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Chapter 1

Introduction

In the recent literature, significant progresses have been made in the field of rendering techniques through
the use of improved global illumination model. A global illumination model describes the light transport
mechanism between surfaces, that is, the way each surface element interacts with the others. Therefore, the
global illumination model is a key problem when accuracy is needed in the rendering process (photorealism
or photosimulation). So far, two approaches have been proposed to solve this problem : the former is
based on ray tracing and the latter is based on the so-called radiosity solution. As these two approaches
are complementary, several authors have tried to deal efficiently with all the light transport mechanisms by
mixing both approaches in their model.

To attain realism in computer graphics, two main attempts have been adopted. The first one make use
of empirical and ad-hoc illumination models, while the other makes use of the fundamental physical laws
governing the interaction of light with materials and participating media, and of the characteristics of the
human visual system, in order to produce images which are exact representations of the real world. This
tutorial deals with this second approach, and shows how the real aspects of materials and the real simulation
of global lighting can be simulated only with physics-based reflection and transmission models, and with a
spectral representation of the emitted, reflected and refracted light powers.

The goal of this tutorial is threefold. First, it shows how a global illumination model can be derived
from physics, optics, and photometry. Second, It provides a collection of information on colorimetry, visual
perception and visualisation aiming at a full understanding. Third, different implementations of global
illumination model are presented: radiosity, one-pass and two pass-methods.






Chapter 2

Photometry

2.1 Light

Light can be considered as a mixture of electromagnetic waves which propagate at the same velocity called
light velocity. Fach of these waves has a frequency, a period and a wavelength A. Each wave of a light,
called from now on spectral component, has an energy proportional to the the square of its amplitude. A
radiation is no more than an emission or transport of light energy through a medium. In addition, each
spectral component of light seen in isolation has a characteristic color appearance. Long wavelengths of
visible light, say around 700nm, generally appear red. Short wavelength components, say around 400nm,
generally appear blue. These facts explain why Newton observed a rainbow.

Because the wavelength decomposition is fundamental, we can describe any light completely by the
amount of power (energy per unit time) in each of its spectral wavelength components. This description
consists of a fairly long series of values called the spectral power distribution of the light. The precise number
of values necessary to describe the light depends on how finely the wavelength samples are spaced. Typical
wavelength spacing ranges between 1nm and 10nm, depending on the goals of the specification and how
rapidly the power may vary with wavelength. The human visual system is only sensitive to the wavelengths
of light ranging between 380nm and 780nm. If we space the wavelength samples at 10nm, 31 values are
required. Later on, we will see that 4 or 10 not equally spaced values are sufficient to precisely produce
colored synthetic images.

A another fundamental fact about light is that the spectral power distribution of the mixture of two
lights is the sum of the spectral power distributions of the individual lights.

A light power ® and its spectral distribution ®()) are related by the following formula:

780nm
o= / BN,
3

80nm

Note that, to an energetic power @, (expressed in watts) of spectral distribution ®.(A) corresponds a
luminous power (expressed in lumens) having ®,(A) as spectral distribution. The relationship between these
quantities are:

o, = /Oocpe(x)dx
680V (\)®. (\)

3, = / &, (N)dA,
0

4
3
—

>
R

Il

where V() is the sensitivity function of the human eye. This function is null out of the range [380nm, 780nm].
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Figure 2.1: Geometry for radiometric quantities

In the following, the expressions of all radiometric quantities are valid for light powers (®) as well as for
each spectral component (®(A)).

2.2 Important radiometric quantities

We recall herewith the expressions of the radiometric quantities used for the determination of a global
illumination model (see figure 2.1).

e light power or flux: is the energy leaving a surface or impinging onto a surface per unit time.

e radiant intensity: is the flux leaving a surface per unit solid angle:
I do
S dy

e radiance: is the flux leaving a surface per unit projected surface and per unit solid angle. Therefore,
the flux transmitted from surface dS; to surface dSsy is

d2q> = Llcos61d51d91

dS.dS
= Ljicosf cosls 12 2
r
where 0. dS
dQl _ COS Z 2
r

and L is the radiance of surface dS;. Radiance 1s sometime improperly called intensity but this latter
will be avoided here because it could be confused with radiant intensity which is the radiant power per
unit solid angle. It is important to note that the human eye is only sensitive to radiance. Therefore,
a global illumination model must account for the computation of radiance of surfaces seen by the
observer. In general, radiance is direction dependent.

e radiant exitance : is also called radiant emittance or radiosity. It represents the light power leaving
a surface, per unit area and is given by
_d*®

B = E = L1 COS 91dQ1

e irradiance: is the light power, per unit area, impinging onto a surface. It is expressed as

d’®
A= E = L1 C0862d92 (21)



where
dSy cos By

dQy = s

The following table recalls all these radiometric quantities.

energetic quantity luminous quantity
Flux d.(A) (Watt) &u(A) (lumen)
Radiant intensity I.(\) = %& (Watt.strd=1) 1, (candela)
Irradiance E. () = %& (Watt.m=?) E, (luz)
or Exitance
Radiance LX) = ﬁd’;c%:—a (W.strd='.m=?) | L, (candela.m™?)
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Chapter 3

Reflection and Transmission

3.1 Definitions

A lot of quantities can be found in the radiometry theory to characterize reflectivity but only two of them
will be used here : the bidirectional reflectance and the coefficient of reflection. As for transmission, it is
characterized by the bidirectional transmittance. This coefficient of reflection or reflectance is simply the
ratio of the reflected power by the incident power for a small surface element. It is given by

_ d>®, B, radiosity

d?®; A; irradiance

p

For defining the bidirectional reflectance, let us consider a small surface receiving light power contained in
a small solid angle dQ22 about a given direction of incidence. This light is reflected in all directions but let
us consider the radiance dL, in a direction of reflection ©, (figure 3.1). Then, the bidirectional reflectance
is the ratio

dL, radiance
fr(0;,0,) = = —.
r( ) dA irradiance
or dr,.(©,)ds
fr(0;,0,)= ———2 =
r( ) d2®;(6;)

If d?®;(©;) comes from a small light emitting surface of radiancel;, given equation 2.1, we have :

dL,

£:(0;,0,) = —
I‘( ) LiCOSGZ’dQZ’

(3.1)

Now, if we consider a small solid angle about ©,, the ratio of the reflected power d3®, in direction O, to
the incident power d?®; coming from direction ©; is

d3®,
20, £:(0;,0,) cos 0,dQ;.
Thus,
(@-) — dz(b,« _/ f, (@. ) )COSH d0 (3 2)
Pz—dzq)i_%r iy Or, »dS), . 2

From the above formula, it appears that only the bidirectional reflectance function can describe accurately
the spatial distribution of the reflected light power coming from an incident ray of light in a given direction.
The reflectance function only deals with reflection in term of energy exchanges. Note, however, that the

11
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Figure 3.1: Geometry of reflection

bidirectional reflectance is irrelevant in case of perfect specular surfaces because it becomes a Dirac function

b
fr(@i,@r) _ 6(€z —0r,0; — ¢r)p(®z)

cos 0, sin 0,

where 0,, ¢, define the direction of perfect mirror reflection. In this case, the reflectance is given by the
Fresnel formula [4]

Similarly, the bidirectional transmittance f;(©;,©,) is the ratio of the radiance dL; in a direction of
refraction ©; by the irradiance for a direction of incidence. It is given by:

dL di
£,(04,07) = dLi _ _radiance

dA irradiance’

12
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3.2 Reflection Models

Several physics-based reflection models have been proposed in the literature [29, 12, 49]. Let us focus
on that of Cook and Torrance [12]. With this model, the reflected light depends on the wavelength, the
incidence angle, the roughness parameter, and the surface refractive index (this index is a complex number
for metallic materials). This model takes into account the polarization of the light, the roughness and the
masking/shadowing of the materials. Let us briefly review this model. This model can be easily extended
to account for interference [16].

This model is expressed as:

R=sR;,+dRg; with s+d=1

where Ry and R, are respectively the diffuse and specular components, d and s are the proportions of the
incident light which give rise to the diffuse and specular components respectively.

Ry is independent of the incident angle, and can be approximated by w [12], where F'(A,0) is the
Fresnel factor for a normal incidence.

R, accounts for the roughness as well as for the masking/shadowing effects, and is expressed as:

1 F(\0).D.G
Rs__(’)

47 cosB; cosf, ’

where F'(),0) is the Fresnel factor, 6; is the incidence angle (direction ©;), 6, the reflection angle (direction
©,) and 6 equals half of the angle between the directions ©; and ©,. G is the masking/shadowing function,
and D models the roughness effect. In our implementation, D is the Beckman function. The Fresnel factor
is given by the Fresnel formula.

In several books [51, 3, 50], we can find, for several materials, Fresnel factor curves F'(A,0) for normal
incidence, as well as the refraction index f for the wavelength A = 589 (Sodium D lines) which corresponds to
the center of the visible spectrum. Given these data, F'(A, ) can be approximated [12], for each wavelength,

by:
(2,0
F(},0)’

F(Xi,0) = F(X,0) + (F()\Z-, g) - F()\Z-,O)) II;( -
where F(),0) is given by the Fresnel formula for .

In [50], for several materials, values of the refraction index are given for a certain number of wavelengths.
In this case, F'(A, 6) can be exactly expressed with the Fresnel formula.

Knowing the expression of F'(X,#), we can precompute it for each sample wavelength and for different
values of # (20 seem enough). These values allow to create a look-up table, from which any F'(X,0) can be
computed by a simple linear interpolation.

3.2.1 Transmission Model

So far, no physics-based transmission models have been proposed in the literature, but only an empirical
one [23]. Rather than using an empirical transmission model, it is more realistic, for each material, to use
transmittance values experimentally obtained with the help of a spectrophotometer [19]. In case of ideal
specular refraction, R; is no more than 1 — F'(A,#), and s = 1.

14



Chapter 4

Light Sources

4.1 Physical Light Sources

Real light sources are often assumed to be perfectly Lambertian for many global illumination algorithms.
Such algorithms have been extended to handle light sources with any intensity distribution curves to simulate
the outdoor lighting [7]. In this case light sources are assumed to be far enough from the ground and buildings
to be considered as points. This section shows how area light sources with any spatial distribution function
may be accounted for.

4.1.1 Light Sources Representation
Most of the time, data specifying area light sources (given by manufacturers) are:

e the geometry of the light source (size, materials, ...) and the luminous intensity distribution curves for
both transversal and longitudinal planes. This intensity distribution is provided while assuming that
the total luminous light power emitted in all the directions by the source is equal to 1000 lumens.

e the spectral energy distribution ®(A) of the lamp, and its total luminous light power ®;. Note that
the spectral energy distribution ®(X) corresponds to a luminous light energy of 1 lumen. In this imple-
mentation, we assume that the spectral energy distribution is not modified by the internal reflecting
components of the light source.

The actual intensity distribution of the light source is then obtained by scaling the provided distribution
curves by 1000 since the provided data representing the intensity distribution corresponds to a flux of 1000
lumens.

4.1.2 Making These Informations Usable

As a global illumination model is expressed in terms of spectral radiance, we need to transform the spatial
luminous intensity data into spatial spectral radiance data [32].

Luminous Intensity to Luminous Radiance

Let us consider the geometry of a light source element dS illuminating a surface element dA as shown in
figure 4.1. The radiance of surface dS as seen from dA is:

d*®

Lj= ———
47 dQdS cos o



Figure 4.1: Geometry of illumination

with
_ dAcost

dQ :

r

Let us recall that the intensity is the light power per unit solid angle. The intensity in direction d is then
given by I; = d®,4/dQ, where d®, is the light power emitted in solid angle dQ2. Since the light power d®,4
can be rewritten as I3d$2, the radiance in direction d can be expressed as:

dlg

Ly=—.
4= dScosa

If we suppose that the spatial intensity distribution is the same for any point of the light source, then we

can write: /
L= —"2 4.1
4= Scosa (4.1)

This transformation has to be performed for all the sample directions in the transversal and longitudinal
planes.

Luminous Radiance to Spectral Radiance

The next transformation consists in transforming the luminous radiance Ly into spectral radiance. The
luminous radiance is related to the spectral radiance Lz(A) by the formula:

'>\maz:
La = 680 / La()V(\)dA

Amin

where V() is the spectral sensitivity function. The available information is the spatial luminous radiance
distribution L4 (previously computed) as well as the spectral energy distribution ®(A) to which the spectral
radiance distribution is proportional. If we assume that the spectral radiance and the spectral energy
distribution ®(A) (provided by manufacturers) have the same shape, then the spectral radiance Lg(A) for a
sample direction d is obtained by solving the system:

min

La =680 [}™= Ly(\)V(A\)dA
La(X) = scale_factor x ®(A),VA

16



The integral can then be written as:

Amas
Ly = 680/ scale_factor x ®(A)V(X)dA
Amin
Amac
= scale_factor*GSO/ S(A)V(N)dA

Amin

Since 680 f)\)‘"‘_” S(A)V(A)dA = 1 (by definition, see 4.1.1), scale_factor = Ly and the spectral radiance in
direction d is simply:

La(A) = Lg * ®()), VA (4.2)

4.1.3 Computing the Radiance in any Direction

We have shown how the spectral radiance is computed for the sample angles in both longitudinal and
transversal planes. Now, let d = (0, ¢) be a lighting direction, § and ¢ being the polar and azimuthal angles
respectively. This direction is projected onto both longitudinal and transversal planes, giving thus the two
angles ¢; and ¢;. The spectral radiance L(A)(f, ) is obtained as follows: for both reference planes, the
radiances L;(A)(¢1) and L;(A)(¢:) in directions ¢; and ¢; are computed by a linear interpolation involving
the closest sample polar angles. Then the radiance in direction (6, ¢) is obtained by elliptic interpolation

from Li(A)(¢1) and Ly(A)(¢:):

N)(0,8) = /LN (60) cos? 0 + LE(AN)(61) sin” 0 (4.3)

In contrast to a linear interpolation, this method eliminates the discontinuities along the transversal and
longitudinal axes of the lamp.

