Ambien Occlusion

Kadi Bouatouch
IRISA
Email: kadi@irisa.fr

]
m P IRISA

Summary

Lighting

Definition

Computing the ambient occlusion
Ambient occlusion fields
Dynamic ambient occlusion

ok wbd -~

2
m B IRISA

Lighting: Ambient Light Sources

» Objects not directly lit are typically still visible
— e.g., the ceiling in this room, undersides of desks

» This is the result of from emitters,
bouncing off intermediate surfaces

* Too expensive to calculate (in real time), so we use a
hack called an

— No spatial or directional characteristics; illuminates all
surfaces equally

— Amount reflected depends on surface properties

3
m B IRISA

Lighting: Ambient Light Sources

» For each sampled wavelength (R, G, B),
the ambient light reflected from a surface
depends on
— The surface properties, K, mpient

— The intensity, |, pien: Of the ambient light
source (constant for all points on all surfaces)

* Ireflected = kambient Iambient

4
m B IRISA

Lighting: Ambient Light Sources

» A scene lit only with an ambient light

5

ﬂ P IRISA

Lighting: Ambient Term

» Represents reflection of all indirect
illumination

This is a total hack (avoids complexity of global illumination)!

ﬂ B IRISA

6

Definiton

The radiance at point x and in direction wr is:

Lix,®,) = f"

(LS

L06.8)f (3.8, 3K (@) (3 Fldo

If the BRDF fr is Lambertian and we ignore occlusion
by objects in the scene (Vx = 1), the above equation
can be simplified to:

Lix.f) ﬁs,ﬁ(x]J{_ﬁEﬂL[ﬂ](:ﬁ-ﬂjdm

ﬂ B _IRISA 7

Definiton

« Ambient occlusion refers to the attenuation of
ambient light due to the occlusion of nearby
geometry.

» The ambient occlusion approximation is as
follows:

Lo = (55 [ow@io) (500 [, @)@ m)

» The first integral is ambient visibility which can
be pre-computed and stored in another texture
map.

ﬂ B _IRISA

Definiton

« Ambient occlusion refers to the
attenuation of ambient light due
to the occlusion of nearby
geometry.

.4{x.n]:=if Vix,m)| -n|do
T ‘

* Here x is the location and n is eT T T~
the normal vector on the

. NA 4N
receiving surface. V(x,w) is the /N, \
visibility function that has value : / \
zero when no geometry is Q2 .

Definiton

Multiplying the classical ambient term with 1-A
gives a much better looking result than the dull
constant, because the ambient occlusion is able to
approximate effects that are otherwise attainable
only by computing full global illumination.

For instance, sharp corners appear darker than
open areas and objects cast plausible contact
shadows on the surfaces they are resting on.

Compared to a full global illumination solution,

visible in direction w and one ' 9 ambient occlusion is signifcantly faster to compute
otherwise.
= _IRISA 9 = _IRISA 10
Definiton Computing the Ambient Occlusion

» The self-occlusion of a rigid object can be
computed as a preprocess and then re-used
in different environments. Since the data can
be stored in a texture map or as vertex
attributes, the technique has a negligible
run-time overhead.

 For this reason, ambient occlusion is gaining
interest also in the real-time graphics
community.

11
B IRISA

For each vertex, we compute A using ray tracing or
the GPU (rasterization).

Store it in a the vertex data structure.
Let x be a point (as seen through a pixel).

Use the vertex data structure to get the AO values
As of the triangle’s vertices containing x.

Interpolate the As to get the AO value Ax of x
Multiply Ax by the ambient radiance (intensity)

12
B IRISA

Computing the Ambient Occlusion

« Computing the AO values for each vertex is
a demanding process in terms of computing
resource.

» Find out fast solutions:

— Ambien Occlusion Fields
— Dynamic Ambient Occlusion

a = _IRISA 13

Ambient Occlusion Fields
Spherical Cap Approximation

* To quickly
determine ambient
occlusion at an
arbitrary point in
space around an
occluder, we
approximate the
visibility of the
occluder with a
spherical cap

a = _IRISA 1

Ambient Occlusion Fields
Spherical Cap Approximation

+ We define V,,(x,w) as the visibility function of a
cap from position x towards direction w.

