LA METHODE DU LANCER

DE RAYON

Kadi BOUATOUCH

En anglais :

RAY TRACING

RAY CASTING

PRINCIPE

. \Q@
View point

Screen

Primary ray
Normal

Reflected ray

Shadow ray

Refracted ray

Trace a primary ray passing through a pixel

P : intersection point

Compute the contribution of the sources to P by tracing
shadow rays toward the light sources.

If a shadow ray intersects an opaque object between P and
the light source then P 1s shadowed

Compute the contribution to P of other points within the
scene by tracing secondary rays: reflected and refracted

A reflected ray is traced only if the material is specular

A refracted ray is traced only if the material is transparent
A secondary ray intersects the scene at a point P’

Again compute the contribution of the sources to P’ by
tracing shadow rays toward the light sources.

Repeat the process

Each ray brings its contribution to the luminance of a point

THE ILLUMINATION MODEL

The specular reflection

- Ir=ks. <N,H>n . Tsource

- If the surface 1s perfectly specular n is very
large

- <N,H>" is not negligible only for (N,H) =0
- Thus Ir=ks . Lyyrce

- (N,H) =0 means that the incident and reflection
angles are equal

THE ILLUMINATION MODEL

Reciprocity of the reflection model

- Suppose (L°,N)=(V,N) and (V’,N) = (L,N)
- Then : (N,H)=(N,H’)

- Ir=ks.<N,H>".Is

- I =ks. <N H>".Is’

- Thus : ks . <N,H>" =ks.<N,H’>"

- This is the reciprocity of the reflection model

THE ILLUMINATION MODEL

Ambient term

Ia A
Ia

Ia

la x /Ia

- The indirect diffuse component I;q due to multiple
reflections is supposed to be the result of the diffuse
reflection of an ambient term Ia

- Ia 1s the same for all the surfaces

- Tig=kd. Loy . Ia

THE ILLUMINATION MODEL

The different components

- HI1 : bisecting line of angle S P3 P2
- H2 : bisecting line of angle S P2 P1
- H1 : bisecting line of angle S P1 O

- Idaj : intensity due to direct lighting and the ambient term
for point P1

- Idaj=kd;.C; . Ia
+kd;. Cj.Is. cos(Li,Ni)
+ ks; . Is. cos(Ni,Hi)n

- 13 = Ida3
- Ip = Idap + ksy . I3

- I1 =Ida; t ks; . Ip

THE ILLUMINATION MODEL
The complete illumination model

- Legend :

- dd : direct diffuse

- ds : direct specular

- 1s : indirect specular

- t: transmitted or refracted

- Iief : Intensity carried by the reflected ray
- liran : Intensity carried by the refracted ray
- C; : object’s color
- I : intensity of light source

- 1= Igmp + laa t las + Lis + It

- Igymp=kd. C; . 1a

- Iga=kd;. Ci. % I; . cos(L1,Ni)
- Igs =ks. 2 ;. cos(Ni,Hi)n

- Tig=ks . Lief

- Iy =kt . Iian

- For amaterial : kd + ks + kt=1

THE ILLUMINATION MODEL

The illumination algorithm

- Rayr:equation P=Py+t.D

- I(r) = Izmp (inter(r,Scene))
+ 2 Iqd (, inter(r,Scene))
+ 2 Igs (J, inter(r,Scene))
+ ks . I (reflected ray)

+ kt. I (refracted ray)

- I(r) : recursive function calculating the global intensity
brought by aray r

- Iamb , Iqg and Igg are functions computing the ambient,
direct-diffuse and direct-specular components respectively

- Scene : data structure representing the scene

- Each source is indexed by j

THE ILLUMINATION MODEL

How to stop tracing rays ?

ESC

KS3 KS4 /
g6 O 570" C)E8 E9 (E10 (

- I : Intensity due to this ray path :
[=Ks0.(Ktl (Ks4.E7+ E4)+El)
=Ks0.Ktl .Ks4 . E7+Ks0. .Ktl . E4 + Ks0 . El
- FEi: intensities due to the light sources ; direct lighting

- Stop tracing rays when the cumulative product is below a
certain threshold

Intersection computation : principle

The scene 1s supposed to be expressed in the world coordinate
system (WCS).

