 { call the isolation procedure which gives a list L' of 
 isolation intervals of B } 
 
 isolation_proc( B, 0, 1, 1, L' ) ; 
 
 { call the procedure replace_L'_by_L to replace each interval  
 [ai, bi ] by  [ bound * ai, bound * bi ] }  
 
 replace_L'_by_L( L, L' ) ; 
 
end; 
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procedure isolation_proc( B : polynomial ; min_int, max_int  :   
    real ; width : real ;var L : list_of_intervals ) ; 
 
var  
 L1, L2  :  list_of_intervals ; 
 B*, B', B"  :  polynomial ; 
 I   :  interval ; 
  
 { min_int and max_int are respectively the smallest and largest  
 endpoints of the current interval } 

   begin 
 { transform the zeros of B in [0, 1] onto the zeros of B* in    
       [0, ∞] } 
 
 B*(x) := (x + 1)n * B( 1 / (x + 1) ) ; 

 { end of recursion } 
 
 if var(B*) = 0 then begin 
     L := empty ; 
     return ; 
     end  
    else  if (var(B*) = 1 ) and (width <= threshold ) then 
     begin 
     I := [min_int, max_int] ; 
     insert_in_L( I ) ; 
     end ; 

 { process the left-half subinterval by transforming the zeros of B in [0, 1/2]  
            on the zeros of B in [0, 1] } 

 
 B'(x) := 2n * B(x / 2) ; 
 isolation_proc( B', min_int, max_int - width / 2, width / 2, L1 ) ; 
 
 { process the right-half subinterval by transforming the zeros of B in [1/2, 1]  
        on the zeros of B  in [0, 1] } 
 
 B"(x) := B'(x + 1) ; 
 isolation_proc( B", min_int + width / 2, max_int, width / 2, L2 ) ; 
 
 { put the two lists L1 and L2 in L } 

 add_list ( L, L1 ) ; 
 add_list ( L, L2 ) ; 
end ; 
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Intersecting Bicubic surfaces 

 
  
          
- Q(u,v) = [ x(u, v), y (u, v), z (u, v) ]  

 
    3     3 
    = ∑    ∑   Bi(u) . Bj(v). Pij        ( 7 ) 
    i=0  j=0 
 
- where Pij are the control points of the surface, and Bi(u) , Bj(v) 

the blending functions which determine the type of surface ( B-
spline, Bezier, Beta-spline…).  

 
- These blending functions depend on the two parameters u and v 

which both range over [0, 1]. 
 
- A ray may be considered as intersection of two planes defined by 

: 
 
 [ A1, B1, C1 ] . [ x, y, z ] = D1 
           
 [ A2, B2, C2 ] . [ x, y, z ] = D2 
 
- The ray equation iexpressed as : 

 
     [ x, y, z ] =  [ x0, y0, z0 ] + t .  [ dx, dy, dz ]  
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Intersecting Bicubic surfaces 
 
 
 
- The two planes can be determined as follows : 
 

        [ A1, B1, C1 ] = [ x0, y0, z0 ] x  [ dx, dy, dz ] 
 

 
 [ A2, B2, C2 ] = [ A1, B1, C1 ] x [ dx, dy, dz ] 
           
 D1 = [ A1, B1, C1 ] x  [ x0, y0, z0 ] 
 
 D2 = [ A2, B2, C2 ] x [ x0, y0, z0 ] 
 
- After substitution we obtain the following system : 

 
3     3 
∑    ∑   ( [A1, B1, C1 ] . Pij ) . Bi(u) . Bj(v)  - D1 = 0    
i=0  j=0 
                      ( 11 ) 
 3     3 
∑    ∑    ( [A2, B2, C2 ] . Pij ) . Bi(u) . Bj(v)   - D2 = 0    
i=0  j=0 
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Intersecting Bicubic surfaces 
 
 
 
- Once these equations have been stated, ray-surface intersection 

may be performed by means of one of the existing methods. At 
least, three methods can be used : 

 
- method which decomposes a patch into a set of planar polygons, 
 
- method which subdivides recursively a patch into four patches. 

The recursion terminates when the bounding volume of a 
subpatch is intersected by the current ray and satisfies a size 
criterion. 