4.2 Sky Lighting

To obtain photorealistic images, sky lighting has to be accounted for. Indeed, architects and interior deco-
rators need to know the lighting of their room at a given time, and under different weather situations. They
wish to visualize the lighting as a function of the number of windows and their location in the scene. Let us
see now how a radiosity algorithm handles sky lighting through windows.

Recall that the radiosity algorithm computes light interreflections between objects in a closed environment
(energy balance). To extend this algorithm to environments containing windows we had to adapt this
algorithm and make the following assumptions.

First we assume that there is no interaction with the objects lying outdoors (energy leaving the scene
through the window will not come back into the scene).

On the other hand, the sky cannot be considered as any other area light source, since its spectral radiance
distribution depends on the direction along which a point sees the sky. The sky radiance distribution cannot
be represented as for artificial light sources. Indeed, the two longitudinal and transversal planes are not
sufficient to accurately model the sky radiance.

Finally, the window panes absorb the incoming light but do not refract it.

4.2.1 Indoor lighting

As the sky light can enter the environment only through the windows, these latters can be considered as
area light sources which reemit the sky light.

To compute the sky contribution to a patch P within the environment, the windows are sampled into
small patches Py . Let k and s be the centers of patches P and Py respectively. If we assume that the
sky radiance is constant over the solid angle dw subtended by Pw and having point k£ as apex, then the
irradiance Ey; at point k is given by:

17
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Figure 4.2: Window sampling

Eys = dw x SkyRadiancey, x cos, (4.4)

where SkyRadiancey, is the sky radiance in direction ks and @ the angle formed by ks and the normal to
patch P. If we assume that irradiance due to a window patch Py is constant over a receiving patch P, then
the total flux ®p received by patch P from patch Py 1s:

®p = Ap x Ly,

where Ap is the surface area of patch P.
In this way, the contribution of all the window patches is evaluated before starting the shooting process
of the radiosity method.

4.2.2 Outdoor lighting

For each patch of the environment the contribution of the sky light is calculated as follows. A hemisphere is
placed at the center C of each patch P, and is discretized into small surface elements named pixels. To each
pixel corresponds a solid angle dw subtended by this pixel and having C' as apex. A ray is traced from C
through each pixel in order to determine if the sky is seen by C in the ray direction D. If yes, the irradiance
due to the sky at point C is given by:

Fp = dw x SkyRadiancep x cos,

where cos 6 is the polar angle associated with D.

18



Making the same assumptions as for window lighting, the total flux of patch P received from the sky is

@P :AP Z E@,)
1€[1,N]

where ©; is a ray direction and N the number of rays for which C' sees the sky. As before the shooting
process will start once the sky contribution to all the patches has been calculated.

4.2.3 Sky Models

To compute the sky contribution, we have seen that the algorithm needs the sky radiance value for each
direction (0, ¢). This sky radiance can be computed according to several models.

Uniform Sky

The uniform sky model simulates a cloudy sky and assumes that the radiance is the same in all directions.
This radiance is often set to 3183 candela/m?. The only advantage of the uniform sky model is its simplicity.
Note that this model is not realistic.

Moon and Spencer sky

The Moon and Spencer sky is also cloudy. The sky radiance is not uniform but is three times greater for
zenithal direction (4093cd/m?) than for the horizontal one (1364cd/m?). The Moon and Spencer formula is:

14+2xsind

L97¢ = Lz X 3 s

(4.5)

where L is the zenithal radiance and f, ¢ polar and azimuthal angles. This kind of sky normalized by the
C.LI.LE in 1955 is, to date, the only one modeling the worst weather conditions. It seems a good representation
of a dense cloudy sky.

Clear Sky

The clear sky model has been normalized by the C.I.E in 1973 [14]. Tt accounts for the sun location. In this
model, the sky radiance depends on three angles (see figure 4.3):

e polar angle of the sun: zo,
e polar angle of the direction in which the sky is seen: ¢,
e azimuthal angle between the sun direction and the direction in which the sky is seen: «.

We need a last angle v between the sun direction and that in which the sky is seen.
The radiance in the direction (¢, «) for a clear sky is then:

f(v) x 4(¢)

Lyo=1L,x m, (4.6)

where f and 1 are two diffusion functions of variable z:
f(2) = 0914 10exp(—3z)+ 0.45 cos® z, (4.7)
P(z) = 1—exp(—0.32 x ), (4.8)

cCosS ¥

Where L, is the zenithal radiance. One empirical expression of L, given by KROCHMANN is:

L. = 100 4 63hgo + ho(ho — 30)exp((ho — 68)0.0346), (4.9)

19



Figure 4.3: Angles for computation of clear sky radiances

where hg is expressed in degrees.

This sky model is the most time expensive but seems to be more realistic.

The models described above are only approximation made thanks to measurements. A better model
should simulate sun light passing through participating media (atmosphere) as done in [31].

For cloudy sky models such as the uniform sky or Moon and Spencer sky, the direct sun contribution is
not accounted for. But, in case of a non cloudy sky, the direct sun lighting could be added.

20



Chapter 5

Global Illumination

5.1 Global Illumination Model

Our goal is now to derive an expression of the light power leaving a surface S; at a point Z; and reaching
surface S; at a point Z; (figure 5.1). This light power is due to the self emittance of S; but also to its reflection
and refraction properties. At this point, we leave out of account the occlusion problem and consider that
any surface Sp or S; contributes entirely to the illumination of surface S;.

From now on, the following conventions will be adopted in all our notations :

e «; and (; refer, respectively, to angle of incidence and angle of reflection at point z; of a surface S;.

° aﬁ-’ and ﬁlb refer, respectively, to angle of incidence on the back of surface S; and angle of transmission
at point z;.

e in all our subscript or function argument notations, the order of the subscripts or the arguments follows
the propagation of light with the source being the leftmost.

Let us call L(Z;, Z;) the radiance of surface S; at point Z; as seen from point Z; at surface S;. Summing the
contributions of all surfaces Sy, we have , using equation 3.1 (figure 5.1),

L(iz,i]) = Le(i‘i,fj)—l—z:/n fr(i‘k,fi,i‘j)L(i‘k,i‘i) cos a; ;g (5.1)
3 ik
+ Z‘/ﬂb e 77 ft(f[,;i‘i,fj)l/(i’],i‘i) COSQ?dQ?l
I il

where fy(Zy, Z;, ;) is the bidirectional reflectance value for direction of incidence zzpz; and direction of
reflection ;i‘ﬁ‘j. i (Z1,%;, ;) is the bidirectional transmittance value for direction of incidence z;z; and
direction of transmission ;i‘i_i‘j. Q;1 1s the solid angle under which surface Sy is seen at point Z;. Q?l 1s the
solid angle corresponding to the incident directions on the back of surface ¢, under which surface S; is seen at
point Z;. L°(Z;, Z;) is the radiance due to self-emittance. o is the absorption coefficient which is wavelength
dependent, and 7 the traveling length of the incident ray into the transparent object, say z;z;.

As

ds ds b
dQp = #Sgk, Ay = #Sgl
|22 |||
we have
L(;i‘i, iJ) = Le(i‘i, ;i‘j) + Z/ fr(fk, i, ;i‘j)L(;fk, ;i‘i)G(i‘k, iz)dSk (5.2)
k5K
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Figure 5.1: Geometry of light transport mechanism

+ Z/ o ft l‘z,l‘z,l‘])L(aﬁl, )Gl(xl, Z-)dS,

where G(Z, %;), G'(Z1, Z;) are purely geometric terms as

cos «; cos O cos af cos ﬂIb

G(Zr, %) = , G'(Z1,%;) =

IEFEAIR ||9?’1='i’z'||2

point Z; is visible from point Z; and 0 otherwise. Equation 5.3 then becomes

L(@-,a_zj) = h(fi,i’]) :L‘Z,x] -I-Z/ fr xk,xz,xj)L(ik,:Ei)G(xk, )dSk (5.3)

+ Z/ - ft l],IZ,QE])L(QE[, )G/(‘/EIJ Z)dSI]

Equation 5.4 expresses the global illumination model. A similar equation can easily be derived from
the solid angle formulation of equation 5.2. The above equation completely describes the light transport
mechanisms between surfaces. The knowledge of L(Z;, Z;) is sufficient to describe the spatial distribution of
the light radiating from surface S;.

5.2 One-Pass Model

If equation 5.4 is applied for all couples (S;, S;j), a system of integral equations is obtained with the L(Z;, Z;)
as unknown functions. This system of equations expresses no more than the energy balance between self-
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emittance, absorption and reflection. Using a more condensed notation, this system can be written as follows

Lij = hij

Li; + ZMMJ‘(LM)] , 1,5 € [1, N] (54)
'

where L;; = L(%;, %;), L = L¢(Z;,%;) and hi; = h(Z;,Z;). As for the term My;;( L), it is an integral
operator which can be expressed as

Myij(Li;) = fr(Zr, Ti, ;) L(Zk, 2:)G(Zr, Z )d5k+/ 7§ (T, Ti, ) L(Zk, )G (Tk, Ti)dSk.
Sk Sk

The solution of this system provides the radiance function of a surface as seen from any other surface.
However, this is not sufficient to determine the image of the scene as seen by the observer unless the viewing
system is included into the system of equations. This can be performed by placing a small non reflecting
surface at the observer location or by adding a non reflecting surface that covers the whole virtual screen
as suggested by Neumann et al [38]. In this last method, the additional computations can be limited to the
Lijbetween the screen surface and the visible surfaces of the screen. To some extent, this solution can be
considered as view independent because only the L;; between the observer and the visible surfaces need to
be computed if the viewing system is changed.

5.3 Two-Pass Model

We shall see why the global diffuse and global specular components may be separated. In other words, why
the specular component of the radiance of a patch can be computed after having completely evaluated the
global diffuse component. For this purpose, we shall use an approach nearly similar to the one proposed in
[43]. For the sake of simplicity, the self-emittance is assumed to be lambertian, the following demonstration
holds even for directional light sources.

From [12, 39] we have :

fr(fk,fi,i‘j) = d'frd(fi)+Sifrs(ii‘k,;fi,ii‘j) (55)
£ (20, 20,3) = dify (%) + sify" (2, 8, &)

Let us rewrite system 5.4 as :

L= hM(L)+ L°]

where L = {L;j}, M = 3", Myij, h = {h;;} and {} represents tensor. Separating the diffuse and specular
components, the above system becomes

L = h[L® + D(L)] + M,(L), (5.6)
where the integral operators used in this system are given by :
o M, ={hy) MZZ-]-},

[ ] MZ” = hijsi fS l’k, )fr (Ik,f“i‘])G(Ik, )dSk
Z] ZfS 'rk: ft (Ik)xlam])G (Cl?k, )dSk

o D={>; O},
° @]“'j :difSk J,k, )fl ( ) (lk, )dSk+d fS J,k, )ft ( )Gl(lk, )dSk
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Let us call L” the global diffuse component :
LP = ¢ 4+ D(L).
Thus we have :
L=hLP” + M(L).

Assuming that L is known, system 5.6 can be solved in a recursive manner by iterating the equation :
L™ = hL® + M (L") (5.7)

We see that the solution of equation 5.7 is :

L=(> MT)hLP)=S(hL"), (5.8)

m=0

where S = 5" °_ M™ is the global specular operator. Note that D is the global diffuse operator.
Since
LP = L+ D(L),

we obtain :
LP =14+ D.S(hLP). (5.9)

From equation 5.9, we see that we can separate the computation of the global diffuse component from
the global specular one.

The notion of form factor can then be extended so as to take into account the specular effects contributing
to the global diffuse component. These extended form factors are obtained by a Rieman’s sum approximation
of the integral operator D - S.

In conclusion, the global illumination model can be computed in two passes :

e compute the extended form factors (D - S) for each patch, and solve the radiosity equation 5.9 to
evaluate the global diffuse component of each patch [47, 43].

e evaluate the total radiance values (using equation 5.8) by means of either a combination of both Z-buffer
and ray tracing techniques [47] or simple ray tracing [43] or distributed ray tracing [11].

However, the operator D - S involves complex computations [43].

5.4 Radiosity Model

The above light energy balance equation greatly simplifies in case of diffuse reflection because the bidirectional
reflectance fr() depends only on Z;, and L is independent of the view direction (Lambert’s law). Thus :

fo(Zx, 74, 7;) = (%))

where the exponent d denotes the diffuse component.
Thus, we have :

Trij(Lri) = f4&) | LYUE)G(Zk, 2:)h(Zy, T;)dS},
Sk

Dyi(L)
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For small surfaces, we may assume that L9(F)) is constant over surface S;. Then we get:

Dyi(LY) = £4(2:) L (2) FE,

where :

f;léii :/ G(Zr, Z;)h(Zy, Z;)dSy
Sk

is the point to surface form-factor from point Z; to surface Sy.
In this case, the system of equations (5.4) becomes linear :

Li =L +frdZLgf;gz’
ks

Let us multiply by « each term of this equation, we obtain then:

’;TL;-Z =L+ e Z WL,‘iFTIfZ-
k

As for a small diffuse surface the radiosity is equal to its radiance times 7, and since fp? = pi/ 7, then
this equation becomes:

1 ~
By = E; + p; Xk:Bk;F;fi;
where B; is the total radiosity of surface i, and F; its self-emitted radiosity.