It may be: A set of independent objects

An object may be a CSG tree (Constructive Solid Geometry)
which is a binary tree whose leaves are primitive objects like
sphere, cylinder, cone and whose nodes are boolean operators

like union, intersection and difference.

The purpose is to intersect a scene by a ray whose equation is
given by :

P=Pp+t.D

where :
P is the ray origin ;

D = (dx, dy, dz) is the direction vector of the ray ;
t >0

Intersection result = { tj / tj is a value of t corresponding to an
intersection point }.

Only the closest point to the ray origin, is used to compute the
lights contribution and to shoot secondary rays.

10

- To simplify the intersection computing, each object may
described in a local coordinates system (LCS)

A D)

parallelepiped sphere

cylinder

AN
[\

cone

11

- In this case two transformation matrices are then associated
with each object :

- the first one allows the transformation of a point in the WCS
to a point in the local coordinates system,

the second one allows the inverse transformation.

- Ray-object intersection is performed in the LCS. With this
aim in view, the ray is transformed into the LCS.

- This simplifies both the computations of the ray-object
intersection and that of the normal.

- Since t 1s a scalar, its value i1s not affected by this
transformation.

- To compute the closest intersection point, the smallest value
of t is substituted in the ray equation expressed in the WCS.
The transformation LCS-WCS i1s then not necessary.

- As for the normal calculation, it is performed on the LCS,
then 1t is transformed onto the WCS.

12

Bounding volumes

To reduce the amount of ray-object intersections, its is
absolutely necessary to use a hierarchical data structure .

This data structure is a tree of bounding volumes.

Bounding volumes are simple geometric objects which fit
around the objects.

They are chosen to be simple to intersect with a ray, such as
spheres or parallelepipeds that have faces perpendicular to the
axes.

The building of this hierarchy consists in picking some of
these bounding volumes and surrounding them with another
bounding volume. This process is repeated recursively until a
bounding volume is generated that surrounds the whole scene.

13

Bounding volumes

Example of hierarchy of bounding volumes : binary tree.

N

B parallelepiped sphere

okl

cylinders

Q O
c—o0
e —

14

Hierarchy

- It is very important to find a way to choose a tree that reduces

Bounding volumes

the rendering time.

- Trying to construct manually a tree is very tedious and not
efficient.

- A better method consists in dividing the scene into halves
along one axis and surround each half with a bounding
volume. This process is applied recursively on each half.

Median cut method

dmin[1]

dmax[2]
B
I3
%@
' o
A

dmax[1]

dmin[2]

Bounding volumes

Hierarchy : Median cut method

. Search for max slab

. L= {liste of bounding volume numbers}

. dmax[2] — dmin[2] or dmax[1]

. In this example : max = dmax[1] —

. Then choose slab 1

. We get a sorted list L = {1,5,3,2,4}
. Spit L into two sub-lists L1 and L2

Weget: L1={1,53} L2={24}
0. Gotol with L=L1thenL =12

dmax|[2]
—a

— dmin[1]
dmin[1]

1

>

dmin[1] o

»

A
dmax[1]

1
2
3
4
5
6. Sort the bounding volumes with respect to increasing dmin[1]
7
8
9.
1

dmin[2]

16

Bounding volumes
Hierarchy: Median cut
Data structures

TYPE

- ttab ptr obj = array|l..Nb obj] of integer ;

- tvol engl = struct { /* bounding volume type */
dmin : arrray[1..N_Slab] of real ;
dmax : array[1..N_Slab] of real ;

}

- tengl obj = struct { /* hierarchy node */
tab : ttab _ptr obj;
eng : tvol engl ;
number : integer;

}

- obj = struct {
vol eng : tvol engl ;
par_geo : tparam_geom ;
par_photo : tparam photo ;
|

- ttab_obj = array[1..Nb_obj] of object ;

- tHier = array[1..Nmax] of tengl obj ;