» Thus for each location x there is a
corresponding spherical cap representing the
occluder.

* Vegp(X,w) has value one when w falls within the

cap and zero otherwise.
* We get an approximation of ambient occlusion.

, 1
Alxn)=— | Vogolx.)| -n|dw
\ / Jrj;; ol ,l_ J

a = _ IRISA 18

Ambient Occlusion Fields
Spherical Cap Approximation

» To evaluate the above integral we need to be
able to construct the function V, (x,w).

» We determine the size of the spherical cap from
the solid angle subtended by the occluder. This
is defined at position x as.

{3x) :=f Vix,m)dw
e

* Here O refers to integration over a sphere. Q(x)
equals 41 when the object is blocking every
direction as seen from point x and zero when the
object is not visible at all.

= IRISA 16

Ambient Occlusion Fields
Spherical Cap Approximation

 As the direction of the cap, we use the
average direction of occlusion:

T(x) := normalize (f Vix,m)wdw)
@

» Thus Y(x) is the componentwise average
of all the directions w for which the
visibility function V(x,w) evaluates to one.

17
m P IRISA

Ambient Occlusion Fields
Storing QandyY

Now that we have means for evaluating ambient occlusion
on an arbitrary surface point based on vector Y(x) and scalar
Q(x) , we consider how to store these fields compactly in 3D.

Since our goal is to express accurate contact shadows, we
need high resolution near the object and lower resolution
suffices at larger distances.

Optimally, the resolution would depend on the distance from
the surface of the object. However, since this is not easily
achieved in practice, we use a radial parameterization.

We parameterize the space by direction w and distance r
from the center of the occluder and express the fields with
respect to these parameters:

ix)=0{w.r), Tix)=Tw,r)
m = _IRISA 18

Ambient Occlusion Fields
Storing Qand Y

To compactly store Q and Y, we assume that given a
direction w, the fields behave predictably as functions of
radial distance.

Thus in the following we construct models for both quantities
as functions of r.

For an efficient representation of Q (w, r) we use the
knowledge that the solid angle subtended by an object is
approximately proportional to the inverse square root of r.

To capture this, we use the following model to express the
solid angle: |

Qlw,r) = Qlw,r)=

alw)r: +biwr +clw)

In order to fit the above model to data, the coefficients a(w),
b(w) and c(w) have to be determined for each direction w.

19
m B IRISA

Ambient Occlusion Fields
Storing Qand Y

To find a model for the average direction Y, we note that
when going farther away from the object, the average
direction approaches the direction towards the center point of
the object, while in the close proximity the direction might
deviate considerably.

We model this by:

Tiw,r) = T{w,r) = normalize (C,{w) —rm)

In above, given a direction w, Co(w) can be understood
intuitively as a characteristic point of the occluder, i.e a point
in space in which the direction of occlusion mostly points.
The approximation sets ¥(w, r) to point from (w, r) to C (w).
The challenge of fitting this model to data is to find C, that
minimﬁs a suitable error metric.

20
B IRISA

Ambient Occlusion Fields
Storing Qand Y

* The solid angle Q subtended by an object and the average
direction of occlusion Y are stored for each direction as
functions of distance r.

» At run-time these functions are fetched from a cube-map and
evaluated at the receiving surface in order to compute
ambient occlusion

21

Ambient Occlusion Fields
Implementation: Preprocess

As a preprocess, we use the method of least squares to fit the mod-
els £ and T to the computed occlusion and direction samples. Then
these radially parameterized functions are stored into two cube-
maps surrounding the object. We denote the resulting discretized
direction with &. The stored components are:

al®)b(d).e(d) for Q

Col) for T

rpl), distance from the center to the convex hull
Total

e | I FE e

scalars

ﬂ = _IRISA 2

Ambient Occlusion Fields
Implementation: Preprocess

- Ray tracing or rasterization can be used for computing the
samples.

* We chose rasterization to be able to utilize graphics
hardware.

* To compute Q and Y for a single location, six images have
to be rasterized to account for all directions.

» The images contain binary information indicating whether
the occluder is visible in a certain direction or not.

