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Summary
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Lighting: Ambient Light Sources
• Objects not directly lit are typically still visible

– e.g., the ceiling in this room, undersides of desks

• This is the result of indirect illumination from emitters, 
bouncing off intermediate surfaces

• Too expensive to calculate (in real time), so we use a 
hack called an ambient light source
– No spatial or directional characteristics; illuminates all 

surfaces equally
– Amount reflected depends on surface properties

4

Lighting: Ambient Light Sources

• For each sampled wavelength (R, G, B), 
the ambient light reflected from a surface 
depends on
– The surface properties, kambient

– The intensity, Iambient, of the ambient light 
source (constant for all points on all surfaces )

• Ireflected = kambient Iambient
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Lighting: Ambient Light Sources

• A scene lit only with an ambient light 
source: Light Position

Not Important

Viewer Position
Not Important

Surface Angle
Not Important
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Lighting: Ambient Term

This is a total hack (avoids complexity of global illumination)!

• Represents reflection of all indirect 
illumination
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Definiton

The radiance at point x and in direction ωr is:

If the BRDF fr is Lambertian and we ignore occlusion 
by objects in the scene (Vx = 1), the above equation
can be simplified to:
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Definiton
• Ambient occlusion refers to the attenuation of 

ambient light due to the occlusion of nearby 
geometry.

• The ambient occlusion approximation is as 
follows:

• The first integral is ambient visibility which can 
be pre-computed and stored in another texture 
map.
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Definiton
• Ambient occlusion refers to the 

attenuation of ambient light due 
to the occlusion of nearby 
geometry.

• Here x is the location and n is 
the normal vector on the 
receiving surface. V(x,ω) is the 
visibility function that has value 
zero when no geometry is 
visible in direction w and one 
otherwise.
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Definiton
• Multiplying the classical ambient term with 1−A 

gives a much better looking result than the dull 
constant, because the ambient occlusion is able to 
approximate effects that are otherwise attainable 
only by computing full global illumination. 

• For instance, sharp corners appear darker than 
open areas and objects cast plausible contact 
shadows on the surfaces they are resting on.

• Compared to a full global illumination solution, 
ambient occlusion is signifcantly faster to compute
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Definiton

• The self-occlusion of a rigid object can be 
computed as a preprocess and then re-used 
in different environments. Since the data can 
be stored in a texture map or as vertex 
attributes, the technique has a negligible 
run-time overhead. 

• For this reason, ambient occlusion is gaining 
interest also in the real-time graphics 
community.
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Computing the Ambient Occlusion

• For each vertex, we compute A using ray tracing or 
the GPU (rasterization).

• Store it in a the vertex data structure.
• Let x be a point (as seen through a pixel).
• Use the vertex data structure to get the AO values 

As of the triangle’s vertices containing x.
• Interpolate the As to get the AO value Ax of x
• Multiply Ax by the ambient radiance (intensity)
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Computing the Ambient Occlusion

• Computing the AO values for each vertex is 
a demanding process in terms of computing 
resource.

• Find out fast solutions:
– Ambien Occlusion Fields
– Dynamic Ambient Occlusion
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Ambient Occlusion Fields
Spherical Cap Approximation

• To quickly 
determine ambient 
occlusion at an 
arbitrary point in 
space around an 
occluder, we 
approximate the 
visibility of the 
occluder with a 
spherical cap
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Ambient Occlusion Fields
Spherical Cap Approximation

• We define Vcap(x,ω) as the visibility function of a 
cap from position x towards direction ω. 

• Thus for each location x there is a 
corresponding spherical cap representing the 
occluder. 

• Vcap(x,ω) has value one when ω falls within the 
cap and zero otherwise. 

• We get an approximation of ambient occlusion.
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Ambient Occlusion Fields
Spherical Cap Approximation

• To evaluate the above integral we need to be 
able to construct the function Vcap(x,ω).

• We determine the size of the spherical cap from 
the solid angle subtended by the occluder. This 
is defined at position x as.