VAR

- tab obj: ttab obj ;
- Hier : tHier ;
- tabp : ttab_ptr obj

17

Bounding volumes

Hierarchy Median cut : Algorithm

Procedure create Hierarchy(tabp : ttab_ptr obj ;
ind beg, ind end, depth : integer) ;
begin
/* Compute bounding volume for tabp */
[* Result : 2 arrays dmin and dmax */
bounding vol(tabp, dmin, dmax, ind beg,ind end) ;
/* Hierarchy saved as a bin tree in an array Hier */
fori:=ind begtoind end {
Hier[depth].tab[i-ind deb+1] := tabp[i] ;
}
Hier[depth].eng.dmin := dmin ;
Hier[depth].eng.dmax := dmax ;
Hier[depth].number := ind end — ind beg + 1 ;
[* Stop splitting the list if the number of leaf” objects is
smaller than Max_obj */
If (ind_end — ind beg — 1) <= Max_obj { return };
index :=1 ;
d partition := Huge Negative Number ;
for i :=1to Nb Slab {
If (dmax[i] — dmin[i]) > d partition

{ d partition := dmax[i] — dmin[i] ; index :=1 }
}
/* List sorting with respect to increasing dmin[index] */
quick sort wrt dmin(tabp, index) ;
m :=1nd beg +n;
create_Hierarchy(tabp, ind beg, m, 2*depth) ;
create Hierarchy(tabp, m + 1, ind end, 2*depth + 1) ;
end

18

Bounding volumes

Hierarchy : Goldsmith’s et al.’s method

- Interesting method: proposed by Goldsmith and Salmon .
- The used strategy is a heuristic tree search

- Objects are added successively and the tree is searched to find
a suitable insertion point for each new node.

- Since not all nodes of the tree can be considered as a point for
insertion, the search must follow only few paths.

- The choice of sub-trees to search from a given node is
determined by the smallest increase in surface area of the
node's bounding volume that would occur if the new node was
to be inserted as a child of it.

- During the search, at each level of the tree, the new node is
considered as a prospective child of each node that will be
searched.

- The tree 1s evaluated with the proposed insertion and the
location with the smallest increase in tree cost is saved.

- When the search reaches a leaf node, the new node and the

leaf node are proposed as children of a new non leaf node.
- Bottom-up evaluation after each insertion of a new node

19

Bounding volumes
Hierarchy : Goldsmith’s et al.’s method

Example of hierarchy

insertion of /
node 5 (D
leaves (/ Q@ leaves
insertion of
node
leaves (3) (&) (5) ﬂ.\

o leaves

20

Bounding volumes

Hierarchy : CSG Model

Case of CSG tree modelled scenes

- Data structure of each leaf of the CSG tree is extended by
adding to it the bounding volume of the leaf.

- Bottom-up search of the tree in order to compute the
bounding volumes of the non leaf nodes.

- These bounding volumes are in their turn added to the data
structure of the associated nodes.

- Their evaluation depends on the boolean operator associated
with the nodes.

- The bounding volume of the root bounds the whole scene.

21

Bounding volumes

Hierarchy : CSG Model

Case of CSG tree modelled scenes

‘ union

| difference |

TN

| &

——

J

22

Ray-scene intersection test

using the hierarchy
Once the hierarchy of bounding volumes has been built, the
ray-scene intersection test is performed as follows.
The hierarchy is searched from the root to the leaves.

During this search, at a node N, the associated bounding
volume 1s checked for an intersection with the current ray.

If the bounding volume of N is intersected, those of its
children node are in their turn checked for an intersection.

This process is repeated recursively and ends up at the leaf
nodes.

Else, if the bounding volume of N is not intersected by the
ray, the associated subtree is left out, that is, it is not searched.

23

Different kinds of bounding volumes

Parallelepiped
- For the sake of speed up, the faces of this bounding volume
are perpendicular to the axes of the World Coordinates

System.

- Its perspective projection onto the screen plane is often used
to filter the primary rays (rays starting at the eye location).

Sphere and Ellipsoid

- They may be used to filter the reflected and refracted rays and
those directed to the light sources.

24

Different kinds of bounding volumes

Polyhedron : Intersection of Slabs
- The objects are bounded by polyhedra whose sizes may be
different but whose faces’ normals have constant direction

vectors.