* The images are read from the graphics card to the main
memory, and Q and Y are computed

ﬂ = _ IRISA B

Ambient Occlusion Fields
Implementation: Preprocess

To fit £ for each & we minimize the following error:
N) 5
£o(®) =) (Q(d.r;) - Q7)) ©)
£.= l
where Q@ ,r;) refers to the sampled occlusion value (Equation 4)
and (@, r;) to the approximated value (Equation &) at the sampling

location (@, r;). N is the number of sampling locations. The fitting
process yields the coefficients a, b and ¢ for each direction @.

ﬂ = IRISA 2

Ambient Occlusion Fields
Implementation: Preprocess

To fit the model for the average direction T, we minimize the devi-
ation from the sampled directions:

_ﬁ'-'
er(@) =Y (1 -T(d.r) Y(d.r;)) (10)

i=1

where T(dd, r;) refers to the sampled average direction (Equation 5)
and T(a,r;) to the approximated direction (Equation 7). The opti-
mization yields C,{d). the characteristic point of the occluder.

Ambient Occlusion Fields
Implementation: Algorithm

- When rendering a receiving surface, the polynomials are
fetched from the cube-map associated with the occluder.

» To compute the ambient occlusion from the direction Y and
subtended solid angle Q , we need to integrate a cosine
weighted spherical cap.

We computed a small look-up-table parameterized by solid
angle and the elevation angle relative to surface.

* Note that the azimuth angle can be ignored, since it does
not affect to the result.

25 26
ﬂ P IRISA ﬂ B IRISA
Ambient Occlusion Fields Ambient Occlusion Fields
Implementation: Algorithm Implementation: Combining Occluders
g e gt PO e 10 maer + We want to get an approximate value for A, by utilizing the known
i peld e ambient occlusion values A, and A,.
.u 1eceu’er§mfﬂce 1101111&1111p1;elds space ° We are nOt USIng knOW|edge abOUt V or V ; bl.lt we may thlnk Of
a b
D LA three different cases that are
o distance * When an occluder completely overlaps the other one, the combined
H far falloff distance ambient occlusion is given by picking up the larger of the values A,
P nadenll ot and A,
IS, cclusion data cube-map * When the occluders do not overlap at all the value is given by the
Tg, dirction data cube-map sum of the ambient occlusions of each object. It is easy to see that
Teor spherical cap integration look-up-iable these two cases represent the extremes and the combined ambient
— occlusion Aab always satisfies:
;;f;:ﬁrfgf:gfgm max(A,, Ap) <= A, <= A, + A, .
(whem) ~ Toslal + This suggests the multiplicative ./a")ﬁ/ [a N
Felamp = Wax(r, 1 . <y . —\ L
oW blending of the shadow casted . .
A=Tglowt by each occluder into the framebu \Wﬂ O
return A
27
ﬂ B IRISA

ﬂ = IRISA 3

Ambient Occlusion Fields
Implementation: Rendering

Algorithm 2 Simple algorithm for rendering ambient occlusion
from multiple casters

Render the scene once with ambient light only
for all occluders, O do
for all receivers, R do
if R in the region of influence of O then
Render R with ambient occlusion field of O with mulii-
plicative blending
end if
end for
end for

ﬂ = _IRISA 2

Dynamic Ambient Occlusion

-

GameDevelopers <
BVIDIA.

Conference

Dynamic Ambient Occlusion
and Indirect Lighting

Michael Bunnell
NVIDIA Corporation

&

= _IRISA %0

Dynamic Ambient Occlusion

GameDevelopers < "

Conference AVIDIA.

Environment Lighting

Environment Map + Ambient Occlusion + Indirect Lighting

ﬂ = _ IRISA 3

Dynamic Ambient Occlusion

a1

GameDevelopers <

Conference

RVIDIA.

New Radiance Transfer Algorithm

» Useful for calculating Ambient Occlusion
and Indirect Lighting

+ Efficient and parallelizable
+ Implementation is real-time on GPU

+ Ideal for non-rigid bodies and dynamic
environments

ﬂ = IRISA 32

Dynamic Ambient Occlusion

GameDevelopers <
Conference HVIDIA.

Dynamic Ambient Occlusion

& &

« Define polygon meshes as disk-shaped
elements
- one element created for each vertex
— elements defined by position, normal, and area
— simplifies form factor calculation

..)