As we assume that the radiosity (or radiance) is constant over a surface, we replace %F,fz by its average
value over surface ¢ , which gives:

1 ~
Fyi = / Fi.ds,
ﬂ'SZ Si

1
ﬂ'SZ i J Sk

G(;i‘k, ;i‘i)h(i‘k, iz)dSdeZ
The above equation becomes then:

B; = E; +P¢ZB/CF/”’,
ks

which is the well-known radiosity equation. Fy; is called form factor.
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Chapter 6

Colorimetry

6.1 Introduction to Colorimetry

Colorimetry is the science of measuring color based on the physical properties of light and the psychovisual
properties of the human visual system. This chapter summarizes some of the important points of works
already done in colorimetry.

6.2 Trichromatic Theory of Color

Maxwell was the first one that tried to generate a large set of colors, by mixing three standard lights called
color primaries. The results of his experiments showed that most of the colors of the visible spectrum could
be reproduced by combining only the three color primaries: Red, Green and Blue [34]. These three color
primaries must be linearly independent.

The three color primaries used in television are red, green and blue. These color primaries may be slightly
different from one monitor to another. They act as a basis of a vector space called also color space. The
coordinates of a color in this space are called trichromatic components or tristimulus values.

The trichromatic components P; of a light of spectral distribution F(A) is given by :

780nm
380nm

where the o;(A)’s are called matching functions.

6.2.1 CIE RGB

The Commission Internationale de ’Eclairage (CIE) proposed in 1930, three color primaries: Red, Green
and Blue. The three associated matching functions are 7, g,b. They depend on the display device.

6.2.2 CIE XYZ

The CIE has normalised a color space, in which the three color primaries X, Y, and Z are not physical colors.
The advantage of this color space is that it is independent of the used display device. The particularity of
this color space is that the Y component corresponds to the visual luminance of the spectrum and is obtained
by taking into account the sensitivity of a reference observer.
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The trichromatic components X, Y and Z of a light of spectral distribution F()) are obtained by applying
the following formula:

X = K /780E()\);E(A)d)\ (6.1)
Y = K /780E(/\)y(/\)d/\ (6.2)
7 = K /780E(/\)2(,\)d,\ (6.3)

where K is a constant used to normalize the results, and Z(A), §(A) and z()) are the matching functions of
the system XYZ (see figure 6.1). If F(X) is an absolute spectral energy distribution, then K can be selected
to equal K, (680 1umen/watt). On the other hand, if E(X) is a relative spectral energy distribution, then
K 1is selected such that bright white has a Y value of 100, then other Y values will be in the range of 0 to
100. Thus,
B 100

TEa D

where Fy,(A) is the spectral energy distribution for any standard white light source (D6500).

Note that the tristimulus values are positive across the entire visible spectrum.

The CIE standard chromaticity coordinates x, y, z are generated by projecting the tristimulus values on
the x + y + z = 1 plane so that:

K

z = X / (X +Y + 7 )

Yy = Y/ (X+Y+2)

z = Z ] (X4+Y+2)
1 =z+y+=z

A common specification for color is Y, z,y, where Y describes the luminance of the color (response

to brightness) and z,y defines a point on the chromaticity diagram. The chromaticity diagram gives an

indication of the color independent of its brightness.
The CIE standard are widely used in industry for describing colors.

6.2.3 Transformation from XYZ to RGB

The transformation of a color from space RGB to space XYZ is expressed as:

X X, X, Xy R
Yy |=| v v, v G
Z Ze Zy I B

The coefficients of the transformation matrix are given by [36]:

X,» = l‘,«c,«, Xg = l‘gcg, Xb = a:be

Y,

y-Cr, Yg = ygcg; Yy = yp Ch

Z,- = Z,-C,-, Zg = chg; Zb = szb
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Figure 6.1: XYZ spectral matching functions

Y_wxw(yg - yb) - yw(xg - xb) + ZgYp + Toyy

C, =
Yuw D

o Y Tuw(Ys = Yr) = Yu(®s — @) + Y5 + Toyr

, = =

Yuw D

Cy = Y_wmw(yr_yg)—yw(:cr—l’g)-f-l‘ryg‘f‘l'gyr
Yu D

D = & (y;—y)+z(ys —Yr)+ x(yr — yy)

where z,, yr, T4, Y4, ®p and y; are the chromaticity coordinates of the phosphors of the display device. Gener-
ally, these data are provided by manufactures, or can be measured. x, et y, are the chromaticity coordinates
of the white point of the display, and Y,, its luminance. This last values has to be measured, because it de-
pends on the calibration of contrast and brightness of the monitor. For these reasons, the coordinates of the
white point are often assumed to be the coordinates of a reference white (ex: for normalized D6500 white,
zy = 0.313 and y, = 0.329). If the luminance of the white point cannot be measured, we may use any
arbitrary value as Y, = 1.

6.2.4 Chromatic distance between colors

Two main color spaces are used to express the difference between two colors [17].

CIELUYV space

This color space (also known as L*u*v*) has been established in 1964 and adopted by the CIE in 1978. The
three components in this space are expressed by:

L* = 166(Y/Y,)"% —16,Y/Y, > 0.01,
u* = 13L%(u — uy)
v* = 13L*(v' —vp)
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where

v = 4X/(X +15Y +37)
v = 9Y/(X +15Y +37)
up = 4X,/(X, + 15Y, +3Z,)
vy = 9Y,/(Xn +15Y, 4+ 37,)

Xn, Y, and Y, being the trichromatic components of the reference white (ex: D6500). In this space the
difference between two colors is expressed as:

AE — (AL*Q +Au*2 _}_A,U*Z)OAS (6.4)

This system is well suited for the evaluation of small color differences, and can be used to detect and to
eliminate aliasing defects.

CIELAB space

Another system is sometimes used, called CIELAB or L*a*bx and is more suitable for measuring important
differences between colors. The difference is also expressed as

AE = (AL*? + Aa* + AV’ 5 (6.5)
with
L* = 166(Y/Y,)".33—16
a* = 500[(X/X,)"% — (Y/Y,)"%]
= 200[(y/yn)0.33 _ (Z/Zn)O‘BS]

if (X/X,), (Y/Yy,) and (Z/Z,) are bigger than 0.01.

6.3 Spectrum sampling

To display a light on a display device, the three trichromatic components RGB of its spectral distribution
have to be calculated. The accuracy of this calculation strongly depends on the way the visible spectrum
is sampled. It depends on both the sample values and their number. This section describes a wavelength
selection method due to Meyer [35]. Moreover two approaches may be adopted for computing a synthetic
image: trichromatic and spectral. They are also described in this section.

6.3.1 Trichromatic and spectral approaches

In case of a trichromatic approach, the light sources, the objects’ color and their reflection and refraction
properties are expressed in the RGB space by three components.

Such a trichromatic approach is in fact only an approximation of a spectral approach which considers
spectra (spectral distribution of light, spectral reflectance, transmittance and absorption, refraction index
depending on wavelength...) instead of trichromatic components. It provides rather acceptable results but
our experiments have shown that the quality of images containing metallic materials is far enhanced when
using a spectral approach.

Let us show now what is the approximation made in a trichromatic approach. If F(}) is the incoming
light illuminating a surface, and BRDF(A) the bidirectional reflectance function depending on the incident
angle, the reflected direction and the physical properties of the surface. The reflected spectrum is then:

S(A) = BRDF(X) x E())
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The RGB components Sg, S¢ and Sp of the reflected light are obtained by:

780
Sk = / BRDF(A) x E(\) 7(}) dA
380
780
Se = / BRDF(A) x E() g(3) dA
380
780
Sp = / BRDF(\) x E(\) B(A) dA (6.6)
380

For a trichromatic approach, all the quantities must be described by their RGB components: Fr, F'g and
Ep for the incident light, and BRDFgr, BRDFg and BRDFpg for the reflectance function. These triplets
are obtained by:

jo / ” E(X) 7(A) dA

Fo = / B0y a0y D

Fp= / ” E(X) b()) dA
3

80
780
BRDFp = / BRDF(A) 7(\) dA
380
780
BRDFg = / BRDF(A) g(\) dA
380
780 B
BRDFy; = / BRDF(\) B(\) dA.
380
The RGB components of the reflected light are then:
SR = BRDFR X ER
SG = BRDFG X EG
SB = BRDFB X EB (67)

We can compare the two expressions of the red component of the reflected light for both approaches. The
spectral approach leads to:
780
Sk = / BRDF(\E(N) 7(3) dA,
380
while the trichromatic approach gives:

780 780
Sk = / BRDF(A) #(\) d) / BN 70 dA
380 380
These two last equations show that the trichromatic approach approximates an integral by the product of
two integrals, which is not mathematically correct. Nevertheless, this approach may be satisfying, especially
in the case of non conductor materials or other complex surfaces.

6.3.2 Meyer’s method

an optimal color space

The ACIC2 color space [35] has been derived from the SML color system, where the matching functions
5(X), m(A) and {(A) are the fundamental spectral sensitivities. It is oriented so that its axes are oriented
along the most dense color regions. Its three axes have an importance that is proportional to the density of

these regions. A is more important than C1, and C1 more important than C2.
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transformation XYZ - AC1C2

the transformation from XYZ space to AC1C2 space is obtained by:

A
&)
Cy

—0.0177
—1.5370
0.1946

1.0090 0.0073
1.0821 0.3209
—0.2045 0.5264

evaluation of the AC1C2 components

The three AC1C2 components are obtained by evaluating the following integrals:

A= / ” E(\)a(N)dx

780
Cl = / E()\)Cil(A)d)\
380

780
02 = / E()\)C_Q(A)d)\
380 '

N <

The computation of these integrals can be approximated using Gaussian quadrature by:

A= HE(\)
i=1
nz

C1=> HE(N\)
i=1

Cy = iHiE(AZ-)
i=1

where coefficients H; are the weights of the samples A; depending on ni, ns and ng the number of samples
for each component A, C1 and C2.

wavelength selection technique

The wavelengths will depend on the number of samples. Their values and associated weight have been
computed for different number of samples, in order to keep the computation of A, C1 and C2 as accurate as

possible.

The error produced using this method has been evaluated. It is minimized if more samples are used and
if they are selected according to the following strategy: if you do not use the same number of samples for
the three components, use more samples for A than for C1, and more samples for C1 than for C2. In the
case we use only 4 samples, the wavelengths and the associated weights for each component are:

A Cl C2
490.9 0.18892 | 490.9 0.31824 | 456.4 0.54640
557.7 0.67493 | 631.4 -0.46008
631.4 0.19253

Whatever the number of samples, this method keeps error under that produced when using other methods.

Its main drawback is that it cannot be used in the case of spikey spectral distributions.
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Chapter 7

Image Display and Visual Perception

7.1 Visual perception

The human eye converts luminance into a visual sensation, called brightness. The range of visible luminance
is 1075 to 5.10% cd/m?2. The visual sensation is related to the luminance, but is not linear, and depends
on the ambiant level of illumination. As a first approximation, the law of sensitivity can be considered as
logarithmic. The variation of sensitivity is mainly due to the following phenomena: the the size of the iris
varies as the luminance changes, and the sensitivity of the retina is modified. The sensitivity function of the
eye has been normalized by the CIE and is known as Weber’s law (see figure 7.1).

To generate a luminous signal that will impress the eye the same way, one should take into account the
sensitivity of the eye, in the context of a real scene, as well as in the context of an observation of the image
on the display device.

Because of the lack of knowledge on the eye response, it is very difficult to find a function [46] relating
the luminance of the real world to the values to be displayed on a monitor. These values depend on the
characteristics of the monitor, and on the illumination level of the room containing the monitor.

To face this difficulty of displaying a calculated image, two processes may be applied: the first one consists
in scaling the image so that it fits in the color range of the monitor, while the second aims at correcting the
non-linearities of the monitor.

7.2 Color Clipping and Gamma Correction

Synthetic image generation results in a set of radiances that have to be displayed on a monitor. The
range of these values may sometimes be very important, especially due to highlights resulting from specular
reflections. Visible windows are also source of important radiance variations. The transformation of a light
spectrum into the color space of a monitor may also lead to negative values or to values that are larger
than the highest displayable value. The color corresponding to negative values cannot be displayed. The
problem is to scale an image so that it can be displayed and can provide the better visual impact on the
observer, knowing that most of the time, a monitor offers only 256 levels for each RGB component. One
technique aiming at obtaining images with a maximum dynamic and a minimum loss of information consists
of the following steps. First, the range of displayed radiances is determined, then the corresponding colors
are scaled and clipped.

7.2.1 Scaling the image

In order to find the best range for the radiances to be displayed, we make the following approximations
commonly made by lighting engineers.
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Figure 7.1: Weber’s law

First, let us consider a scene lit by artificial light sources. The known datum (which is the total emitted
flux) is the sum of all the luminous fluxes emitted by these sources. The assumptions made are the following.
We assume that the total emitted flux reaches only the floor of the scene. The average emittance E of the
floor is ®yy44; / floor_area, and is expressed in luz/m?. Assume also that the floor has an average reflectivity
Pave. Then, the approximated average radiance of the floor is simply :

_ Pave X Qtotal
L(we = 7 -
7 floor_area

If we assume that the maximum radiance L™ to be displayed is fixed to twice the approximated average
radiance, then the range for RGB components is

[0, 2] x [0,223°] x [0, 2L,

where LB, LB LB are the three RGB components of L™,
These three components are determined as follows. Assume that the spectral distribution L™ ())
associated with L™ is equal to C®(A) where C is a constant and ®(A) = 1VA. Then the three XYZ

components of L™ are

L3 = K /Ca’:(A) d\, L = K /C'g(A) X, Dpee = K/Cz(,\) dX.