- These direction vectors as well as the number of faces are
chosen by the user before the synthesis phase.

- Example of polyhedral bounding volumes.

o & 4@
- b, %4

- It 1s easy to build a hierarchy with polyhedral bounding

volumes.
N\
‘ E R |

normals

25

Intersection Test

Sphere

- Orthogonal distance d(2 between the center of the sphere and
the ray
- If dog2 is smaller than or equal to the square of the radius of

the sphere, then the ray intersects the sphere, otherwise it does
not intersect it

PO

distance to minimize

- Let C be the center of the sphere and let P = Pg + t . D be the
ray equation. dg is evaluated by minimizing the distance
between C and a point P on the ray.

- This gives

d2=|Pp+t.D-C|2=||Pp-C|2+2t.(P0-C).D
+t2.]| D ||2

- By setting to 0 the derivative of d2, we obtain :

t=((Po-C).D /||D|2)=-(Po-C).D
- After substitution : dg2=|Pp-C|2-(P-C).D)2

26

Intersection Test

Parallelepiped

The faces of the parallelepiped are perpendicular to the axes of
the world coordinate system.

First, the intersections between the ray and the faces x = x1 and x
= x2 are computed. Two values of t are then obtained

tl=(x1-x0)/dx and t2=(x2-x0)/dx.

Interval: [Ix, Mx] =[min(t1, t2), max(tl, t2)]

Same processing applied to the faces perpendicular to the y and
Z axes.

The result is then an intersection interval given by :

[[, M]=[max(Ix, Iy, Iz), min(Mx, My, Mz)]

If I <= M then the ray intersects the parallelepipedic bounding
volume, otherwise it does not intersect it

Ix Mx

>t

Iz Mz

27

Intersection Test

Polyhedron

The intersection test is similar to the previous one, except that
the faces are not perpendicular to the axes of the eye coordinates
system

Interval : [I, M]

Let N be the normal of a face

N . P +d = 0 the equation of the plane containing the face.

The value of t corresponding to the intersection between the ray

and this face 1s computed by substituting the ray equation in that
of the plane: t=-(d+N.Pg)/N.D

For a slab 1, N=Ni1 and

t=ci*xd+ f
] -1
oi = —
Nie D
—Nie PO
A= Ni e D

Given a slab 1, these values are the same for all the object
bounding volumes

28

Intersection with simple objects

Sphere

- Intersection points : solutions of the following equation
|Po-C|2+2t.(Pp-C).D+t2.||D|2=r2

- Intersection : performed in the local coordinates system of the
sphere

- || Po|2+2t.Pg.D+2.||D|_2 =12
Parallelepiped

- The way to compute the ray-parallelepiped intersection has
been shown previously.

- [I, M] : interval intersection.
- If I <= M then the intersection exists and in addition, I and M

are the values of the parameter t corresponding to the
intersection points. Otherwise it does not exist.

29

Intersection with simple objects

Cylinder

1B
= > x

cylinder and its LCS.

- The cylinder is supposed to be the result of the intersection
between an infinite height cylinder and the subspace delimited by
two planes which equations are z=0 and z=h

- The intersection between the ray an the infinite height cylinder is
first performed. This yields a first interval [t1,t2]

- The intersection with the two planes gives a second interval [t3,
t4 1.

- The final intersection interval [I, M] results from the
combination of these two intervals (as for the parallelepiped).

30

Intersection with simple objects

Cylinder

- obtaining [t1, t2]
- The equation of the infinite height cylinder :
x2 +y2=r2
- Substituting the ray equation in this equation we obtain :
2. (dx2+dy2)+2t.(x0.dx+y0.dy)+(x02+y02-r2)=0
- Solving this equation gives the interval [t1, t2].
- obtaining [t3, t4]

- Let A and B the two values of t resulting from the
intersection with the two planes :

A=-2z0/dz and B=(h-2z0)/z0
- We get:

t3=min(A,B) and t4 =max(A, B)

31

Intersection with simple objects
Cone
- Intersection: performed in the LCS of the cone .