• Here Θ refers to integration over a sphere. Ω(x) 
equals 4π when the object is blocking every 
direction as seen from point x and zero when the 
object is not visible at all.
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Ambient Occlusion Fields
Spherical Cap Approximation

• As the direction of the cap, we use the 
average direction of occlusion:

• Thus Υ(x) is the componentwise average 
of all the directions ω for which the 
visibility function V(x,ω) evaluates to one.
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Ambient Occlusion Fields
Storing  Ω and Υ

• Now that we have means for evaluating ambient occlusion 
on an arbitrary surface point based on vector Υ(x) and scalar 
Ω(x) , we consider how to store these fields compactly in 3D.

• Since our goal is to express accurate contact shadows, we 
need high resolution near the object and lower resolution 
suffices at larger distances. 

• Optimally, the resolution would depend on the distance from 
the surface of the object. However, since this is not easily 
achieved in practice, we use a radial parameterization.

• We parameterize the space by direction w and distance r 
from the center of the occluder and express the fields with 
respect to these parameters:
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Ambient Occlusion Fields
Storing  Ω and Υ

• To compactly store Ω and Υ, we assume that given a 
direction ω, the fields behave predictably as functions of 
radial distance. 

• Thus in the following we construct models for both quantities 
as functions of r.

• For an efficient representation of Ω (ω, r) we use the 
knowledge that the solid angle subtended by an object is 
approximately proportional to the inverse square root of r. 

• To capture this, we use the following model to express the 
solid angle:

• In order to fit the above model to data, the coefficients a(ω), 
b(ω) and c(ω) have to be determined for each direction ω.
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Ambient Occlusion Fields
Storing  Ω and Υ

• To find a model for the average direction Υ, we note that 
when going farther away from the object, the average 
direction approaches the direction towards the center point of 
the object, while in the close proximity the direction might 
deviate considerably. 

• We model this by:

• In above, given a direction ω, Co(ω) can be understood 
intuitively as a characteristic point of the occluder, i.e a point 
in space in which the direction of occlusion mostly points.

• The approximation sets Ў(ω, r) to point from (ω, r) to Co(ω). 
The challenge of fitting this model to data is to find Co that 
minimizes a suitable error metric.
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Ambient Occlusion Fields
Storing  Ω and Υ

• The solid angle Ω subtended by an object and the average 
direction of occlusion Υ are stored for each direction as 
functions of distance r. 

• At run-time these functions are fetched from a cube-map and 
evaluated at the receiving surface in order to compute 
ambient occlusion.
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Ambient Occlusion Fields
Implementation: Preprocess
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Ambient Occlusion Fields
Implementation: Preprocess

• Ray tracing or rasterization can be used for computing the 
samples.
• We chose rasterization to be able to utilize graphics
hardware. 
• To compute Ω and Υ for a single location, six images have 
to be rasterized to account for all directions.
• The images contain binary information indicating whether
the occluder is visible in a certain direction or not. 
• The images are read from the graphics card to the main 
memory, and Ω and Υ are computed

24

Ambient Occlusion Fields
Implementation: Preprocess
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Ambient Occlusion Fields
Implementation: Preprocess
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Ambient Occlusion Fields
Implementation: Algorithm

• When rendering a receiving surface, the polynomials are 
fetched from the cube-map associated with the occluder. 
• To compute the ambient occlusion from the direction Υ and 
subtended solid angle Ω , we need to integrate a cosine
weighted spherical cap.
We computed a small look-up-table parameterized by solid
angle and the elevation angle relative to surface.
• Note that the azimuth angle can be ignored, since it does
not affect to the result.
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Ambient Occlusion Fields
Implementation: Algorithm
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Ambient Occlusion Fields
Implementation: Combining Occluders

• We want to get an approximate value for Aab by utilizing the known 
ambient occlusion values Aa and Ab. 