This yields approximatively Lg% = Ly = L7% = KC. These XYZ components are transformed
to RGB components to give L%, L7, LR4*.

Let MAXDISPLAY be equal to twice the maximum value of these three components. The final RGB
components of the calculated radiances are computed by the algorithm of figure 7.2.

7.2.2 Color clipping

Let us recall that it is often not possible to display all the calculated colors on a monitor, some of them
being out of the gamut of the monitor, and others exceeding its range.
There are several ways allowing clipping the colors [24]:
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for each pixel
{
if at lest one component is —ve or > MAXDISPLAY
clip it
/* scale */
for each component C of the pixel

Cdisplay = (C/MAXDISPLAY)*255

Figure 7.2: Color clipping

e Scale and clip the entire image until there are no luminances too high for display.
e Or, maintain the chromaticity and scale the luminance of the offending color.

e Or, maintain the dominant hue and luminance and desaturates the color.

e Or, clamp any color component exceeding 1 to 1.

Since no method gives the best results in any case, we simply set the negative value to 0, and values
bigger than MAXDISPLAY to MAXDISPLAY. The value of MAXDISPLAY must be appropriately chosen.

7.2.3 Gamma Correction

The luminance L (Y component) produced by the phosphors of a monitor is not proportional to the input
signal I. This response is non linear and is L = kI, where v is a parameter depending on the monitor, and
is about 2.3 for the three RGB channels of typical rasters. If we want the displayed values to be proportional
to the computed values, we have to transform the input signal I to IY/7. The luminance produced by the

new input signal becomes then L = kI. In other terms, for example the component R of a pixel is replaced
by RY/7.

7.2.4 Conditions for display

The best conditions for viewing pictures on a screen are met if the following instructions [5] are applied.
First make sure that the room containing the display device is very dark , in order to avoid reflects on the
screen. Then calibrate the monitor. To do this, display a totally black picture and set the brightness control
so that you are just under the perception level. This setup must not be modified until the viewing conditions
are changed.
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Chapter 8

Implementation of Radiosity

8.1 Radiosity

Recall that the radiosity method assumes that all surfaces are assumed to be perfectly diffuse, i.e. they
reflect light with equal radiance in all directions. The surfaces are subdivided into planar patches for which
the radiosity at each point is assumed to be constant. Let us recall the radiosity equation, valid for each

sample wavelength:
N

Bi=FEi+p Y FijB,

j=1
where
e B; : Exitance of patch 7 (Radiosity) ;
e F;: self-emitted radiosity of patch z;
e p; : reflectivity of patch i;
o [}; @ form-factor giving the fraction of the energy leaving patch ¢ that arrives at patch j;
e N : number of patches.

This system of simultaneous equations represents the energy interchange via multiple interreflections and
emission in the environment. The solution of this system is the patch radiosities which provide a discrete
representation of the diffuse shading of the scene. This solution is independent of the view direction. Once
the system of equation has been solved, each vertex of a patch is evaluated by averaging the radiosities of
the patches sharing it. The image of the scene is then computed by applying Gouraud shading [21, 8].

Let us recall the expression of form-factor:

= 1 /' / h(Z;, Z;) cos 0; cos b; dAsdA;,
'/TAZ' A; JA; 7’2

where Z; is a point of patch 4, and A; the surface area of this patch. The term h(Z;,Z;) expresses the
visibility between a point of patch i and a point of patch j.
The form factor between a differential element of patch i (around a point #;) and patch j (figure 8.1) is:

1 h(Z;,%;) cos0; cosf;
Faaa; = = (i, 2) LdA;,
T Ja 72

i
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patch j

Figure 8.1: Form-factor

Note that if the two patches are far enough, this form factor is a good guess for Fj;. To compute Fj;,
patch 7 is subdivided into R small elements dA! (equivalent to differential elements) and all the form-factors
Fy94, are evaluated. Fj; is then equal to:

Fij = A% iFdA?AjdAzg
q=1
8.1.1 Analytic expression for form factor
Point to Disk form factor
For a differential area dA; and a disk A; aligned axially, the form factor is given by (see figure 8.2):
A;

FdA,Aj = T AL +Aj'

Differential area to polygon form factor

The form factor between a differential area dA; and a polygon A; is given by the following formula :

27

1 n
Faaa;, = Zﬂi cos @
i=1

1 & - -
= %ZBZNZ.(EZ XEZ'+1).
i=1

The geometry for this formula is given in figure 8.3 where Ej; is the vector the endpoints of which are
the center of dA; and a vertex of polygon A;, and NV; is the normal to dA;. Note that this formula does not
account for occlusion. However combined with visibility and clipping algorithms, this formula can be used
in case of occlusion.
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Figure 8.2: point to disk form factor

Es

/ / dA;

Figure 8.3: differential area to polygon form factor
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Figure 8.4: Similar projections

Contour integration

If surfaces A; and A; are completely visible to one another, the form factor between these surfaces can be
expressed as a double contour integral by applying Stokes’ theorem to the original formula. This yields:

1

FAiAj - 2w A;

/ / Inrde;dx; +Inrdy;dy; + Inr dz;dz;,
c.Je;

where (2;, yi, z;) and (z;, y;, z;) are points lying on the contours C; and Cj of surfaces A; and A; respectively.
This formula is used when the visibility between two surfaces is determined a priori.

8.1.2 Form factor calculation by projection

Now, let us show how the differential to area form factor FéAiAJ_s (see previous section for the notations)
are calculated. The terms in cos @ define in fact the projection of a surface onto another. If two patches
similarly project on a given projection surface, then their form-factor (with a differential element of another
patch) is thus similar (figure 8.4). Different kinds of projection surfaces have been proposed in the literature :
Hemi-cube and Hemisphere.

Hemi-cube

The goal is to calculate the form-factor Figa,4, between a differential element of patch i and patches j. To
simplify this computation, a simple projection surface is placed around dA; that allows us to make use of
classical projective rendering techniques (clipping, scan-conversion and z-buffering). This projection surface
is an imaginary half-cube (figure 8.5) placed at the center of the receiving patch element dA; [8]. A coordinate
system is associated with this Hemi-cube, whose positive 7 axis coincides with the normal to Patch A;. It
is made up of five faces: one full face facing in 7 direction, and four half-faces in the +X, —X, +Y and
—Y directions. The environment is transformed into this coordinate system. The five faces are divided into
square pixels. The environment is then projected onto the five face planes. Each full face covers exactly a
90 degrees frustrum as viewed from the center of the hemi-cube. This creates clipping planes of equation
7 =X,7 =-X,7 =Y and 7 = Y, allowing for simple calculation to determine the part of a patch
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Figure 8.5: Hemi-cube

j projected on a face. After clipping, a patch j is projected on each face and then scan-converted. If two
patches project on the same pixel of the hemi-cube, a Z-buffering technique is used to determine the one
whose projection is closest to the center of the hemi-cube. An item buffer is maintained, giving for each
pixel the patch seen at through the center of the pixel from the origin of the coordinate system.

The contribution of each pixel to the form-factor value varies and dependent on the pixel location. A
delta form-factor is precalculated for a differential element dA; to a pixel area A,;;.; and stored in a look-up
table. After determining which patch A; is visible at each pixel on the hemi-cube, a summation of the delta
form-factors for each pixel occupied by patch A; determines the form-factor from the patch element dA;
to patch A;. Then the hemi-cube is placed around another differential element of patch A; and the above
operations are repeated. Once all the differential elements of patch A; have been considered, the form-factors
Fi;i, for j = 1, N, are evaluated as seen before and the hemicube is positioned at the center of a differential
element of another patch.

Let us recall that when patches A; and A; are assumed to be far-away, F;; = Faa,a, and the center of
the hemi-cube is the center of patch A;.

Hemisphere

The method of form factor calculation makes use of a hemisphere as a projection surface and ray tracing.

A hemisphere is placed at the center of a patch p and is discretized by sampling the two polar angles
f and ¢ as shown in figure 8.6. The hemisphere is then discretized into surface elements AS, each one
corresponds to a small form-factor called delta form-factor. To calculate the form-factors, a ray is cast from
the hemisphere center and through each surface element AS of this hemisphere, i.e. in directions (6;, ¢;).
Note that each ray corresponds to a delta form-factor. The intersection process between a ray and the scene
may result in several points. Only the point closest to the ray origin is considered, and the identifier of the
patch containing it is stored in an item buffer. Once all the rays have been cast from the center of a patch
p toward all directions (6;, ¢;), the form-factors from this patch are calculated by scanning the item buffer
and summing the delta form-factors associated with the rays along which a particular patch is visible.
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Figure 8.6: Hemisphere

This form-factor calculation technique is simpler and faster than the hemicube approach, since it avoids
several processings such as polygon clipping, polygon filling and geometric transformations.
Another method of projection onto a hemisphere can be found in [45].

8.1.3 Area sampling method
Ray tracing
The problem is to compute the form factor between a differential area dA; and a surface A; using ray tracing.

To this end, surface A4; is uniformly subdivided into R small surface elements dA? and Flg4,q42 is computed
7

by using a modified version of the point-to-disk formula (see figure 8.7).
This modified point-to-disk formula is given by:

dA; cos 0 cos 6;?
FdAidAg = W
Then

R
dA? cos 0 cos 67
_ j i j YT
Fara, = 2~y aar (@45 44D,
g=1

where h(dA;, dA]q) is the visibility function which equals 1 if dA; and dAg are visible to one another and 0
otherwise. This visibility function is evaluated by tracing a ray from the center of dA; to the center of dAg).
The point-to-disk formula breaks down if the distance r is small relative to the differential area.

Monte-Carlo method

Both surfaces A; and A; are randomly sampled into points #; and #; respectively (figure 8.9). Rays, whose
endpoints are #; and &;, are then traced to determine the visibility function h(#;, Z;). The form factor
between these two surfaces is calculated by using the modified point-to-disk formula (see figure 8.8).
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Figure 8.7: form factor calculated by ray tracing

Fi; =0
for k =1 tondo
randomly select point Z; on the element ¢
randomly select point Z; on the element j
determine visibility between Z; and z;
if visible
compute r? = (z; — z;)*
compute cosfl; = 7;; e ]\_f‘i
compute cosfl; = 7j; ® A7j
compute AF = wl
ar24 L
Fij = Fij * Aj

where 7j; is the normalised vector from Z; to Z;,
and N; is the unit normal to element ¢ at point Z;
(and vice versa for switching ¢ and j).

Figure 8.8: Pseudo code for Monte Carlo area-to-area form factor computation
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Figure 8.9: area-area form factor calculated by Monte Carlo

for all 7 do
for each wavelength do
B; = E;;
while not convergence do
for all 7 do
for each wavelength do

Bi = Ei+pi Yy i FiiBi s

Figure 8.10: Pseudo code for gathering

8.1.4 Solving the system of equations

Form-factors must be computed from every patch to every other patch resulting in memory and time com-
plexities of O(n?). The very large memory required for the storage of these form-factors limits the radiosity
algorithm practically. This difficulty was addressed by the progressive radiosity approach [10].

In the conventional radiosity approach, the system of radiosity equations is solved using Gauss-Seidel
method. At each step the radiosity of a single patch is updated based on the current radiosities of all the
patches. At each step illumination from all other patches is gathered into a single receiving patch (see figure
8.10). The convergence is met when || B¥+! — B* || is below a certain threshold, where k is the iteration
number. B* is the radiosity vector computed at iteration k.

In the progressive radiosity approach, the solution is evaluated as shown in figure 8.11:

At each step, the illumination due to a single patch is distributed to all other patches within the scene.
During the initial steps, the light source patches are chosen to shoot their energy since the other patches
will have received very little energy. The subsequent steps will select secondary sources, starting with those
surfaces that receive the most light directly from the light sources, and so on. Each step increases the
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for all 7 do
for each wavelength do
AB; = Ej;
while not convergence do
J = patch-of-max-delta-flux();
for all ¢ do
for each wavelength do
ARad = p;AB; Fji 5
AB; = AB; + ARad ;
AB]' =0 ;

Figure 8.11: Pseudo code for shooting

accuracy of the result that can be displayed. Useful images can thus be produced very early in the shooting
process. Note that, at each step, only a column of the system matrix is calculated, avoiding thus the memory
storage problem.
The convergence criterion is met if || AB - A ||« is below a certain threshold. This threshold could be a
certain percentage of the sum of the total fluxes of the light sources. AB - A is the vector of unshot fluxes.
Note that after convergence or a certain number of iterations of the shooting process, some residual fluxes
remain unshot. The effects of these residuals can be approximated by an ambiant term Bgms [10]:

N
Bamy = R AF,;B;,

i=1

where Fy; corresponds to the contribution of patch j to the other patches and R characterizes the multiple
interreflections:

As
F.j = NiJ
k=1 Ak
1
R=1 + Pave + p?we +p21)e + .= P
1- Pave
where pgqe is the average reflectivity of the objects and is given by:
N
p _ Zk‘:l pkAk
ave = N .
Zk:l Ak

To account for the the residual fluxes, the computed radiosities are updated as:

B; = B; 4 pi Bams.

8.1.5 Adaptive meshing

Improvements can be brought to the radiosity algorithm by adaptively discretizing the surfaces of the scene.