4

z

N > X
- Cone: intersection between an infinite height cone and the

subspace delimited by two planes, the equations of which are
z=0and z=h.

- The intersection between the ray and the infinite height cone
is first performed. The equation of this cone is given by :

h2 . (x2+y2)-r2.22=0.

- Substituting the ray equation in this equation yields an interval
[t1, 2].

- Then the planes are in their turn intersected to give a second
interval [t3, t4] such that :

t3=min(A,B) and t4=max(A,B)
- where A=-z0/dz and B=(h-2z0)/dz.

- The final interval is the combination of these two intervals (as
for the cylinder).

32

Intersection with simple objects
Polygon
- Several ray-polygon intersection methods have been proposed in
the literature.
- Only two of them are presented .

- For all these methods, the intersection process consists of two
steps :

- First step: Ray-Plane intersection test

- the goal of the first step is to perform the intersection
between the ray and the plane containing the polygon

- Inside - QOutside test

- the second step tests if the resulting point is inside or
outside the polygon.

33

Intersection with simple objects
Polygon
Snyder's method

- Snyder's method method concerns the ray-triangle
intersection. It will be extended to a polygon.

- Let Pj be the vertices of a triangle and let Nj the associated

normals which are used for normal interpolation across the
triangle.

- Normal to the triangle: N = (P - Pg) x (P2 - P()

- A point P lying on the triangle plane satisfies :

P.N+d=0where d=-P¢g.N.

- An index 1(is computed to be equal either to 0 if | Nx | is
maximum or to 1 if | Ny | 1s maximum or to 2 if | Nz | is
maximum.

- To intersect a ray P = O + t . D with a triangle, first compute
the t parameter of the intersection between the ray and the
triangle plane :

t=(d-N.O)/N.D.

34

Intersection with simple objects
Polygon

Snyder's method

- Let 11 and 12 (i1, 12 U {0, 1, 2}) be two unequal indices
different from 19. Compute the 1] and 12 components of the
intersection point I, by :

Ii1 =041 tt.Dj1 and I =02 +t.Dp2

- The inside-outside test can be performed by computing scalars
30, B1 and B2 according to :

Bi=[(Pi+2-Pi+1) x (I-Pi+1)]io / [N]io

- The Bj are the barycentric coordinates of the point where the
ray intersects the triangle plane.

- I is inside the triangle if and only if 0 <B <1 fori[] {0, 1, 2}.

- The interpolated normal at point I is given by :
N'=08B0.No+8B1.N1+B2.N»2.

- Snyder's method can be easily extended up to polygons.

- The main idea is to consider a polygon as a union of triangles.

Intersection with simple objects

35

Polygon

Marchal’s method

- I 1s the ray-plane intersection point.

- The Pj are transformed to the two dimensional coordinates
system (u, v) whose origin is vertex P().
- The plane of this coordinates system is the polygon plane.

- The inside-outside test determines if an edge PiPi+] intersects

the v axis at a point M (this may occur when the u components
of P and Pj+] have different signs).

- If so, and if Pgl < PgM then I is inside the polygon, else it is
outside.

- On the other hand, if none of the edges intersect the v axis, then I
lies outside the polygon.

Intersection with simple objects

36

Polygon

Marchal’s method

- The interpolated normal at point I is given by :
Ni=(Pol/PoM).NM+(1-Pol/PogM). Ny
- where the normal N at point M is given by :

NM = (PiM / PiPi+1) . Nj+1 +(1-PiM/PiPi+1).N;j

- and Nj, Nj+1 are the normals at point P{ and Pi+1. PiPi+1 is
the intersected edge.

37

Composite objects

A composite object may be created by performing set
operations (union, difference, intersection) on simple or on
other composite objects.

- A CSG tree is an example of composite object.

- The ray-object intersection results in a list of intervals as
shown in the following figure .

