
1

Ambien Occlusion

Kadi Bouatouch
IRISA

Email: kadi@irisa.fr

2

Summary

1. Lighting
2. Definition
3. Computing the ambient occlusion
4. Ambient occlusion fields
5. Dynamic ambient occlusion

3

Lighting: Ambient Light Sources
• Objects not directly lit are typically still visible

– e.g., the ceiling in this room, undersides of desks

• This is the result of indirect illumination from emitters,
bouncing off intermediate surfaces

• Too expensive to calculate (in real time), so we use a
hack called an ambient light source
– No spatial or directional characteristics; illuminates all

surfaces equally
– Amount reflected depends on surface properties

4

Lighting: Ambient Light Sources

• For each sampled wavelength (R, G, B),
the ambient light reflected from a surface
depends on
– The surface properties, kambient

– The intensity, Iambient, of the ambient light
source (constant for all points on all surfaces)

• Ireflected = kambient Iambient

5

Lighting: Ambient Light Sources

• A scene lit only with an ambient light
source: Light Position

Not Important

Viewer Position
Not Important

Surface Angle
Not Important

6

Lighting: Ambient Term

This is a total hack (avoids complexity of global illumination)!

• Represents reflection of all indirect
illumination

7

Definiton

The radiance at point x and in direction ωr is:

If the BRDF fr is Lambertian and we ignore occlusion
by objects in the scene (Vx = 1), the above equation
can be simplified to:

8

Definiton
• Ambient occlusion refers to the attenuation of

ambient light due to the occlusion of nearby
geometry.

• The ambient occlusion approximation is as
follows:

• The first integral is ambient visibility which can
be pre-computed and stored in another texture
map.

9

Definiton
• Ambient occlusion refers to the

attenuation of ambient light due
to the occlusion of nearby
geometry.

• Here x is the location and n is
the normal vector on the
receiving surface. V(x,ω) is the
visibility function that has value
zero when no geometry is
visible in direction w and one
otherwise.

10

Definiton
• Multiplying the classical ambient term with 1−A

gives a much better looking result than the dull
constant, because the ambient occlusion is able to
approximate effects that are otherwise attainable
only by computing full global illumination.

• For instance, sharp corners appear darker than
open areas and objects cast plausible contact
shadows on the surfaces they are resting on.

• Compared to a full global illumination solution,
ambient occlusion is signifcantly faster to compute

11

Definiton

• The self-occlusion of a rigid object can be
computed as a preprocess and then re-used
in different environments. Since the data can
be stored in a texture map or as vertex
attributes, the technique has a negligible
run-time overhead.

• For this reason, ambient occlusion is gaining
interest also in the real-time graphics
community.

12

Computing the Ambient Occlusion

• For each vertex, we compute A using ray tracing or
the GPU (rasterization).

• Store it in a the vertex data structure.
• Let x be a point (as seen through a pixel).
• Use the vertex data structure to get the AO values

As of the triangle’s vertices containing x.
• Interpolate the As to get the AO value Ax of x
• Multiply Ax by the ambient radiance (intensity)

13

Computing the Ambient Occlusion

• Computing the AO values for each vertex is
a demanding process in terms of computing
resource.

• Find out fast solutions:
– Ambien Occlusion Fields
– Dynamic Ambient Occlusion

14

Ambient Occlusion Fields
Spherical Cap Approximation

• To quickly
determine ambient
occlusion at an
arbitrary point in
space around an
occluder, we
approximate the
visibility of the
occluder with a
spherical cap

15

Ambient Occlusion Fields
Spherical Cap Approximation

• We define Vcap(x,ω) as the visibility function of a
cap from position x towards direction ω.

• Thus for each location x there is a
corresponding spherical cap representing the
occluder.

• Vcap(x,ω) has value one when ω falls within the
cap and zero otherwise.

• We get an approximation of ambient occlusion.

16

Ambient Occlusion Fields
Spherical Cap Approximation

• To evaluate the above integral we need to be
able to construct the function Vcap(x,ω).