Discretizing a scene is a sampling problem which may give rise to aliasing effects. Indeed, areas in the
scene with high radiosity gradients are poorly represented, particularly when the patches are large relative to
the area over which the high radiosity gradients occur. To remedy this, one solution consists in subdividing
the patches with high gradients into finer and finer patches [9]. Each subdivision level requires solving the
linear system of radiosity equations to obtain the radiosities, and consequently the radiosity gradients. More
elegant solutions, called hierarchical radiosity, have been proposed in [25, 26, 32]. They deal with an adaptive
discretization of the objects’ surfaces as shown in the next section.
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8.1.6 Rendering step

Once the radiosities have been computed, all the view parameters have to be specified (viewer position,
position and size of the screen, pixel resolution...) so as to start the rendering step.

This can be done by ray tracing. In this case, rays are traced from the viewpoint through each pixel.
Suppose that a ray intersects a patch i of radiosity B; at point P. The radiosity Bp of P is calculated by
bilinear interpolation (in case of polygonal patch). The radiance Lz of the corresponding pixel is then:

L =
ixel .
P T

Note that B; and Lp;z.; are wavelength dependent. For image display, Lp;ze1 is converted into RGB
components.

8.1.7 Texture mapping

Texture mapping can be accounted for in the radiosity algorithm. A first method has been proposed in [9].
A more accurate solution can be found in [20].

Let us describe now the method given in [9]. For a textured patch the reflectivity varies over its surface
for each wavelength. First of all, the average reflectivity pgy. (for each wavelength) is calculated and the
system of radiosity equations is solved to give the average radiosity Bg,. for each patch. The texture values
are accounted for only at the rendering step. Indeed, the final radiance of a pixel is calculated as:

_ Ppizel B(we
Lpixel - T T _
Pave T

where ppizer is the reflectivity surface point as seen through the pixel.

8.2 Hierarchical Radiosity

Hierarchical radiosity has been introduced in [25, 26]. The objective of this method is to avoid a finer
meshing of the surfaces that make up an environment and to reduce the number of form factor calculations
by adaptively subdividing these surfaces into a hierarchy (quadtree) of surface elements (see figure 8.12). A
leaf of a hierarchy is called element while a node is no more than a group of elements. Interaction between
a node of surface A and a node of surface B takes place if these two nodes can exchange energy. Each
interaction requires one form factor calculation. That means one has not to compute form factors for each
pair of leaf nodes (which is the case for traditional radiosity) but for each pair of nodes in interaction. As a
result, the number of form factor calculations is reduced drastically as well as the memory storage. When
two nodes of different surfaces interact one to another a link is established between them.

All the following data structures and algorithms, describing hierarchical radiosity, are extracted from
[37].

8.2.1 Data structures

The quadtrees (hierarchy) and the link nodes are given in figure 8.13.

8.2.2 Refinement

Refinement consists in subdividing each surface, with respect to the others, into a hierarchy of elements.
When two nodes are allowed to interact, a link is built between them. The refinement process is made by
the procedure Refine() described in figure 8.14.

The role of the oracle() procedure is very important. It decides if two nodes can be linked or not. Recall
that a node corresponds to either an element or a group of elements. We will see that if a link is established

46



Surface A Surface B

Interaction Link

/
/
Interaction Link 5 ; 2 E //

Figure 8.12: Hierarchy and interactions

struct Quadnode {
float B,[] ; /* gathering radiosity at sample A’s */
float Bg[] ; /* shooting radiosity at sample X’s*/
float E[] ; /* self emittance at sample X’s*/
float area;
float p[] /* reflectivity at sample X’s;
struct Quadnode** children; /* pointer to list of
four children*/
struct Linknode* L; /* first gathering link of node */

}

struct Linknode {
Quadnode* q; /* gathering node */
Quadnode* p; /* shooting node */
float Fyp; /* form factor from q to p */
struct Linknode* next; /* next gathering link of node q */

Figure 8.13: Data structures
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Refine(Quadnode *p, Quadnode *q, float FY)
{
Quadnode which, r ;
if (oracle(p, q, F%)) Link(p, q)
else
which = Subdiv(p, q);
if (which == q)
for (each node r of q) Refine(p, r, F.)
else if (which == p)
for (each node r of p)Refine(r, q, F)
else
Link(p,q);

Figure 8.14: Refine pseudo code.

then the form factor between the two associated nodes can be approximated by a differential area-area
form factor. To do that, oraclel() computes an upper bound of the differential area-area form factor F,
between patch p and ¢ and the one between ¢ and p, i.e. Fy,. There are two versions of oracle(): oraclel()
and oracle2(). The first one relies on a geometric subdivision criterion while the second on a radiometric
criterion (flux).

Subdiv(p,q) returns true if nodes below p and q (children) should be used. Tt returns p if it appears
that lower level nodes of p will probably satisfy the subdivision criterion more rapidly, else the procedure
returns q.

Link(p,q) establishes a link between p and q, computes the form factor between p an q and stores it
in the link data structure. This form factor is in fact estimated as an upper bound of differential area-area
form factor as will be shown later on.

After each pair of surfaces have been considered by Refine, the result is a set of links connecting two
nodes of different quadtrees.

8.2.3 Solving the hierarchical system

The SolveSystem() procedure computes the solution of the hierarchical system of equations (figure 8.15).

GatherRad() gathers energy over each link at each receiving node. The gathered energy is stored in
the field B, (figure 8.16). GatherRad() corresponds to Jacobi’s resolution method.

PushPull() pushes the gathered radiosity down to the children of each receiving node, and pulls the
results back up the quadtrees by area averaging (see figure 8.17), thus preparing the radiosities B, for the
next iteration in SolveSystem(). Pushing and Pulling correspond, in signal processing, to reconstruction
and decomposition respectively.

The convergence criterion used in SolveSystem() is: the maximum change in the radiosity values is
below a threshold specified by the user.

8.2.4 The Oracle

The oracle function takes the decision to link or not two nodes p and q. In fact, a link is built if the form
factor F), is small enough to consider the energy contribution of p to q as small, which amounts to say that
the radiosity of q due to p can be considered constant over q. In Oraclel() (figure 8.18), F}, is estimated
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SolveSystem()
{
Until Converged
for(all surfaces p) GatherRad(p);
for(all surfaces p) PushPullRad(p, 0.0);

Figure 8.15: SolveSystem pseudocode.

GatherRad(Quadnode *p)
{

Quadnode *g¢;

Link %L;

p— By =0;
for(each gathering link L of p)
/* gather energy across link */
p—=By+=p—=pxL = FyxL —q— By
for(each child node r of p)
GatherRad(r);

Figure 8.16: GatherRad pseudocode.

PushPullRad(Quadnode *p, float Bgown )
{

float Bup, Bimp;

if(p — children == NULL) /* pis aleaf */
Bup =p—LE+p— Bg + Baown;

else
Byp = 0;

for (each child node r or p)

Bimp = PushPullRad(r, p — By + Baown)

— r—area.
Bup += Btmp * p—area’

D — B, = Bup;
return(B,,);

Figure 8.17: PushPullRad pseudocode.
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float Oraclel(Quadnode *p, Quadnode *q, float F)

{

if (p — area < A, and ¢ — area < A)

return(FALSE);

if (EstimateFormFactor(p, q) < F. )
return(FALSE);

else
return(TRUE);

Figure 8.18: Oraclel pseudocode.

as :
cos 0

Fpg = TQq,
where Q, is the solid angle whose appex is the center of p and subtented by a disk surrounding g.

This estimate is in fact an upper bound of the form factor between a differential area of p and q. In case
of occlusion, this estimate can be weighted by a coefficient giving the percentage of visibility between p and
q as given in [26].

Note that one can use a better estimate by calculating area-area form factor with Monte Carlo method.

Oraclel() estimates both F,, and F,,. If these two form factors are larger than a given threshold F,
then the node (or element) corresponding to the larger form factor is subdivided. If only one form factor is
larger than F, for example Fj,, then p is subdivided. When both are below F, then a bidirectional link is
established between p and q.

Note that Oraclel() uses a geometric subdivision criterion based on form factors. This may results in a
large number of fine elements. It is more subtle to use a criterion based on the amount of energy transferred
between two nodes. If this energy is smaller than a certain threshold, then a link is established. More
precisely, if Fy,, - By - Ay < BF, then a link is established. Since the radiosities are not known a priori, the
refinement algorithm proceeds adaptively by using another oracle Oracle2() (figure 8.21).

8.2.5 Hierarchical radiosity algorithm

The hierarchical radiosity algorithm is given in figure 8.19. In the first pass of this algorithm, Refine()
uses Oracle2() and establishes links at the highest levels unless the shooting (i.e. emitting) surface is a
light source. Most of these links are built even though the shooting radiosities of most the surfaces are zero.
These links will be refined in the second pass through RefineLink() (figure 8.20).

8.2.6 Rendering

The rendering process is same as in traditional radiosity. Only the leaf nodes (elements) of the quadtrees are
rendered by ray tracing or by Gouraud shading. Attention has to be paid to the problem of discontinuities
which may give rise to artifacts. Discontinuity comes from the non regular subdivision of the surfaces.

8.3 Error Estimates
If we broadly summerise the various steps that we have so far taken to carry out radiosity solution, then

we will come up with 3 main points: (i) we are making certain assumptions (say constant radiosity over
each patch) to convert the continuous integral equation to discrete linear system, (ii) to make sure that the
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HierachicalRad(float BF,)
{
Quadnode *p, *q;
Link % L;
int Done = FALSE;

for (all surfaces p) p — B; = p — E;
for (each pair of surfaces p, ¢)
Refine(p, q, BF.);
while (not Done){
Done = TRUE;
SolveSystem();
for (all links L)
/* RefineLink returns FALSE if any
subdivision occurs */
if (RefineLink(L, BF,) == FALSE)
Done = FALSE;

Figure 8.19: HierarchicalRad pseudocode.

int RefineLink(Linknode L, float BF,)

{
int no_subdivision = TRUE;
Quadnode *p = L — p; /* shooter */
Quadnode xqg = L — ¢; /* receiver */

if (Oracle2(L, BF,))
no_subdivision = FALSE;
which = Subdiv(p, q);
DeleteLink(L);
if(which == q)
for (each child node r of ¢) Link(p,r);
else

for (each child node r of p) Link(r,q);

return(no_subdivision);

Figure 8.20: RefineLink pseudocode.
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float Oracle2(Linknode xL, float BFY)
{
Quadnode *p = L — p; /* shooter */
Quadnode xqg = L — g¢; /* receiver */
if (p — area < A, and ¢ — area < A)
return(FALSE);
if (p — B, == 0.0)
return(FALSE);
if ((p— Bs; #p — Area* L — F,y) < BF,)
return(FALSE);
else
return(TRUE);
}

Figure 8.21: Oracle2 pseudocode.

discretisation is correct, we are looking at the interaction kernel between every pair of surfaces (for example,
in hierarchical radiosity method) of the environment and finally (iii) we are terminating the solution process
by looking at certain convergence criterion.

There is something very important remaining to be done. It is the estimation of the error in the computation.
We have so far not discussed any method to find out how close are the computed solution to the actual
solution. Obviously it is a difficult problem and there does not exist any method to find out exact error in
the computation. The best we can hope for is to get an estimate of this error. In this section we shall discuss
a method which gives a reliable error estimate in the radiosity computation. The method was proposed by
Lischinski et al in [33]. The method : (i) derives accurately two piecewise constant radiosity functions B
and B that bound the exact radiosity function B(z) i.e. B(z) < B(2) < B(%), (ii) estimates the radiosity
function as the average of these two bounds and (iii) estimates the error as half the difference between two
bounds.

Thus the key step to the error estimation is the evaluation of radiosity bounds. We describe below the
methods for their computation.

8.3.1 Computation of Radiosity Bounds
Lower Bound of Radiosity:

We have a linear radiosity system
N

B; = E;+ p; ZFi,ij
ji=1
where N is the number of patches. If we substitute E; and p; in this equation by £, and P, which are
respectively the infima of emission function and of reflectivity function over the surface patch 1, and substitute
F;j by F; ; which is the infimum on the point to area form-factor between the points in i and patch j

ie F,; = inf / ) K(z,9)dy
patc

:L‘Epatchl

then we can write another linear system
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The solution of this system will be the lower bound radiosity {B;}.

Upper Bound of Radiosity:

Similar to the above paragraph we can substitute the F;, p; and F;; by the corresponding supremums E;,
p; and F; ; respectively and the solution of the resulting system should give us the upper bound of the
radiosity. Unfortunately, the resulting linear system may not be amenable to iterative solution and even
may not have a solution at all. Authors of [33] proposed a modification to the linear system which has a
solution and also gives the upper bounds of the radiosity. They brought-in the modification while applying
the Jacobi iteration to the system. In the standard Jacobi iteration the radiosity values at the (k + 1)-th
iteration step are calculated from the values obtained after the k-th step as follows:

N
BI*Y = By 49> P B
i=1

Whereas the modified iteration method the radiosity values at the (k4 1)-th iteration step are calculated as

1 N

—(k+1 — _ — —(k Eal ok

BZ(- ):Ei—kpl- EFi,jB](')+ 1= > Ty B§+)1
i=1 j

where [ is the largest index such that
{
Y R <L
ji=1

This modified method converges and resulting solution has been shown in [33] to be the upper bound of the
actual radiosity function.

Form-factor Bounds

In the above we bounded emittance, reflectivity and form-factor. In an environment emittance and reflectivity
are mostly assigned to be constant known values. So bounding them makes no change in their values. Thus
key to the radiosity bounds computation is the evaluation of supremum and infimum of the form-factor.
One can evaluate them using a numerical optimization method as given in [2]. This evaluation could be
expensive. One can get an approximation of these values by computing analytical point to polygon form-
factor at various points of the receiver surface and finding a minimum and a maximum from them. Though
these bounds are not exact, as the size of the patches decrease they converge to the exact value.