 
- method which uses numerical techniques. The resultant method 

may be used (see Kajiya). 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 51

SPATIAL SUBDIVISION 
 
 
 
Principle  
 
- The rectangular bounding volume of the scene is subdivided 

into 3D cells 
 
- Each cell contains a small portion of the scene 
 
- When a ray enters a cell, we check the objects within this 

cell for an intersection with the ray 
 
- If  the intersection process ends up with success then no 

need to check the rest of the objects 
 
- If the ray fails to hit any object in the cell then it moves to 

the next 3D cell  
 
Two procedures 
 
- A procedure which performs a spatial subdivision of the 

scene  into 3D cells, each of them containing a small 
portion of the database 

 
- A second procedure which  determines the next cell along a 

ray 
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SPATIAL SUBDIVISION 

 
 
Subdivision into a 3D uniform grid 
 
 
Subdivision  
 
- The rectangular bounding volume of the scene is subdivided 

into a uniform 3D grid of rectangular cells 
- The grid is represented by a 3D array, the indices of which  

are i, j and k corresponding to the x, y and z axes 
respectively 

- Each cell is represented by a data structure containing a 
pointer to the objets partially or totally within the cell 

- Example 
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SPATIAL SUBDIVISION 
 

 
Subdivision into a 3D uniform grid 
 
 
 
- Next cell along a ray : classical method 
 
 
 

- Let G[i][j][k] be the 3D array representing the 3D grid 
- Let P the point where the ray leaves the current cell  

and D the ray direction 
- P is the outgoing point 
- Let w be the axis perpendicular to the face which 

contains P 
- Let u (x, y or z) be the index (i, j or k) of the  current 

cell  corresponding to w 
- If Dw > 0 then the index u of the next cell is  u = u + 1, 

the other indices are unchanged  
- Else it is : u = u – 1 
- Example : 

- If w = z then u = k 
- If Dz > 0then the index of the next cell along the 

ray is k = k + 1, while the other indices do not 
change 

- If  the current cell is G[i][j][k] then the next cell 
along the ray is G[i][j][k + 1] if Dz > 0, or 
G[i][j][k - 1] if Dz < 0 
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SPATIAL SUBDIVISION 

 
 
Subdivision into a 3D uniform grid 
 
 
 
Next cell along a ray : Amanatides’s method 
 

 
 
 
 
 

tx = tx + tDeltax

ty = ty + tDeltay

tDeltax

tDeltay

tx

ty

Initial Voxel
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- Initialization 
 

- Ray equation : P = P0 + t . D 
- Identify the voxel containing the ray origin O 
- If O is outside the grid, find the point through which the 

ray enters the grid and determine the adjacent voxel 
- X, Y and Z :  voxel indices 
- StepX, stepY and stepZ : initialized to 1, incremented or 

decremented as the ray crosses the voxel boundaries 
- tx, ty and tz : values of t corresponding to the points 

resulting from the intersection between the ray and 3 
faces of the initial voxel 

- tDeltaX,  tDeltaY and tDeltaZ : distance travelled by the 
ray between two successive faces perpendicular to the x, 
y and z faces respectively 

 
 
 

tx = tx + tDeltax

ty = ty + tDeltay

tDeltax

tDeltay

tx

ty

Initial Voxel
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Algorithm 
 

Min = min(tx,ty,tz) ; 
 
switch(Min) 
{ 
 case tx :  
  X += stepX ; 
  tx += tDeltax ; 
  break ; 
 case ty 
  Y += stepY ; 
  ty += tDeltay ; 
  break ; 
 case ty 
  Z += stepZ ; 
  tz += tDeltaz ; 
  break ; 
} 

tx = tx + tDeltax

ty = ty + tDeltay

tDeltax

tDeltay

tx

ty

Initial Voxel
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SPATIAL SUBDIVISION 
 

 
Subdivision into a non uniform grid 
 
 
Subdivision  
 
- The rectangular bounding volume of the scene is 

recursively sliced  by 3 planes perpendicular to the x, y and 
z axes one after the other 

 
- Each slicing plane divides a space (a 3D cell) into two 

subspaces (a3D cells) of equal dimensions 
 
- The subdivision process stops either when a cell contains 

partially or totally a minimum number of objects or the 
maximum subdivision level is reached for each axis 

 
- The result is a linear array of  rectangular cells 
 
- Each cell is identified by a number 
 
- Each cell is represented by a data structure containing a 

pointer to the objets partially or totally within it 
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SPATIAL SUBDIVISION 
 

 
Subdivision into a non uniform grid 
 
 
Subdivision  
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SPATIAL SUBDIVISION 

 
 
Subdivision into a non uniform grid 

 
 
Next cell along the ray 
 

- P : out going point  
- Push P along the normal to the outgoing face 
- The results is another point P’ 
- Pushing consists in adding to the P’s coordinates a value 

deltax (resp.  deltay,  deltaz) which is equal to half the 
length of the x side (resp. y, z) of the smallest cell. 

- Determine the cell containing P’ 
- If P is on an edge or a vertex of a cell, push it 

simultaneously in the directions of the normals of the faces 
sharing it 

 
  

P’P


