Acquisition et Restitution de Données (ARD)

Part II : Photometry and colorimetry

Kadi Bouatouch IRISA Email: kadi@irisa.fr

💶 I R I S A

Topics

- Light sources and illumination
- Radiometry and photometry Quantify spatial energy distribution
 - Radiant intensity
 - Irradiance
 - Inverse square law and cosine law
 - Radiance
 - Radiant exitance (radiosity)
 - Radiometry and Photometry Summary
- Color

Light sources and illumination

Light

- Visible electromagnetic radiation
- Power spectrum

Polarization

SIC

- Photon (quantum effects)
- Wave (interference, diffraction)

Photons

- The basic quantity in lighting is the photon
- The energy (in Joule) of a photon with wavelength λ is: q_λ = hc / λ
 - c is the speed of light
 - In vacuum, c = 299.792.458m/s
 - $-h \approx 6.63^{*}10^{-34}$ Js is Planck's constant

Radiometry and Photometry

Radiant Energy and Power

- Power: Watts vs. Lumens
- Φ^{-} Energy per unit time
 - Spectral
- Energy: Joules vs. Talbot
 - Exposure
 - Film response
 - Skin sunburn

(Spectral) Radiant Energy

💶 I R I S A

The spectral radiant energy, Q_λ, in n_λ photons with wavelength λ is

$$Q_{\lambda} = n_{\lambda} q_{\lambda}$$

• The *radiant energy*, *Q*, is the energy of a collection of photons, and is given as the integral of Q_{λ} over all possible wavelengths:

$$Q = \int_0^\infty Q_\lambda d\lambda$$

Radiometry vs. Photometry

- Radiometry [Units = Watts]
 - Physical measurement of electromagnetic energy
- Photometry and Colorimetry [Lumen]
 - Sensation as a function of wavelength
 - Relative perceptual measurement
- Brightness [Brils] $B = Y^{\frac{1}{3}}$
 - Sensation at different brightness levels
 - Absolute perceptual measurement
 - Obeys Steven's Power Law

Radiometry vs. Photometry

Radiometry and photometry

Photometric quantity = product of the radiometric quantity by the luminous efficiency $V(\lambda)$

Blackbody Radiation

FIGURE 21F

Blackbody radiation curves plotted to scale. Ordinates give the energy in calories per square centimeter per second in a wavelength interval $d\lambda$ of 1 Å. For numerical values, see "Smithsonian Physical Tables," 8th ed., p. 314.

🚬 I R I S A

Tungsten Lamp

500 1000 1500 2000 2500 3000 WAVELENGTH IN NANOMETERS

Fig. 8-1. Radiating characteristics of tungsten. Curve A: radiant flux from one square centimeter of a blackbody at 3000 K. Curve B: radiant flux from one square centimeter of tungsten at 3000 K. Curve B': radiant flux from 2.27 square centimeters of tungsten at 3000 K (equal to curve A in visible region). (The 500-watt 120-volt general service lamp operates at about 3000 K.)

Fluorescent Bulb

Fig. 3(1.2.3). Relative spectral radiant power distributions of common fluorescent lamps: (1) standard warm white; (2) white; (3) standard cool white; and (4) daylight. The distribution curves have been scaled by appropriate constant factors to provide a common value of 100 at $\lambda = 560$ nm.

🗲 I R I S A

Fig. 1(1.2.1). NASA standard data of spectral irradiance $(W \cdot m^{-2} \cdot \mu m^{-1})$ for the solar disk measured outside the atmosphere (solid dots) and at the earth's surface at air mass 2 (open circles). Data points are those given in Table 1(1.2.1). Neighboring data points have been connected by straight lines for illustrative purposes only.

Radiant Intensity

Radiant Intensity

💶 | R | S A

15

• **Definition**: The *radiant* (*luminous*) *intensity* is the power per unit solid angle emanating from a point source.

$$I(\omega) \equiv \frac{d\Phi}{d\omega}$$
$$\left[\frac{W}{sr}\right] \left[\frac{lm}{sr} = cd = candela\right]$$

IRISA

Radiance (Luminance)

Radiance

• **Definition**: The surface *radiance* (*luminance*) is the intensity per unit area leaving a surface

Irradiance (illuminance)

The Invention of Photometry

Bouguer's classic experiment

- Compare a light source and a candle
- Intensity is proportional to ratio of distances squared
- Definition of a candela
 - Originally a "standard" candle
 - Currently 550 nm laser w/ 1/683
 W/sr
 - 1 of 6 fundamental SI units

🟲 I R I S A

27

Irradiance

• Definition: The *irradiance* (*illuminance*) is the power per unit area incident on a surface.

$$E(x) \equiv \frac{d\Phi_i}{dA}$$

$$\left[\frac{W}{m^2}\right] \left[\frac{lm}{m^2} = lux\right]$$

• Sometimes referred to as the radiant (luminous) incidence.