8.3.2 Bound Computation in Hierarchical Framework

We shall modify the hierarchical radiosity method to compute the radiosity bounds more efficiently. The
modifications necessary are : (i) computation of F' and F values for each link (ii) gathering of the radiosity
bounds (iii) push/pull of the radiosity bounds. The gathering of upper bound must take in to consideration
the transformation given in the earlier paragraph for convergence. The pseudo code of the gather algorithms
are given in figure 8.22.

8.3.3 Improved Link Refinement Strategies

Original hierarchical algorithm [27] proposed a form factor based refinement, so that a pair of patches with
form_factors below a threshold were linked. This refinement strategy was subsequently improved [28] by
basing the refinement on the brightness-weighted form factor (B;.F; ;) value. This latter refinement was
an improvement over the earlier because it did not refine the links with higher form factors if the energy
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GatherLowerBounds(node,B)
{
foreach link € node.links do
B += node.p * link.F * link.source. B,
if IsLeaf(node) then
node.B = B + node. F/;
else
foreach child € node.child do
GatherLowerBounds(child, B);
node. B=min(child,.B, childs.B, .. .);

GatherUpperBounds(node, contribList)
{
foreach link € node.links do
add (link.? and link.source.ﬁ) to contriblList;
if IsLeaf(node) then
FSum = 0;
node.B = node.E;
CreateNewSortedList(contribList, New List);
foreach pair (F, B) € NewList do
if FSum+ F <1 then

FSum += F;
node.B += node.p* F * B;
else
node.B 4+= node.p * (1 — FSum)  B;
break;

else
foreach child € node.child do
GatherUpperBounds(child, contribList);
node. B=maz(child,.B, childs. B, .. );

Figure 8.22: Pseudo code for gathering lower and upper bounds.
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transferred between them were negligible. This strategy reduced the number of unnecessary links and hence
saved a lot of computational effort. Authors of [33] propose further improvements to this refinement strategy.
The improvements are based on the following facts:

(i) Error in the radiosity results primarily from incorrect linking. If the kernel between the receiving patch
and the emitting patch is not a constant function then there is bound to be an error in the radiosity
value of the receiver patch.

(ii) Further, the error on this patch, gets distributed to other surfaces, exactly like the radiosity, along its
shooting links.
AF;; = FZ-}J- -F;; is an indicator of the quantitative deviation of the kernel function from the constant
function. Thus the refinement be based on Ej AF; ; will be a better strategy than the simple B; . F; ;. If the
link is correct then the AF;; will be zero and the link will not be refined irrespective of the amount of light
flowing though it. At the same time, even if the AF;; is large, if the source is deem then also the link will
not be refined.

According to the second observation related to the distribution of error, a surface having many shooting
links is likely to amplify the error and hence increase the total computational error in the environment. So
it will be a better idea to refine first the links of those surfaces which have maximum amplification factor.
As the error is propagated like radiosity, the error amplification factor of a surface is same as its radiosity
amplification factor or the importance[44]. So a much improved refinement strategy will be to base the
refinement on FJ-.AFZ-}J- times the importance of the receiver i.e. Z;. However, to do this we require the 7;
values. It has been shown in [44] that the importance calculation uses exactly the same machinery of the
radiosity calculation method and hence can be interlinked with the radiosity method. Thus we can modify the
radiosity bounds computation method discussed above to evaluate the importance. Authors of [33] propose
to compute only the lower bound of importance i.e {Z;} and refine all the links with B; . AF; ;.Z; > «.
Ofcourse there is a small price to pay for this improvement. It is the additional effort of computing the
importance of each patch in the environment.
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Chapter 9

Projection Methods for Radiosity
Computation

The radiosity is a function over points of the surfaces in the environment. An integral equation relates the
value of this function at any point to the values at every other points of the environment. Thus computing
this function by solving the integral equation at every point is impossible because there are infinite number
of points. Unless one is interested in evaluating the function at finite number of points, one must find out a
numeric method which converts the infinite problem into a finite problem. In the earlier chapters we have
discussed one such method. In that, we have assumed that all the points belonging to a surface patch has
the same radiosity value. There are only a finite number of surface patches in the environment and hence
finite number of equations to solve. In this chapter we shall discuss the extension of this constant assumption
to higher degree polynomial assumptions. To do that we shall introduce a general mathematical framework
called function projection.

9.1 Weighted Residual Method for Function Approximation

Like the projection of vectors, one can project a function on the space spanned by a set of basis functions.
The projection will be represented as a set of components.

Let us assume {A;(t)} to be one such finite set of basis functions and B(¢) the function to be projected.
Then the projection will give rise to the set

(By,Bs, ..., By) (9.1)

containing B; as a component of projection of B(t) corresponding to each basis function A;(t). We can
construct a new function B(t) from these coefficients and the basis functions as:

By =3 By Nj(1) (9.2)

This function can serve as an approximation to the original function B(¢) and the component B;’s may
be called as the coefficients of approximation. The difference between the original function and the ap-
proximation is very likely to be a nonzero function. This difference function r(¢) is called error function or
residue.

There are various methods to compute the approximation coefficients. Weighted residual method [53] is
one of them. This method sets the scalar products of the residual function and N known functions to zero
and creates a linear system containing the unknown coefficients. The solution of the linear system gives these
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coefficients. The known functions are called weight functions W(t). The derivation of the linear system is
as follows:

r(t) = B(t)— B(t) = B(t)— Z B; Nj(t)
/T(t)VVi(t)dt =0 for i=1...N
= /B(t)Wi(t)dt = ZB]-/A/j(t)m(t)dt (9.3)

Equation 9.3 is the resulting linear equation. The other terms in the linear equation are scalar products of
known functions and must be computed before solving the linear system.

Of the various choices of the weight functions, the basis function itself serving as weight function is a
popular choice. Thus the linear equation becomes :

/ B(ON;(t)dt = iBj / N (N (t)dt.

A consequence of this choice is : the projection component of the residue function on each of the basis
functions is zero. The resulting computation method is known as Galerkin method. In the Galerkin method,
if the functions in the basis set are orthogonal, i.e.

: _ A iff (i ==)
/M(t)'/vj (t)dt = { 0  otherwise, (94)
then we get a much simplified expression for each approximation coefficient which is
B;A; = /B(t)M(t)dt. (9.5)

We have so far discussed the projection of a function of single variable. We can simply extend this
projection to functions of multiple variables. For example, a function of 2 variables K(s,t) will be projected
on an orthogonal basis as:

)

K(s;t) = >3 KijNi(s)N;(t) (9.6)
J
where K; ; A;A; = //K(s,t)./\/}(s)./\/}(t)dtds (9.7)

In this case we have chosen A(s) and A/(¢) are the same basis functions but defined over different variable
space s and t respectively. However, one is free to choose different basis functions for the different variable
space.

9.2 Galerkin Method for Solving Integral Equation

We stated in the beginning that we have a task of computing a function B(s) which is defined by an integral
equation of the second kind i.e.

B(s) = E(s)—l—/K(s,t)B(t)dt (9.8)
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where F(s) and K(s,t) are the known functions. Here we shall restate the problem and say that instead of
trying to compute the exact function, we wish to find an approximation B(s) for the function as given in
equation 9.2. Using the principles of Galerkin method we can carry out this computation. The process is as
follows:

We first substitute every occurrence of B(s) in the integral equation by B(s) and define a residue function
as:

r(s) = B(s) — E(s) — / K(s,t)B(t)dt (9.9)

Then we minimise the residue by making it orthogonal to each of the basis functions. i.e.
/T(S)M(s)ds 0 o / (B(s) ~ B(s) - / K(s,t)é(t)dt) Ni(s)ds = 0
or /B(S)M(s)ds = /E(S)J\/}(s)ds—l—//]{(s,t) ()N (s)dtds

B
or / S BNG(s) | Nils)ds = /E(S)M(s)ds—f-//]((s,t) (ZBjA/j(t) Ni(s)dtds

Substituting the relation given in equations 9.4, 9.5 and 9.7 in the above equation we get the following
expression:

B, A, = E;A; + A; Z I{iyj.Aj B]'
J
or
B, = FE; +Zl{i’j'Aij
J

In an integral equation the functions E(s) and K (s,t) are known and hence E;’s and K; ;’s can be evaluated
by using any quadrature method.

Thus using Galerkin method we have converted the problem of solving an integral equation to the problem of
solving a system of linear equations. One can solve this linear system to get the unknown B;’s and construct
approximation of the unknown function B(s) as é(s) from equation 9.2. The size of the linear system, N, is
equal to the number of basis functions chosen for approximation. An iterative solution of this linear system
has a O(N?) complexity. Also, setting up of the linear system requires the evaluation of F;’s and K ;’s for
all i and j and hence has a O(N?) complexity.

9.3 Radiosity Solution

Here we shall look at the exact radiosity equation. It is as follows:

B(z) = E(£)+p(f)/ mafﬁ&h@,g)B(g)dQ (9.10)

env r

g

where Z and y are surface points in the environment, §z and 7 are the angle that the line joining points z
and § makes with the surface normals at Z and § respectively, h(Z, ) is the visibility between Z and 3.

If we define a kernel function K(.,.) as follows:

o ~cosfzcosly
K(z,y) = p(m)%h(m,y), (9.11)
Ty
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then the radiosity equation is exactly same as that given in equation 9.8 and we can apply the Galerkin
formulation derived above to solve the radiosity equation. This will amount to setting up a linear system of
the following type:

B, = Ei+21{i7jAij (9.12)
J

where Eid; = / E(2)Ni(3)dz and Kij Aud; = / / K(z, )N, (5)N; (3)dgdz

Classical Radiosity Method

In the classical radiosity method we assume that the radiosity is constant over the surface patches. That
means we approximate the radiosity function over a surface as a combination constant pieces. We can restate
this by saying that we use basis functions A;(Z) which are defined as follows:

1 iff (z € Patch;)

Niz) = {O otherwise, (9-13)

where Patch; is the i-th surface patch of the environment. Function A;(Z) can be said to be a function with
finite support and its support is the surface area of Patch;.

The functions which are non-zero over only a part of the variable space are called piece-wise functions. Thus
N;(z)’s are called piece-wise constant functions.

If the radiosity of the patch is B; then we can write the radiosity function over the patch i as B(;(z) =
B;N;(z) and the radiosity function over the whole environment as B(z) = 5 B;N;(Z). From the analogy of
this equation to the equation 9.2 we can now say that in the classical method method we are in fact using a
projection technique.

As each patch is disjoint from every other patch, the basis functions defined in equation 9.2 are orthogonal

and
A; = / Ni(z)N;(z) .i’:/ dz = A;
A;

where A; is the area of the i-th patch and the expressions of F; and K;; become

A E;, = / E(a‘:)df and AiAj]&'iJ' :/ / K(i,gj)dgdf
env A JA;

Substitituing this expression of K; ; in equation 9.12 we will get:

B, = E+— [/ / K(z,y)dydz| B

_ E+— [// cos@;:os@ h(z, §)dgda
Tzyg

. 0z cos O .
Denoting ~ F;; = _/ / o 2cos “h(z,y)dydz and assuming p(z) to be constant over patch i
Tzg

we will get B = E;+p; ZFiijj'
J
This last expression is the exact form of the linear radiosity equation used in the classical radiosity method,
coefficient B; in this expression is the radiosity over the patch ¢ and F;; is the well known form-factor

between patch ¢ and patch j. Thus we see that the classical radiosity method is a special case of Galerkin
radiosity solution method using piecewise constant basis functions defined in equation 9.13.
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Figure 9.2: Approximation using piecewise constant basis functions.
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Figure 9.3: Approximation using piecewise linear basis functions.

Constant basis functions are in general not good approximation functions. Figures 9.2 and 9.3 show a
comparison of a function approximation using piecewise constant and piecewise linear basis functions. If we
compare the approximation resulting from same number of basis functions in the constant and linear case
we see that linear basis function gives better approximation. This observation can be generalised and we
will say that higher degree polynominal functions are preferable for the solution of radiosity equation.

In the following section we shall discuss general piecewise basis functions and choose a particular basis
which will allow us to get non-constant approximation of radiosity function and which will also be amenable
to hierarchical algorithm discussed in the earlier chapter to efficiently solve the radiosity equation.

9.4 Wavelet Basis Functions

We discussed in the above section about piece-wise polynomials. They belong to the class of piecewise basis
functions. Any linear combination of these functions will generate piecewise polynomial functions. Thus the
projection of any function on such basis is a piecewise polynomial.

Wavelets [13] make another important class of piecewise basis functions. Some of the properties of these
basis functions are :

1. There are two types of functions in a wavelet. One is the scaling function, ¢, and the other is the deta:l
function, 1. Translates and dilates of these functions make the basis set. By translates and dilates we

mean starting with any one of the functions, say ¢, we can create ¢§.I)(t) such that
I . .
o (1) = 2792t = j +1)

where j, [ are any integer. [ is said to define the level or resolution of the function. Each such function
has a compact support which is proportional to the interval [27/(j —1),27'j[. With [ > 0 we can create
a hierarchy of basis functions such that functions with / = 0 are on the root of this hierarchy.

/qﬁ(t)dt =1

and the set {¢§»I)(t) |7 € Z} at any ! is an orthonormal basis which can be used for approximating any
function.