- In this example, two objects are combined with each set

operator. The intersection result is a list of two intervals, the
length of which depends on the used set operation.

objet A

objet B

objet A union B

objet A inter _B

t
>
t
>
t
>
t
>
t
>

objet A diff B

38

Intersection with algebraic surfaces

An algebraic surface is defined by :

| m n
SX,y,2)=> X X aij-Xiyjzk (6)
i=0 j=0 k=0

The substitution in S(x, y, z) of the ray equation, gives a
polynomial equation S*(t), the degree of which is
d=1+m-+n:

d
S¥(t)=Y aj.tl.
1=0

S*(t) may be solved with non linear programming techniques,
such as the one of Laguerre, Newton or Bairstow.

Thes techniques are iterative and converge only if they start from
an initial value of t close to the exact root.

To find a good 1nitial value of t, one must isolate the roots by
recursively subdividing the range of t into two equal sized
subintervals, and by seeing if the resulting subintervals contain at
least one root.

This process terminates when the width of an interval is less than
a given threshold.

39

Root isolation methods

Several root isolation methods are proposed in the literature. Only
two of them are discussed :

- interval methods

- Collins's method

40

Interval method
- An interval is defined by an ordered pair of real numbers
[a, b] witha<b.
- Interval method allows performing arithmetic operations on
intervals using the operators +, -, * and / .
- Let op be an operator :

[a,b]op[c,d]={xopy,suchthatx[I[a,b]andy[][c,d]}

- These operations can be performed algebraicly using the
endpoints of the intervals, as shown in the following :

[a,b] +[c,d]=[a+c,b+d]
[a,b] - [c,d] =[a-c,b-d]

[a, b] * [c, d] = [min(a*c, a*d, b*c, b*d),
max(a*c, a*d, b*c, b*d) |

[a,b]/[c,d] =[a,b] *[1/d, 1/c] provided that O [[c, d]
- The division by an interval containing 0 may be defined as :
1/[a,b]=[1/b, +to] ifa =0,
= [-o0, 1/a] if b =0,
= [-o0, 1/a] union [1/b, +0] ifa <0 <b,

=[1/b, 1/a]ifa>0o0rifb<0.

41

Interval method

- Let f(x1,..., Xn) be a rational function, and let F be the

corresponding interval rational function.
- Iffor each 1, 1 <1<n, xj ranges over [aj, bj] then

F([a1,b1],...,[an, bn]) L {{f(x1,..., Xn) such that
xjl[aj, bj [, Si<n}
=range of f.

42

How the interval method can be used to solve a polynomial
equation ?

First, the range T of variable t, is determined by intersecting the
ray with the bounding volume of the surface.

After that, the method checks the possibility for the interval T
(and its subintervals) to contain the value 0.

This 1s done by interval evaluation of the polynomial equation .

If this evaluation contains 0, then there i1s some chance for the
polynomial to have real zeros.

In this case, T is subdivided into two subintervals and the process
1s repeated for the subintervals in a recursion fashion.

The recursion terminates when the width of the current
subinterval is smaller than a threshold (in case of isolation) or
when it can be treated as a single point which is a real root of the
polynomial.

43

How the interval method can be used to solve a system of non
linear equations ?

The same technique can be used to isolate or to find the solutions
of a system of non linear equations .

For the sake of simplicity, consider a system of two polynomial
equations where the two unknowns are u and v ranging
respectively over U = [ul,u2]and V =[vl, v2] :

flu,v)=0 with (u,v) [J1

g(u,v)=0 with (u,v) [L.

[=[ul,u2] x[vl, v2]

The method checks the possibility for a solution to lie within the
entire domain of the 2D interval 1.

This 1s done by interval evaluation of the functions f(u, v) and
g(u, v).

If both the evaluations contain 0, then there i1s some chance for
the solution to exist.

If so, I 1s subdivided into 2D subintervals and the process is
repeated recursively as pointed out above.

44

Root isolation methods

Collins's method

n
Let Px)=Y aj.xl
1=0

Descartes' rule states that the number of sign variations var(ap,

an-1,..., a) exceeds the number of positive zeros, multiplicities
counted, by an even non negative integer.

Hence if var(P) is equal to 0, P has exactly no positive roots, and
if var(P) i1s equal to 1, P has exactly one positive root.

A surprising theorem which Uspensky attributes to Vincent in
1886 , shows that after a finite number of transformations

P'(x) = P(x+1) and P*(x) = (x + N * P(1 / (x + 1))

one arrives at polynomial having sign variation 1 or 0.