• We are not using knowledge about Va or Vb, but we may think of 
three different cases that are

• When an occluder completely overlaps the other one, the combined 
ambient occlusion is given by picking up the larger of the values Aa
and Ab

• When the occluders do not overlap at all the value is given by the 
sum of the ambient occlusions of each object. It is easy to see that 
these two cases represent the extremes and the combined ambient 
occlusion Aab always satisfies:

max(Aa, Ab) <=  Aab <=  Aa + Ab

• This suggests the multiplicative 
blending of the shadow casted

by each occluder into the framebuffer.
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Ambient Occlusion Fields
Implementation: Rendering
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Dynamic Ambient Occlusion
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Dynamic Ambient Occlusion
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Dynamic Ambient Occlusion
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Dynamic Ambient Occlusion
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Dynamic Ambient Occlusion
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Dynamic Ambient Occlusion
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Dynamic Ambient Occlusion
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Dynamic Ambient Occlusion
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Dynamic Ambient Occlusion
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Dynamic Ambient Occlusion
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Dynamic Ambient Occlusion
Eliminating Double Shadowing
• We calculate the accessibility values (1 – occlusion) in two passes. 
• In the first pass, we approximate the accessibility for each element by 
summing the fraction of the hemisphere subtended by every other
element and subtracting the result from 1.
• After the first pass, some elements will generally be too dark because
other elements that are in shadow are themselves casting shadows. 
• So we use a second pass to do the same calculation, but this time we
multiply each form factor by the emitter element’s accessibility from the 
last pass. 
• The effect is that elements that are in shadow will cast fewer shadows
on other elements.
• After the second pass, we have removed any double shadowing.
• However, surfaces that are triple shadowed or more will end up being
too light. We can use more passes to get a better approximation
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Dynamic Ambient Occlusion
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Dynamic Ambient Occlusion
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Dynamic Ambient Occlusion
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Dynamic Ambient Occlusion
Indirect Lighting

• We can add an extra level of realism to rendered 
images by adding indirect lighting caused by 
light reflecting off diffuse surfaces.

• We can add a single bounce of indirect light 
using a slight variation of the ambient occlusion 
shader. 

• We replace the solid angle function with a disk-
to-disk radiance transfer function. We use one 
pass of the shader to transfer the reflected or 
emitted light and two passes to shadow the light.
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Dynamic Ambient Occlusion
Indirect Lighting

• For indirect lighting, first we need to calculate the amount of 
light to reflect off the front face of each surface element.

• If the reflected light comes from environment lighting, then we 
compute the ambient occlusion data first and use it to 
compute the environment light that reaches each vertex. 

• If we are using direct lighting from point or directional lights, 
we compute the light at each element just as if we are 
shading the surface, including shadow mapping.

• We can also do both environment lighting and direct lighting 
and sum the two results. We then multiply the light values by 
the color of the surface element, so that red surfaces reflect 
red, yellow surfaces reflect yellow, and so on. 

• Area lights are handled just like light-reflective diffuse 
surfaces except that they are initialized with a light value to 
emit.
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Dynamic Ambient Occlusion
Indirect Lighting

• We calculate the amount of light transferred from one 
surface element to another using the geometric term of 
the disk-to-disk form factor. 

• We leave off the visibility factor, which takes into account 
blocking (occluding) geometry.

• Instead we use a shadowing technique like the one we 
used for calculating ambient occlusion, only this time we 
use the same form factor that we used to transfer the 
light. Multiply form factor by (1 – occlusion)

• Also, we multiply the shadowing element’s form factor by 
the three-component light value instead of a single-
component accessibility value.
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Dynamic Ambient Occlusion
Indirect Lighting

• We now run one pass of our radiance-transfer 
shader to calculate the maximum amount of 
reflected or emitted light that can reach any 
element. 

• Then we run a shadow pass that subtracts from 
the total light at each element based on how 
much light reaches the shadowing elements. 

• Just as with ambient occlusion, we can run 
another pass to improve the lighting by removing 
double shadowing. 
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Dynamic Ambient Occlusion
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Dynamic Ambient Occlusion
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Dynamic Ambient Occlusion
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Dynamic Ambient Occlusion
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Dynamic Ambient Occlusion
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Dynamic Ambient Occlusion
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Dynamic Ambient Occlusion
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Dynamic Ambient Occlusion
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Dynamic Ambient Occlusion