2. The characteristic of ¢ is:



3. The characteristic of 1 is:
/¢(t)tm—1dt =0 form=1...M (9.14)

where M is some positive integer and is said to be the number of vanishing moments of the wavelet.
{1/}51)(t)|j € Z} at any level | forms an orthonormal basis. In addition the set {1/)](»1)(t)|j,l € Z} is also
an orthonormal basis. ¢ is orthogonal to ¢ and has the unique property that if the basis set constructed
from ¢ is used to approximate a function B then the difference between the approximations at two
consecutive levels (I 4+ 1) and ! is same as the projection of the function on {1/)5”@)} at level [. If we

denote the approximation of B(t) in the scaling basis at level [ as BW(t) and the approximation in the
detail basis at levels [ as B()(t) then

(B<z+1> _ BU>) (t) = BO()

4. In the hierarchy described above, there exists an intimate relationship between the basis functions
defined at one level with the functions at the adjacent level. The relationship is given as below:

(n (I+1) _ Crozjrz (L < (k—2j+2) <2M)
/¢j (t)oy, (t)dt = { 0 otherwise,

The resulting finite set, {¢; }, has a size 2M and is called the discrete filter set. This set is independent
of the level of the hierarchy and is the characteristics of a particular wavelet.

We shall discuss now a particular wavelet basis known as multiwavelets[1, 22] which is currently popular
for radiosity computation.

9.4.1 MultiWavelet Basis

Multiwavelets are a special class of wavelets. The distinguishing feature of this basis is that, unlike the
standard wavelets, it has multiple number of ¢ and 1. If the multiwavelet has M vanishing moments then it
has M number of ¢ and 1 functions. If we denote each of these M functions by array indexing mechanism z.e.
é[1],¢[2], ..., #[M], then i-th scaling function, ¢[i], for each i, is constructed from the Legendre polynomial
of degree (i—1) and each of them is defined over the same parametric support [0, 1]. The exact mechanism of
construction and a few sample scaling functions are given in figure 9.4. (Note that the scaling functions of
multiwavelets with 1 vanishing moment are simple piecewise basis functions.) As for dilation and translation,
dilating and translating are carried out on all these M functions together. Thus in multi-wavelet basis sets
one will find groups of M functions sharing the same support. This group of M basis function at any

level [ has the parametric support of [27!(j — 1),27'j]. The set {qbg.l)[m](t) |m=1...Mand j=1.. .21}
for each [ > 0, is an orthonormal basis for functions with parametric support [0,1]. In addition to this,
the set {gzﬁg-l) [m](t) | m = 1...11/[} for every j = 1...2" in any level [ is also an orthonormal basis for

functions with parametric support [27/(j — 1),27/4[. Any linear combination of polynomials of degree up
to (M — 1) is a polynomial of degree up to (M — 1). Hence the projection of any function on basis set

{qj);lj) [m](t) |m=1.. M} is a polynomial of degree up to (M — 1) within the parametric support [27/(j —
1),274].

We shall extend the array indexing mechanism to distinguish the coefficients of projection will be denoted
as B[1]...B[M]. Example of an hierarchical approximation of B(t), where t € [0, 1], at different levels of the

multiwavelet hierarchy is given in figure 9.5. Because of the presence of M different functions in a group
there are M discrete filter sets, one corresponding to each function of the group and each such set has a size
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The relationship : ¢[m](t) = v2m + 1P™(2t — 1), where P™ is
the Legendre polynomial of (m — 1)-th degree in the parametric
space [—1,41], is used to create the multiwavelet scaling func-
tions. The resulting construction defines the scaling functions in
the parametric space [0, 1]. Some example functions are given be-

low.
Legendre polynomials | Scaling functions of Multiwavelet
up to degree 3. with 4 vanishing moments.
1 1
t V3(2t — 1)
(32— 1) V5(6t% — 6t + 1)
(513 — 3t) V(2083 — 30t + 12t — 1)

Figure 9.4: Expressions for the Multiwavelet scaling functions with vanishing moments 4.

BO(1) = ZB<0>[m¢<m[ 1(t)

B(l)[ ¢(1) _|_ Z B(l) ¢>(1) ]()

Ma

BM(t) =
) v
B(2)(t) - Z (2)[m (2) +ZB(2) [m]é (2) [m](t) +

S B e t>+ZB<2) o5 (1)
m=1

At each level, the number of basis functions and so the number
of approximation coefficients are twice that of the previous level.
The function support is subdivided by a factor of 2 for each in-
crease of the level. At the very first level, i.e. [ = 0, the whole
function is approximated by M coefficients and the resulting ap-
proximation is a single polynomial piece of degree up to M —1. At
the next level, the function is approximated by 2M coefficients,
first M of which are approximating coefficients of the left half of
the function and the next M are for the right half of the function.
The function in now approximated as 2 pieces of polynominal of
degree up to M — 1. At level [ the function is approximated as 2/
polynomial pieces.

Note : The polynomial pieces in the resulting approximation at
levels [ > 0 are not guaranteed to be continuous.

Figure 9.5: Hierarchical approximation of a function using multiwavelet basis.
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2M.

‘ . er[m] iff (k=2j-1)
/ oi [ml(2)8 * (2)dz = causplm] M (k = 2)
otherwise,

The table below gives the filter values corresponding to the multiwavelet with 4 vanishing moments.

1 2] B] [ [B1 [6] [ [§
c[1] % 0 0 0 J% 0 0 0
cf2] | - 2 0 0 ¥E 2 o 0
4| V3B VE Y@ I _YE YT YT 2

16 16 16 16 16 16 16 16

9.5 Multiwavelet Radiosity

We can now proceed to use the multiwavelet basis functions for the Galerkin solution of radiosity. Our main
alm in using a basis function other than piecewise constants is that we wish to approximate the radiosity
function as higher degree polynomials. So we shall use multiwavelets with vanishing moments > 1. We shall
discuss below the various issues involved in the use of multiwavelets.

9.5.1 Multiwavelet Functions Defined Over Surface Space

We defined above the multiwavelet scaling functions to be the Legendre polynomials of single parameter ¢.
For the solution of radiosity equation we require a function defined over surface points. To create this type
of functions we make assumption that the surfaces in the environments are biparametric. This assumption
defines each point in a surface uniquely by two parameters (s,t) where each parameter is defined in a
particular range. If we force the parametric range to be [0, 1] then a multiwavelet scaling function ® over
the surface can be constructed as:

®[m](z) = ¢[m1](s)¢[m2](t) where s,t €[0,1], mi,ma=1...M, m=1...M? (9.15)

Thus there are M2 scaling functions to start with and hence the hierarchical level I = 0 will also have a group
of M? basis functions and the projection will have M? coefficients. The support of each of the functions in
the group will be the full surface area. Each dilation will have 22 times more basis functions and hence 22
times more coefficients than the level above. Also the support of the basis functions at one level will be one
fourth the support of the functions above. If we wish to project the radiosity function of a surface p on the
basis set at a particular level [ of the multiwavelet hierarchy then the resulting approximation will be

221 M2

By(z) =33 B [m]e{"[m](z)

ji=1lm=1

where ®() is the scaling function at the hierarchical level I,

As the surface parametrisation of each surface in the environment will be different the construction
described above will make the wavelet functions to be unique to each individual surface. In the radiosity
equation we have so far assumed radiosity to be globally defined over the whole environment. So the basis
functions constructed here cannot be directly used for its solution. To use these basis function, we shall use
a reformulation of the radiosity solution. If Z = Z(s,?) and § = §(u, v) in the parametric space [0, 1] x [0, 1]
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&i w;
N=1
0 2
N=2
-0.577350269189626 1.0
0.577350269189626 1.0
N=3

-0.774596669241483
0.0
0.774596669241483

0.555555555555556
0.888888888888889
0.555555555555556

-0.861136311594053
-0.339981043584856
0.339981043584856
0.861136311594053

0.347854845137454
0.652145154862546
0.652145154862546
0.347854845137454

Table 9.1: Points and weights for the Gauss-Legendre Quadrature.

the following reformulation [52] will define the radiosity function over a surface in terms of radiosity function
over another surface.

11
By(s,t) = Ep(s,t)+Z/ Kpq(s,t, u,v)Bg(u, v)dvdu (9.16)
q u,v=0,0
0z cos Oy 8y(u, v 5y(u,
where Kp_q(s,t,u,v) = pq(S,t)Mh(x,y) H y(u,v) % y(éu,v)‘ (9.17)
Tzg u v

where B, (., .) and Bq(., .) are radiosity functions over the surface p and ¢ respectively, K, q is the interaction
kernel between p and q.

Now to the equation corresponding to each surface we can apply the Galerkin method and generate the set
of linear equations. The linear equations resulting from equations of all the surfaces will make the linear
system. The projection coefficients of the kernel function in the resulting linear equation will be

Kpeqij /t 00/ Oolxp_q s, t,u, 'u)<I>(I)[ ](s,t)éj(-lj)[m'](u,v)dvdudtds (9.18)

Setting up of the linear equations will require the evaluation of these coefficients. We shall discuss one
quadrature technique below for such evaluation.

9.5.2 Computation of Inner Products

Evaluations of the inner products of the type given in equation 9.18 require the use of a numerical quadrature
technique. Here we shall briefly discuss one such technique. Its based on the following principle:

Given a problem of evaluation of [ f(s)ds, choose a set of points {&;,i = 1,...,N} and a set of weights
{w;,i=1,...,N} and estimate the inner product as Zf\;l w; f(&;).

The points and the weights chosen should be such that the estimate is as accurate as possible for a class
of functions f(x). Various methods for making the choice are give in [15]. The simplest and widely used
method is Gauss-Legendre quadrature for which the points and weights for different N are given in table
9.1. The integral domain for which the values are applicable is —1...4 1. The values have been derived in
such a way that the quadrature is exact for an integrand which is a polynomial up to degree 2N — 1. So if
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we are calculating an inner product of the type

fi= / FON @),

in which A/(¢) and f(t) are polynomials of degree m, then the integrand will be a polynomial of degree 2m.
Thus one must choose at least the points and weights corresponding to the N = m+ 1.

Our particular interest in the evaluation of K,_q;; in equation 9.18. In this case the integration is
over 4 parametric variables. We can extend the above quadrature of the integrand with one variable. If we
are using a Multiwavelet basis of M = 2 the ® has a maximum polynomial degree of 1 and the kernel is
almost linear in each variable then our integrand in equation 9.18 becomes a polynomial of degree of 2 in
each variable. Thus we must choose the Gauss-legendre points corresponding to N = 2, i.e. 2 points in each
variable and hence 16 evaluations of the kernel. In addition to this one must take care of two sources error
in this calculation.

e Visibility: The visibility is a part of the kernel function. Because of its boolean nature (zero or
nonzero) the evaluation of the kernel just at the Gauss points during quadrature can lead to a very
erroneous result. So Gortler et alin [22] suggest that, during the quadrature, the kernel be evaluated
by completely ignoring the visibility. To this quadrature result, a visibility factor, between 0 and 1, be
multiplied. The visibility factor between the two patches involved is independently evaluated (say by
the method given in [28]).

e Singularity: The kernel is singular at those points where the two surface patches involved touch each
other. Thus, if the Gauss points belong to the singularity then we get into a division by zero problem.
This division by zero problem is however not serious, as, it can be detected and hence the points can be
displaced. The serious problem is that, in the presence of singularity, the approximation of the kernel
to the polynomial of certain degree is quite crude. So the Gauss quadrature involving such kernel
function will be very erroneous. There is no clear cut solution to this problem. In such situation, one
may resort to analytical integration, if possible. Or subdivide the patches containing the singularity
to such small pieces that the error resulting in the quadrature does not add much to the overall error.

9.6 Hierarchical Multiwavelet Radiosity

We shall now extend the use of multiwavelets for hierarchical radiosity solution. The hierarchical method
proceeds by making a boolean decision on whether a pair of surfaces of the environment can be linked for
light exchange. If the decision is negative then one or both of the surface are subdivided and the verification
process is continued. The subdivision involved creates a hierarchical representation of the surface. The
refinement decision is carried out by an oracle process. During the solution step, radiosity is gathered
though the links and are collected at various levels of the same surface. For proper representation of the
collected radiosity function, a push/pull method is utilised.

Thus the minimum requirement for developing a multiwavelet radiosity method will be take care of each of
these special features.

From the definition of the multiwavelet basis and function approximation using this basis we have already
seen that subdividing a surface patch means associating with each of subdivided patches a group of M
multiwavelet scaling functions belonging to a level higher than the current level. All we have to do now is
to define an appropriate refinement function (i.e. oracle) and to define the push/pull functions.