45

Root isolation methods

Collins's method : Algorithm

procedure real root isolation(P : polynomial ; var L :
list of intervals) ;
var
bound : real ;
B : polynomial ;
L': list of intervals ;
begin
{ bound the positive roots of P by bound }

bound =2k :
If k >= 0 then B(x) := P(bound * x)
else B(x) :=(1/(bound*2n)) * P(bound * x) ;

{ call the isolation procedure which gives a list L' of
isolation intervals of B }

isolation proc(B, 0, 1,1,L");

{ call the procedure replace L' by L to replace each interval
[ai, bj] by [bound * aj, bound * bj] }

replace L' by L(L,L'");
end;

46

procedure isolation proc(B : polynomial ; min_int, max_int :
real ; width : real ;var L : list_of intervals) ;

var
L1,L2 : lList of intervals ;
B*, B', B" : polynomial ;
I : interval ;

{ min_int and max_int are respectively the smallest and largest
endpoints of the current interval }
begin
{ transform the zeros of B in [0, 1] onto the zeros of B* in

[0, o] }

B*x)=x+D0*B(1/(x+1));
{ end of recursion }

if var(B*) = 0 then begin
L := empty ;
return ;
end
else if (var(B*) =1) and (width <= threshold) then
begin
[:=[min_int, max_int] ;
insert_in L(1);
end ;
{ process the left-half subinterval by transforming the zeros of B in [0, 1/2]
on the zeros of Bin [0, 1] }

B'(x) :=21* B(x/2);
isolation_proc(B', min_int, max_int - width /2, width /2, L1) ;

{ process the right-half subinterval by transforming the zeros of B in [1/2, 1]
on the zeros of B in [0, 1] }

B"(x) =B'(x+1);
isolation_proc(B", min_int + width / 2, max_int, width /2, L.2) ;

{ put the two lists L1 and L2 in L }
add list (L,L1);
add list (L,L2);

end ;

47

Intersecting Bicubic surfaces

Qu,v) =[x(u, v), y (u, v), z(u, v)]

3 3
=2 2 Bi(w.BjW).Pj (7)
i=0 j=0

where Pij are the control points of the surface, and Bj(u) , Bj(v)

the blending functions which determine the type of surface (B-
spline, Bezier, Beta-spline...).

These blending functions depend on the two parameters u and v
which both range over [0, 1].

A ray may be considered as intersection of two planes defined by

[A1,B1,Cl1].[x,y,z]=DI
[A2,B2,C2].[x,y,z]=D2
The ray equation iexpressed as :

[X,y,z]= [x0,y0,z0] +t. [dx,dy, dz]

48

Intersecting Bicubic surfaces

- The two planes can be determined as follows :

[A1, BI,C1]=[x0,y0,z0]x [dx,dy,dz]

[A2,B2,C2]1=[Al,B1,Cl1] x[dx, dy,dz]
D1=[Al,B1,CI] x [x0,yO0, z0]
D2=[A2,B2,C2]x[x0,yO0, z0]
- After substitution we obtain the following system :

303
> ¥ ([A1,BI,C1].Pj).Bj).Bj(v) -D1=0
i=0 j=0
(1)
3 3
> Y ([A2,B2,C2].Pjj).Bju).Bjv) -D2=0
i=0 j=0

49

Intersecting Bicubic surfaces

Once these equations have been stated, ray-surface intersection
may be performed by means of one of the existing methods. At
least, three methods can be used :

method which decomposes a patch into a set of planar polygons,

method which subdivides recursively a patch into four patches.
The recursion terminates when the bounding volume of a
subpatch 1s intersected by the current ray and satisfies a size

criterion.

method which uses numerical techniques. The resultant method
may be used (see Kajiya).