ﬂ P IRISA

Dynamic Ambient Occlusion

GameDevelopers <
Conference HVIDIA.
Form Factor

Ernitter element E occludes receiver

element R based on distance r and angles

rcos By max(:l, 4c059R)

B
™

« Percentage of the hemisphere above a point
occluded by an element (Solid Angle)

« Like radiosity form factor with 100% visibility

o o

3 ﬂ = _IRISA 3
GameDevelopers < GameDevelopers <
Conference AVIDIA. Conference AVIETAL
Calculating Occlusion Element Hierarchy
« Calculate occlusion at a receiver + We do not need to consider so many elements to get an
% accurate answer
element by summing form factors: ~ A detailed head or simple bal will shadow distant objects
e same
occlusion = 0; + Group elements together, forming larger elements
Fod Gaek WG B « Only traverse children when close to parent
« Easy to generate automatically since we don’t need
occlusion += form factor of E; actual geometry
o
ﬂ ™ IRISA % %6

Dynamic Ambient Occlusion

GameDevelopers <
RVIDIA.

Conference

Double Shadowing

A B
/\

C
« Aand B both shadow C
« Cshadowed properly
* No double shadowing

ﬂ = _IRISA 37

Dynamic Ambient Occlusion

GameDevelopers 2
BVIDIA.

Conference

Double Shadowing

A
—_— B

« A and B bath shadow C

« Cis shadowed too much

+ Double shadowing after first pass
e GpC

ﬂ = _IRISA 38

Dynamic Ambient Occlusion

GameDevelopers <>
NVIDIA.

Conference

Double Shadowing

« Lighten B’s shadow in second pass since it is
shadowed

« Double shadowing eliminated
"y G

ﬂ = _ IRISA %

Dynamic Ambient Occlusion

» We calculate the accessibility values (1 — occlusion) in two passes.

* In the first pass, we approximate the accessibility for each element by
summing the fraction of the hemisphere subtended by every other
element and subtracting the result from 1.

« After the first pass, some elements will generally be too dark because
other elements that are in shadow are themselves casting shadows.

* So we use a second pass to do the same calculation, but this time we
multiply each form factor by the emitter element’s accessibility from the
last pass.

* The effect is that elements that are in shadow will cast fewer shadows
on other elements.

* After the second pass, we have removed any double shadowing.

* However, surfaces that are triple shadowed or more will end up being
too light. We can use more passes to get a better approximation

ﬂ = IRISA 40

Dynamic Ambient Occlusion

GameDevelopers <
Conference NVIDIA.

Eliminating Double Shadowing

1 pass 2 passes 3 passes Ray traced

« Multiply form factor by 1 - occlusion calculated
in the previous pass

« Converges to correct shadowing quickly (2 3 .
passes are often enough) ’
. + Results compare favorably with ray tracing |
o 4 -

ﬂ P IRISA

41

Dynamic Ambient Occlusion

GameDevelopers <

Conference BVIDIA.

Performance

00,000

42

Dynamic Ambient Occlusion

GameDevelopers <

Conference RVIDIA.

Indirect Lighting

+ Light reflecting off diffuse surfaces
« Used effectively in Shrek 2
+ Adds an extra level of realism

+ Can be used with traditional and
environment lighting

% L

ﬂ B _IRISA

43

Dynamic Ambient Occlusion
Indirect Lighting

+ We can add an extra level of realism to rendered
images by adding indirect lighting caused by
light reflecting off diffuse surfaces.

* We can add a single bounce of indirect light
using a slight variation of the ambient occlusion
shader.

* We replace the solid angle function with a disk-

to-disk radiance transfer function. We use one
pass of the shader to transfer the reflected or
emitted light and two passes to shadow the light.

ﬂ = IRISA 44

Dynamic Ambient Occlusion
Indirect Lighting

For indirect lighting, first we need to calculate the amount of
light to reflect off the front face of each surface element.

If the reflected light comes from environment lighting, then we
compute the ambient occlusion data first and use it to
compute the environment light that reaches each vertex.

If we are using direct lighting from point or directional lights,
we compute the light at each element just as if we are
shading the surface, including shadow mapping.