Oracle

In the hierarchical radiosity method (discussed in the previous section) involving constant function we saw
an oracle. It was based on the value of form-factor. It allowed a link between two surface patches only
when the form-factor between them was below a threshold. The basis behind such choice was that the

67



radiosity function over a receiver surface can be constant only if the kernel function is constant. When a
form factor is below a threshold the deviation of the kernel function from a constant function is likely to be
very small. Using Multiwavelet we are trying to extend the constant radiosity assumption to higher degree
polynomial radiosity assumption. So accordingly, before creating a link between two surface patch we must
make sure that the kernel function is of the same polynomial degree. So the key to the oracle will be finding
a polynomial fit for the kernel. The pseudo code for the oracle is given below:

oracle(patch xp, patch *q)
{
Evaluate K, at Gauss Points corresponding to N = M;
/* M is the vanishing moment of the multiwavelet */
Fit a (M — 1) degree polynomial through the evaluated points;
Let {calc;} be the values of the above polynomial at some test points.
Let {actual;} be the evaluated K., at the same test points;
if [ abs(actual; — cale;) < €] /* sum is over all the test points*/
return True;
else
return False;

}

We can write the refinement algorithm for linking two surfaces as follows:

Refine(int [, patch p, patch ¢)

{

patch *which;

if (oracle(p,q) or | = lyaz)
K = quadrature(K(.,.),p,q);
link(K ,p,q);
else
which = Subdiv(p,q);
if(which == ¢)
Refine(l+ 1,p,q — nw);
Refine(l + 1,p,qg — sw);
Refine(l + 1,p,q — se);
Refine(l + 1,p,q — ne);
else
Refine
Refine
Refine
Refine

I+ 1,p— nw,q);
I+ 1,p— swy);
I+ 1,p— seq);

I+ 1,p— neyq);

Pl PLGpLy

9.6.1 Push and Pull: A Reprojection Mechanism

The gathering of radiosity at any surface in a hierarchical method results in a distribution of radiosity over its
various nodes. Radiosity received at nodes higher in the hierarchy must be pushed down and the radiosity
received at the nodes lower in the hierarchy must be pulled up. In the Multiwavelet radiosity method
radiosity at each node is represented by M? coefficients. Pushing this radiosity below the hierarchy will
require calculating 4M? coefficients. Similarly pulling the radiosity will involve computing M? coefficients
from 4M? coefficients. We must develop a mechanism to do that. For that first we shall discuss a general
mechanism called reprojection and from that deduce the mechanism for push pull operation.
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We shall describe reprojection as a mechanism which i1s simply the projection of an already projected
function on a different basis set. Let us take for example, B to be the projection of B over basis {A;}. Let
{x:i} be another basis set and we wish to project B on this basis. Using the discussions given above we can
write that:

= Zn: B; N;(t) where B; /B(t)/\fj (t)dt

B(t) = ZB,’C Xk (1) where B, = /B(t)Xk(t)dt
k=1

n

/ éBﬂW Xk<t>dt=§Bj ( / A/j(t)Xk(t)dt)

If we take a special case of reprojection in which the two basis sets are the hierarchical multiwavelet basis
of a single parameter ¢, in particular the ones belonging to two adjacent levels, say {¢(!)} and {¢(/+1)},
then because of the the discrete filter functions associated with the multiwavelet we shall get very simple

expression for evaluating this reprojection. One of the reprojections will be Pull and the other will be Push.
Case I : Pull: Reprojection from level (I + 1) to level T

oI+l pf

Bl = 3 35 ([ e )
ji=1 (=1
M
= ch[m]Bgﬁ?u+ZcM+z[m]B< Sl (9.19)
=1 =1

Case I : Push : reprojection from level I to level (I + 1)

2f M M
Bl = LS EOm ([ om0 o) = 3 es
ji=11=1 =1
, 2T M M
and Bgi"'l)[m] = ZZB(I [ </¢(I+1 q[)(I)[l]( t)d > — ZCM+m[l]B](CI)[I] (9.20)
ji=11=1 =1

where ¢ is the discrete filter function.

We can extend this to the two variable case of radiosity. This extension will give 4 terms in the right hand
side of the expression for the pull operation (instead of 2 terms in the one variable case in equation 9.19).
Each term will be a summation over M? coefficients of the node below the hierarchy (instead of M coefficients
in the one variable case). The push will have 4 expressions. Each expression will be for the coefficients of
each of the 4 nodes below the hierarchy and each expression will have only one term which is a summation
of M? coefficients.

Now we have all the ingredients of a multiwavelet hierarchical algorithm.

69



70



Chapter 10

Implementation of one-pass model

The implementation of a global illumination model can be performed according to three approaches: one-pass
methods [30, 41, 30, 40, 18], two-pass methods [43, 48], or multi-pass methods [42, 6].

The one-pass methods perform all the illumination computations independently of the view point, al-
lowing then a fast rendering of the same scene from different view points. However, these methods need a
large amount of memory to store data. Another drawback is the aliasing defects due to sharp variations of
specular reflections and specular transmissions. To avoid these defects, a very dense sampling of the scene
is indispensable, which would significantly increase the data to be stored.

In the two-pass methods, the diffuse and specular components (from reflection or transmission) are com-
puted separately; the notion of form-factors are then extended to account for the specular effects contributing
to the global diffuse component.

Even though the multi-pass methods are better suited to the rendering of caustic effects, they are very time
consuming since they involve several passes: Monte Carlo path tracing, light tracing, progressive refinement
radiosity...

In this chapter we will describe a one-pass method for global illumination computation. This method is
due to Aupperle and Hanrahan [18]. In the following, we will use the same notations as in [18].

10.1 Formulation

onsider figure 10.1, where an are surfaces and z, 2’ and 2 are points on these surfaces respec-
Consider fig 10.1, where A, A’ and A" f: d z,z" and z" t th f;
tively.

Figure 10.1: Geometry of reflection
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The objective is to examine the transport of light incident at A’ originating at A and reflected toward
A" by using the radiance equation introduced in a previous chapter.
We can write :

L(:.c’,:.c”):/:4fr(a:,;r',;r”)L(m,m')G(m,x’)dm (10.1)

where :
cos 0, cos 8]

G(z,2') = ———Lh(z,2").

oz |2

The total flux, reflected by a point 2’ toward surface A” when 2’ is illuminated by surface A, is given by

q)AdA/’A// = / L(CL‘/,Z‘“)G(ZJ,CL'H)dCE“.

Using equation 10.1 we get :
/ Lz, 2")G(2', 2")dz" = / fr(z 2’ 2"V L(z, 2" )G(z, 2")G(2', 2" )dz" dx.
i A A/I

If we integrate the above equation over surface A’, we get the total flux reflected by surface A’ toward
surface A" when A’ is illuminated by A:

// L(x',:E”)G(:z:',a?”)dx“dx':// fr(z, 2’ 2" L(z, 2 )G(z, 2 \G(2', 2" )dz"dx'dz.  (10.2)
’ H A ’ AII

Now we suppose that the 3 surfaces A, A’ and A" are subdivided into subsurfaces A;, A; and Ay
respectively, such that L(z,z’) and L(z,2’) are nearly constant over the pairs of surfaces (A;, A;) and
(A;j, Ar) respectively.

If we write L(z,2') = L;; = constant and L(z', ") = Lj, = constant and bringing out of the integrals
the radiance terms, equation 10.2 becomes:

TLjpAjFip = wLij Ai Fyj Rijee, (10.3)

where R;;; is defined such that :
7 A; Fij Rijr = / / fr(z, 2 2" \G(z, 2 )G(2', 2" )dz" d2x' dx.
A; Ay Jay
If we consider all the subsurfaces A; illuminating surface A;, then we get:

WijAijk = Zﬂ'LiinFinijk- (10.4)

Due to the symmetry of f. and G() we have:
APy Ry = Ap Fij Ryj;.

Thus equation 10.4 becomes:
Lik =Y _ Lij Riji.
i

Taking into account self emission we obtain a discretized form of the radiance equation:

Lik = L, + Y Lij Rije. (10.5)
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10.2 Area Reflectance

10.2.1 Physical meaning

The quantity Ry;; is no more than the proportion of energy originating at surface A and reflected by surface
A’ toward surface A”. It is called area reflectance. We can write:

Ryji = p(Ai, Aj, Ay)

This is thus a physical quantity which satisfies both the principle of energy conservation over reflection
and symmetry property:

o >, Ry <1, for fixed i, j,
o AiFiRijp = ApFyjRyji.

10.2.2 Evaluation of the area reflectance

Let us rewrite the expression of Ryj; as:

Sa Sa fAk fr(z, 2 2")G(z, 2")G(2', 2" )da" da' d
i 7
AN AY PP T '
fAlfAjG(I yx!yda'dx

Rijr =

If we assume that A;, 4; and A are small enough that f. and G() are relatively constant over their
surfaces, then:

SkjinjGjiAkAiAj
ijAkAj
= SkjiGjid;

Ryji =

where S is the discretized value of f, such that Sgj; = Sijr = Sera g
The average value of G(2',2) over A; and A; is wF;;/A;. Thus we can estimate Gj;4; by mFj; and
compute [y;; as:
Ryji = mFiSkji.

Since it is not possible to compute the exact values of F}; and Si;;, they are estimated with error bounds.
Let AFj; and AS;; be the error estimates. Then an estimate for area reflectance is given by:

Ryji = w(Fji + AF)(Skji + ASkji)
= w(FjiSkji + AFjiSkji + ASkjiFyji + AFj;ASyj;)
~ w(Fj;Skji + AFjiSkji + ASkjiFjs)
If we neglect the last term, the error estimate for Ryj;; becomes:
Riji = m(AF}iSkji + ASkjiFyi).

The accuracy of the estimates for Fj; and Sij; is dependent on the size of the patches over which
reflectance is computed, relative to the distance between them. As the relative size decreases so does error,
leading to the adaptive refinement strategy for illumination as shown in the following.

73



typedef struct interaction {
Patch *from ;
Patch *to ;
Color L;
Color Lg;
List *gather;
struct interaction *nw, *sw, *se, *ne;
} Interaction;

Figure 10.2: Interaction Data Structure

10.3 Algorithm

10.3.1 Principle

Let us recall the discretized radiance equation:
Ljx = Lj + ZLinkji~
i

This is in fact a linear system of equations whose solution can be obtained by gathering. The unknowns
are the radiances L;; with ¢,j € [1, N], N being the number of patches.

As all illumination is expressed as the radiance at a given patch toward another, the patch-patch in-
teractions form the primary data structure necessary for the system solution. All operations will be over
interactions. A data structure representing an interaction is given in figure 10.2.

A given interaction zj is defined by two patches ij — from and ij — to and represents the radiance at
from toward to. This radiance is stored within the interaction as attribute L. Lg is the radiance gathered
during the current iteration from interactions contained in the list gather. Subinteractions nw, sw, se, ne
are the children of #j induced by the subdivision of from and to.

In the next subsection we will give the algorithm for the refinement and computation of illumination over a
hierarchy of interactions. The algorithm refines pairs of interactions (ij, jk) such that ij — from =ij — to
to ensure the computed reflectance across the interaction pairs and associated patch triples satisfy user
specified error bounds. If a given interaction pair (z, jk) is satisfactory, the interactions are linked to record
that radiance may be gathered from #j to jk, otherwise one of both interactions are subdivided and refinement
is applied to their children.

After refinement, a gathering iteration may be carried out, each interaction gathering radiance from
interactions to which it has been linked. The gathered radiances are then distributed within each receiving
interaction hierarchy, and subsequent iterations are computed till convergence is met.

Regarding the eye, it may considered as a small patch interacting with the other patches. This special
patch will have not to reflect or to be responsible for any occlusion.

10.3.2 Adaptive Refinement

The adaptive refinement is carried out as shown in figure 10.3.

The Refine() procedure computes pairs of interactions by subdividing and recursively refining if estimated
errors exceeds specified error bounds, linking the interactions for gathering if the bounds are satisfied or no
subdivision is possible.

F. and S, are the bounds for geometric and reflection error respectively. A, is the minimum area for
a patch. GeometryErrorEstimate() and ReflectionErrorEstimate() provide estimations for 7AFj;Sk;; and
ﬂ'ASkjiFji.
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Refine(Interaction *ij, Interaction *jk,
float F, float S, float A,)
{

float f, sc;

fe = GeometryErrorEstimate(ij);
se = ReflectionErrorEstimate(ij,jk);
if (fe < Fe && sc < Se)
Link(ij,jk);
else if (s, > S;)
switch(SubdivS(ij, jk, A.)){
case PATCH :
Refine(ij — nw, jk, S, Fe, A,
Refine(ij — sw, jk, S¢, Fe, A,
Refine(ij — se, jk, Se, Fe, Ac);
Refine(ij — ne, jk, S, Fe, A¢);
case PATCH._J :
/* refine over children of ij and jk */
case PATCH K :
/* refine over children of jk */
case NONE :
Link(ij, jk);
}

else /* f. > F. */
switch(SubdivG(ij, jk, 4)){
/* refine over children, or link as */
/* directed by PATCHI, J, K or NONE. */

}

);
).

bl

Figure 10.3: Refine pseudocode.




Figure 10.4: Refinement and subdivision

SubdivS() and SubdivG() control refinement for reflection and geometry error respectively. Both routines
select a patch for refinement, subdividing the patch and associated interactions if required. An identifier for
the selected patch is returned. If no patch may be subdivided, then none is passed back. Note that a given
interaction/patch may be refined against many different interactions within the system, and thus may have
already been subdivided when selected by a Subdiv procedure. In this case, the procedure simply returns
the proper identifier.

The Subdiv procedures (S and G) should select for refinement patches of large size relative to their
distance in the surface triple. Form factor estimation is a convenient criterion for the determination of such
patches. A large differential area-area form factor Fy, , indicates that patch ¢ is of large relative size.

The Subdiv procedures thus choose for refinement the patch of size at least A, that is of greatest form
factor within #j and/or jk that will not introduce multiple sets of children over either interaction. If patch
p; is of greatest form factor over both i and jk, and of area greater than A,, then it is chosen for refinement
(figure 10.4 at middle). Otherwise, if p; is selected over one interaction but p; or py is selected over the
other, then the outside patch is chosen for refinement. Given two selected outside patches, SubdivS() selects
the one of greater form factor relative to p;, while SubdivG() selects p; over py as pj has no direct effect on
geometry accuracy. Note however that even under SubdivG(), if only p; and pi are allowed subdivision, px
will be selected.
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Gather(Interaction *jk)

{

Interaction *ij;

(k)
Jjk— L, =0;
for(all elements (ij,jk — gather))

jk— Ly += ij — L * plij, jk);

Gather(jk — nw);
Gather(jk — sw)
Gather(jk — se)
Gather(jk — ne)

Figure 10.5: Gather pseudocode.

10.3.3 Gathering

The gathering algorithm is given in figure 10.5. This algorithm gathers radiance into jk — Lg rather than

directly into jk — L to avoid a push/pull operation with every invocation of the Gather() procedure. Jacobi’s
resolution method is used by this procedure.
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