Lambert's Cosine Law

 $d\Phi = I \, d\omega$

Irradiance: Isotropic Point

IRISA

Irradiance from the Environment

Typical Values of Illuminance [lm/m²]

Sunlight plus skylight (overcast)
Sunlight plus skylight (overcast)
Interior near window (daylight)
Artificial light (minimum)
Moonlight (full)
Starlight
0.003

Radiant Exitance Or Radiosity or Emitance

Radiant Exitance

• **Definition**: The *radiant* (*luminous*) *exitance* is the energy per unit area leaving a surface.

$$M(x) \equiv \frac{d\Phi_o}{dA}$$
$$\left[\frac{W}{m^2}\right] \left[\frac{lm}{m^2} = lux\right]$$

 In computer graphics, this quantity is often referred to as the *radiosity* (B)

Uniform Diffuse Emitter

Projected Solid Angle

Uniform Diffuse Emitter $M = \int_{H^{2}} L_{o} \cos \theta \, d\omega$ $= L_{o} \int_{H^{2}} \cos \theta \, d\omega$ $= \pi L_{o}$ $L_{o} = \frac{M}{\pi}$

Radiometry and Photometry Summary

Radiometric and Photometric Terms

Physics	Radiometry	Photometry	
Energy	Radiant Energy	Luminous Energy	
Flux (Power)	Radiant Power	Luminous Power	
Flux Density	Irradiance	Illuminance	
	Radiosity	Luminosity	
Angular Flux Density	Radiance	Luminance	
Intensity	Radiant Intensity	Luminous Intensity	

🟲 I R I S A

47

Photometric Units

Photometry	Units			
	MKS	CGS	British	
Luminous Energy	Talbot			
Luminous Power	Lumen			
Illuminance	Lux	Phot	Footcandle	
Luminosity				
Luminance	Nit	Stilb		
	Apostilb, Blondel	Lambert	Footlambert	
Luminous Intensity	Candela (Candle, Candlepower, Carcel, Hefner)			

"Thus one nit is one lux per steradian is one candela per square meter is one lumen per square meter per steradian. Got it?", *James Kajiya*

Color science

The Elements of Colour

Perceived light of different wavelengths is in approximately equal weights – *achromatic*.

>80% incident light from white source reflected from white object.

<3% from black object.

Narrow bandwidth reflected – perceived as colour

The Visible Spectrum

Daylight Vision

Human Colour Vision

• There are 3 light sensitive pigments in your cones (L,M,S), each with different *spectral response curve*.

$$L = \int L(\lambda) \cdot E(\lambda)$$

$$M = \int M(\lambda) \cdot E(\lambda)$$

$$S = \int S(\lambda) \cdot E(\lambda)$$

(10x)

$$M = \int M(\lambda) \cdot E(\lambda)$$

(10x)
(

Colour Matching is Linear!

Grassman's Laws

• Scaling the colour and the primaries by the same factor preserves the match :

2C=2R+2G+2B

• To match a colour formed by adding two colours, add the primaries for each colour

$$C_1 + C_2 = (R_1 + R_2) + (G_1 + G_2) + (B_1 + B_2)$$

Spectral Matching Curves

Match each pure colour in the visible spectrum with the 3 primaries, and record the values of the three as a function of wavelength.

Note : We need to specify a negative amount of one primary to represent all colours.

Luminance

Compare colour source to a grey source

Luminance

Y = .30R + .59G + .11B

Colour signal on a B&W TV (Except for gamma, of course)

• Perceptual measure : Lightness

 $L = Y^{1/3}$

CIE Colour Space

For only positive mixing coefficients, the CIE (Commission Internationale d'Eclairage) defined 3 new hypothetical light sources x, y and z (as shown) to replace red, green and blue.

Primary Y intentionally has same response as luminance response of the eye.

The weights X, Y, Z form the 3D CIE XYZ space (see next slide).

57

CIE-XYZ Color Space

Chromaticity Diagram

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} 2.77 & 1.75 & 1.13 \\ 1.00 & 4.59 & 0.06 \\ 0.00 & 0.57 & 5.59 \end{bmatrix} \begin{bmatrix} R_{\lambda} \\ G_{\lambda} \\ B_{\lambda} \end{bmatrix}$$
$$x = \frac{X}{X + Y + Z}$$
$$y = \frac{Y}{X + Y + Z}$$
Normalise by the total amount of light energy.
$$z = \frac{Z}{X + Y + Z}$$

Often convenient to work in 2D colour space, so 3D colour space projected onto the plane X+Y+Z=1 to yield the *chromaticity diagram*.

The projection is shown opposite and the diagram appears on the next slide.

🚬 I R I S A

59

CIE Chromaticity Diagram

C is "white" and close to x=y=z=1/3

The dominant wavelength of a colour, eg. B, is where the line from C through B meets the spectrum, 580nm for B (tint).

A and B can be mixed to produce any colour along the line AB here including white. True for EF (no white this time).

True for ijk (includes white)

SIC

The Colors in the Chromaticity Diagram

Perceptually Uniform Space: MacAdam

- MacAdam
 In color space CIE-XYZ, the perceived distance between colors is not equal everywhere
- In perceptually uniform color space, Euclidean distances reflect perceived differences between colors

Some device colour "gamuts"

The diagram can be used to compare the gamuts of various devices. Note particularly that a colour printer can't reproduce all the colours of a colour monitor. Note no triangle can cover all of visible space.

63

Colour Cube

R,G,B model is *additive*, i.e we add amounts of 3 primaries to get required colour.

Can visualize RGB space as cube, grey values occur on diagonal K to W.

Intuitive Colour Spaces

The HSV Colour Space

The HSL Colour Space

CMYK – Subtractive Colour Model

Gamut Mapping

CIE-LAB

 Color gamut of different processes may be different (e.g. CRT display and 4color printing process)

 Need to map one 3D color space into another

Typical CRT gamut

4-color printing gamut

Gamut Mapping

IRISA

Device-Dependent Color

Device-Independent Color

Colour, Physics & Light -Summary

- Humans have tri-chromatic vision.
- All visible colours represented in CIE colour diagram.
- No three selected primaries in CIE colour space can generate all visible colours.
- Intuitive colour spaces.
- Subtractive colour models for hard copy.

🗲 I R I S A