50

SPATIAL SUBDIVISION

Principle

- The rectangular bounding volume of the scene is subdivided

into 3D cells
- Each cell contains a small portion of the scene

- When a ray enters a cell, we check the objects within this
cell for an intersection with the ray

- If the intersection process ends up with success then no
need to check the rest of the objects

- If the ray fails to hit any object in the cell then it moves to
the next 3D cell

Two procedures
- A procedure which performs a spatial subdivision of the

scene into 3D cells, each of them containing a small
portion of the database

- A second procedure which determines the next cell along a

ray

51

SPATIAL SUBDIVISION

Subdivision into a 3D uniform grid

Subdivision

- The rectangular bounding volume of the scene is subdivided
into a uniform 3D grid of rectangular cells

- The grid 1s represented by a 3D array, the indices of which
are 1,] and k corresponding to the x, y and z axes
respectively

- Each cell is represented by a data structure containing a
pointer to the objets partially or totally within the cell

- Example

2.

52

SPATIAL SUBDIVISION

Subdivision into a 3D uniform grid

- Next cell along a ray : classical method

- Let G[1][j][k] be the 3D array representing the 3D grid
- Let P the point where the ray leaves the current cell
and D the ray direction
- P 1s the outgoing point
- Let w be the axis perpendicular to the face which
contains P
- Letu (x, y or z) be the index (i, j or k) of the current
cell corresponding to w
- If Dw > 0 then the index u of the next cellis u=u+1,
the other indices are unchanged
- Elseitis:u=u-1
- Example :
- Ifw=zthenu=k
- If Dz > Othen the index of the next cell along the
ray is k =k + 1, while the other indices do not
change
- If the current cell 1s G[1][j][k] then the next cell
along the ray is G[i][j][k + 1] if Dz > 0, or
G[1][j][k - 1]if Dz <0

53

SPATIAL SUBDIVISION

Subdivision into a 3D uniform grid

Next cell along a ray : Amanatides’s method

ty = ty + tDeltay

l

tx = tx + tDeltax
>

tDeltay

tx

Initial Voxel

tDeltax
<+“—>r

54

Initialization

Ray equation : P=P0+t.D

Identify the voxel containing the ray origin O

If O 1s outside the grid, find the point through which the
ray enters the grid and determine the adjacent voxel

X, Y and Z : voxel indices

StepX, stepY and stepZ : initialized to 1, incremented or
decremented as the ray crosses the voxel boundaries

tx, ty and tz : values of t corresponding to the points
resulting from the intersection between the ray and 3
faces of the initial voxel

tDeltaX, tDeltaY and tDeltaZ : distance travelled by the
ray between two successive faces perpendicular to the x,
y and z faces respectively

ty =ty + tDeltay

l

tx = tx + tDeltax

D tDeltay

Initial Voxel

tDeltax
4 —>

55

Algorithm

Min = min(tx,ty,tz) ;

switch(Min)
{

case tx :

X +=stepX ;
tx += tDeltax ;

break ;

case ty

Y +=stepY ;
ty += tDeltay ;

break ;

case ty

Z +=stepZ ;
tz += tDeltaz ;

break ;

ty =ty + tDeltay

l

tx = tx + tDeltax
>

tDeltay

E

Initial Voxel

56

SPATIAL SUBDIVISION

Subdivision into a non uniform grid

Subdivision
- The rectangular bounding volume of the scene is
recursively sliced by 3 planes perpendicular to the x, y and

z axes one after the other

- Each slicing plane divides a space (a 3D cell) into two
subspaces (a3D cells) of equal dimensions

- The subdivision process stops either when a cell contains
partially or totally a minimum number of objects or the
maximum subdivision level is reached for each axis

- The result is a linear array of rectangular cells

- Each cell is identified by a number

- Each cell is represented by a data structure containing a
pointer to the objets partially or totally within it

57

SPATIAL SUBDIVISION

Subdivision into a non uniform grid

Subdivision

o

Q.

58

SPATIAL SUBDIVISION

Subdivision into a non uniform grid

Next cell along the ray

- P : out going point

- Push P along the normal to the outgoing face

- The results 1s another point P’

- Pushing consists in adding to the P’s coordinates a value
deltax (resp. deltay, deltaz) which is equal to half the
length of the x side (resp. y, z) of the smallest cell.

- Determine the cell containing P’

- If P is on an edge or a vertex of a cell, push it
simultaneously in the directions of the normals of the faces
sharing it

59