• We determine the size of the spherical cap from
the solid angle subtended by the occluder. This
is defined at position x as.

• Here Θ refers to integration over a sphere. Ω(x)
equals 4π when the object is blocking every
direction as seen from point x and zero when the
object is not visible at all.

17

Ambient Occlusion Fields
Spherical Cap Approximation

• As the direction of the cap, we use the
average direction of occlusion:

• Thus Υ(x) is the componentwise average
of all the directions ω for which the
visibility function V(x,ω) evaluates to one.

18

Ambient Occlusion Fields
Storing Ω and Υ

• Now that we have means for evaluating ambient occlusion
on an arbitrary surface point based on vector Υ(x) and scalar
Ω(x) , we consider how to store these fields compactly in 3D.

• Since our goal is to express accurate contact shadows, we
need high resolution near the object and lower resolution
suffices at larger distances.

• Optimally, the resolution would depend on the distance from
the surface of the object. However, since this is not easily
achieved in practice, we use a radial parameterization.

• We parameterize the space by direction w and distance r
from the center of the occluder and express the fields with
respect to these parameters:

19

Ambient Occlusion Fields
Storing Ω and Υ

• To compactly store Ω and Υ, we assume that given a
direction ω, the fields behave predictably as functions of
radial distance.

• Thus in the following we construct models for both quantities
as functions of r.

• For an efficient representation of Ω (ω, r) we use the
knowledge that the solid angle subtended by an object is
approximately proportional to the inverse square root of r.

• To capture this, we use the following model to express the
solid angle:

• In order to fit the above model to data, the coefficients a(ω),
b(ω) and c(ω) have to be determined for each direction ω.

20

Ambient Occlusion Fields
Storing Ω and Υ

• To find a model for the average direction Υ, we note that
when going farther away from the object, the average
direction approaches the direction towards the center point of
the object, while in the close proximity the direction might
deviate considerably.

• We model this by:

• In above, given a direction ω, Co(ω) can be understood
intuitively as a characteristic point of the occluder, i.e a point
in space in which the direction of occlusion mostly points.

• The approximation sets Ў(ω, r) to point from (ω, r) to Co(ω).
The challenge of fitting this model to data is to find Co that
minimizes a suitable error metric.

21

Ambient Occlusion Fields
Storing Ω and Υ

• The solid angle Ω subtended by an object and the average
direction of occlusion Υ are stored for each direction as
functions of distance r.

• At run-time these functions are fetched from a cube-map and
evaluated at the receiving surface in order to compute
ambient occlusion.

22

Ambient Occlusion Fields
Implementation: Preprocess

23

Ambient Occlusion Fields
Implementation: Preprocess

• Ray tracing or rasterization can be used for computing the
samples.
• We chose rasterization to be able to utilize graphics
hardware.
• To compute Ω and Υ for a single location, six images have
to be rasterized to account for all directions.
• The images contain binary information indicating whether
the occluder is visible in a certain direction or not.
• The images are read from the graphics card to the main
memory, and Ω and Υ are computed

24

Ambient Occlusion Fields
Implementation: Preprocess

25

Ambient Occlusion Fields
Implementation: Preprocess

26

Ambient Occlusion Fields
Implementation: Algorithm

• When rendering a receiving surface, the polynomials are
fetched from the cube-map associated with the occluder.
• To compute the ambient occlusion from the direction Υ and
subtended solid angle Ω , we need to integrate a cosine
weighted spherical cap.
We computed a small look-up-table parameterized by solid
angle and the elevation angle relative to surface.
• Note that the azimuth angle can be ignored, since it does
not affect to the result.

27

Ambient Occlusion Fields
Implementation: Algorithm

28

Ambient Occlusion Fields
Implementation: Combining Occluders

• We want to get an approximate value for Aab by utilizing the known
ambient occlusion values Aa and Ab.