We can also do both environment lighting and direct lighting
and sum the two results. We then multiply the light values by
the color of the surface element, so that red surfaces reflect

red, yellow surfaces reflect yellow, and so on.

Area lights are handled just like light-reflective diffuse
surfaces except that they are initialized with a light value to
emit.

a = _IRISA 45

Dynamic Ambient Occlusion
Indirect Lighting

We calculate the amount of light transferred from one
surface element to another using the geometric term of

the disk-to-disk form factor. Acos8 cos b,

e + A
We leave off the visibility factor, which takes into account

blocking (occluding) geometry.

Instead we use a shadowing technique like the one we
used for calculating ambient occlusion, only this time we
use the same form factor that we used to transfer the
light. Multiply form factor by (1 — occlusion)

Also, we multiply the shadowing element’s form factor by
the three-component light value instead of a single-
component accessibility value.

a = _IRISA 46

Dynamic Ambient Occlusion
Indirect Lighting

* We now run one pass of our radiance-transfer
shader to calculate the maximum amount of
reflected or emitted light that can reach any
element.

* Then we run a shadow pass that subtracts from
the total light at each element based on how
much light reaches the shadowing elements.

+ Just as with ambient occlusion, we can run
another pass to improve the lighting by removing
double shadowing.

a = _ IRISA 4

Dynamic Ambient Occlusion

GameDevelopers <
RVIDIA.

Conference

Direct Lighting

. : Scene lit with shadow mapped point light source
Y, o

' GOC e
a = IRISA 48

Dynamic Ambient Occlusion

GameDevelopers <

RVIDIA.

Conference

Indirect Light Pass 1

“% Distribute indirect light in first pass

ﬂ = _IRISA 49

Dynamic Ambient Occlusion

GameDevelopers <

RVIDIA.

Conference

Indirect Light Pass 2

% Shadow indirect light in second pass

ﬂ = _IRISA %0

Dynamic Ambient Occlusion

GameDevelopers <

RVIDIA.

Conference

Direct Light + 1 Bounce Indirect Light

Indirect light * surface color + direct
light

= _ IRISA o

Dynamic Ambient Occlusion

GameDevelopers <
RVIDIA.

Conference

Direct Light + 2 Bounces Indirect Light

Second bounce of indirect light
takes 2 more passes

*
W’ GRC
ﬂ = IRISA 52

Dynamic Ambient Occlusion

GameDevelopers >
AVIDIA.

Conference

Indirect Lighting Shader

+ Use the same basic shader as ambient
occlusion

Uses standard radiosity disk to disk
radiance transfer approximation

« First pass distributes 3-component light
values

« One or more subsequent passes shadow
that light, subtracting from it

Area lights can use the same shader

= _IRISA 3

Dynamic Ambient Occlusion

GameDevelopers >
Conference NVIDIA.
Applications

« Shadow environment lighting of non-
rigid objects

Indirect lighting

Area lights

« Subsurface scattering®

+ Accelerate generation of

— pre-computed radiance transfer data

- light maps

— ambient occlusion data

ﬂ = _IRISA o4

o

Dynamic Ambient Occlusion

The Source for.
GPU Programming

developer.nvidia.com

Latest News

Developer Events Calendar
Technical Documentation
Conference Presentations

GPU Programming Guide
Powerful Tools, SDKs and more ...

Join our FREE registered developer program for early
access to NVIDIA drivers; clitting edge toolS;online
support forums, and mores

developer.nvidia.com

ﬂ B _IRISA %5

Dynamic Ambient Occlusion

GPU Gems 2
Programming Techniques for High-Performance Graphi
and General-Purpose Computation

GPUGems 2
+ 880 full-color pages, 330 figures, hard cover

+ $59.99
+ Experts from universities and industry

“The topics covered in GPU Gems 2 are critical to the next generation of game
engines.”
— Gary McTaggart, Software Engineer at Valve, Creators of Half-Life and Coanter-Strike

“GPU Gems 2 isn’t meant to simply adorn vour bookshelf—it’s required reading for
anyone trying to keep pace with the rapid evolution of programmable graphics. If
you’re serious about graphics, this book will take you to the edge of what the GPU
can do.”

—Rémi Arnaad, Graphics Architect at Sony Computer Entertainment

ﬂ = IRISA %6