• We are not using knowledge about Va or Vb, but we may think of
three different cases that are

• When an occluder completely overlaps the other one, the combined
ambient occlusion is given by picking up the larger of the values Aa
and Ab

• When the occluders do not overlap at all the value is given by the
sum of the ambient occlusions of each object. It is easy to see that
these two cases represent the extremes and the combined ambient
occlusion Aab always satisfies:

max(Aa, Ab) <= Aab <= Aa + Ab

• This suggests the multiplicative
blending of the shadow casted

by each occluder into the framebuffer.

29

Ambient Occlusion Fields
Implementation: Rendering

30

Dynamic Ambient Occlusion

31

Dynamic Ambient Occlusion

32

Dynamic Ambient Occlusion

33

Dynamic Ambient Occlusion

34

Dynamic Ambient Occlusion

35

Dynamic Ambient Occlusion

36

Dynamic Ambient Occlusion

37

Dynamic Ambient Occlusion

38

Dynamic Ambient Occlusion

39

Dynamic Ambient Occlusion

40

Dynamic Ambient Occlusion
Eliminating Double Shadowing
• We calculate the accessibility values (1 – occlusion) in two passes.
• In the first pass, we approximate the accessibility for each element by
summing the fraction of the hemisphere subtended by every other
element and subtracting the result from 1.
• After the first pass, some elements will generally be too dark because
other elements that are in shadow are themselves casting shadows.
• So we use a second pass to do the same calculation, but this time we
multiply each form factor by the emitter element’s accessibility from the
last pass.
• The effect is that elements that are in shadow will cast fewer shadows
on other elements.
• After the second pass, we have removed any double shadowing.
• However, surfaces that are triple shadowed or more will end up being
too light. We can use more passes to get a better approximation

41

Dynamic Ambient Occlusion

42

Dynamic Ambient Occlusion

43

Dynamic Ambient Occlusion

44

Dynamic Ambient Occlusion
Indirect Lighting

• We can add an extra level of realism to rendered
images by adding indirect lighting caused by
light reflecting off diffuse surfaces.

• We can add a single bounce of indirect light
using a slight variation of the ambient occlusion
shader.

• We replace the solid angle function with a disk-
to-disk radiance transfer function. We use one
pass of the shader to transfer the reflected or
emitted light and two passes to shadow the light.

45

Dynamic Ambient Occlusion
Indirect Lighting

• For indirect lighting, first we need to calculate the amount of
light to reflect off the front face of each surface element.

• If the reflected light comes from environment lighting, then we
compute the ambient occlusion data first and use it to
compute the environment light that reaches each vertex.

• If we are using direct lighting from point or directional lights,
we compute the light at each element just as if we are
shading the surface, including shadow mapping.

• We can also do both environment lighting and direct lighting
and sum the two results. We then multiply the light values by
the color of the surface element, so that red surfaces reflect
red, yellow surfaces reflect yellow, and so on.

• Area lights are handled just like light-reflective diffuse
surfaces except that they are initialized with a light value to
emit.

46

Dynamic Ambient Occlusion
Indirect Lighting

• We calculate the amount of light transferred from one
surface element to another using the geometric term of
the disk-to-disk form factor.

• We leave off the visibility factor, which takes into account
blocking (occluding) geometry.

• Instead we use a shadowing technique like the one we
used for calculating ambient occlusion, only this time we
use the same form factor that we used to transfer the
light. Multiply form factor by (1 – occlusion)

• Also, we multiply the shadowing element’s form factor by
the three-component light value instead of a single-
component accessibility value.

47

Dynamic Ambient Occlusion
Indirect Lighting

• We now run one pass of our radiance-transfer
shader to calculate the maximum amount of
reflected or emitted light that can reach any
element.

• Then we run a shadow pass that subtracts from
the total light at each element based on how
much light reaches the shadowing elements.

• Just as with ambient occlusion, we can run
another pass to improve the lighting by removing
double shadowing.

48

Dynamic Ambient Occlusion

49

Dynamic Ambient Occlusion

50

Dynamic Ambient Occlusion

51

Dynamic Ambient Occlusion

52

Dynamic Ambient Occlusion

53

Dynamic Ambient Occlusion

54

Dynamic Ambient Occlusion

55

Dynamic Ambient Occlusion

56

Dynamic Ambient Occlusion

