
Ray Tracing

Kadi Bouatouch
IRISA

Email: kadi@irisa.fr

Introduction to Computer
Graphics

Context

• Representation and visualization of things
which do not exist
– Create 3D virtual worlds

• Choose the model of the objects we want to
represent

– Visualize them
• Choose a representation model

– Animate these worlds

Interest in 3D virtual worlds

• Computer aided design
• Manufacturing
• Movies
• Entertainement: video games
• Data Visualization
• Virtual Reality
• Working without risk
• Simulation

Application

Application

Application

Application

Application

Application

Application

Rendering Engine

Geometric
Model

Appearance
Model

Rendering
Engine

Rendering Engine

• Real-time
– Z-buffer

• 10 images per second >> 0,1s
• 25 images per second >> 0,04 s
• 60 images per second >> 0,016 s
• 120 images per second >> 0,008 s

• Non real-time
– Ray Tracing, Path Tracing, Photon Mapping
– Radiosity

Illumination Model

• Expresses the light intensity at a point due to:
– The light sources giving rise to :

• diffuse and specular reflections
• shadows

– The reflectance and the transmittance of the object
• Ir = Id + Is

– Id : diffuse intensity
– Is : specular intensity

Diffuse Reflection
• Lambert Reflection (Diffuse):

– Part of the incident light penetrates the object then arises from
the object with the same intensity in all the directions

– Id = Kd . Isource . cos (N, L) / d2

• Kd : diffuse color of the object
• Isource : intensity of the light source
• N : normale at point P
• L : light direction
• d : distance between the light source and point P

– Related to the microscopic roughness of the object :
• The more Kd is high, the more important is diffusion

Diffuse Reflection

• Id = Kd . Isource . cos (N, L) / d2

• d = distance of the light source to the lit point P

L

P

N R

V

Light
source

viewer

P

Specular Reflection
• Phong Model:

– reflection by the object’s surface of the part of the
incident light that did not penetrates into the
object; it depends on the view direction V

– Is = Ks . Isource . cosn (R, V) / d2

• Ks : specular color of the object
• Isource : intensity of the light source
• R : direction of ideal specular reflection
• V : view direction
• n : shininess or roughness

– n high: shiny, tight reflection cone
– n small: mat object, wide reflection cone
– For glass, n = 200
– Gives the size of highlight

Specular Reflection

• Is = Ks . Isource . cosn (R, V) / d2

L

P

N R

Light source Viewer

V

The Phong Illumination Model

() ()()∑
=

⋅+⋅××=
nbLum

i

n

isid
i

ilocal VRkLNk
d

ivisII
0

2

)(

NL
R

V

Ks : specular color (R,G,B)

Kd : diffuse color (R,G,B)

Li : lighting direction of source i

Ii : intensity of source i (R,G,B)

The Phong Reflection Model

() ()() IakkkI R d
n

sdl ++= θφ coscos

bisector of
eye and light

vectors

eye

light
source

surface

N
L

H

V
φθ

surface
normal

Some Remarks …
• If multiple sources, sum their contributions
• Several directions have to be known

– The normal to the objects, the light source
directions and the view direction:

• the directions L, N et R are coplanar
• The angle (L, N) is equal to (N, R)

• Ks and Kd are 3-component vectors:
– Red, Green, Blue

• Id + Is = (kd . cos (N, L) + ks . cosn (R, V)) . Isource / d2

– The term between () = BRDF

Some Remarks …
• Is = ks . <N,H>n . Isource

• If the surface is perfectly
specular, n is very large

• <N,H>n is not negligible
only for (N,H) = 0

• Thus Ir = ks . Isource

• (N,H) = 0 means that the
incident and reflection
angles are equal

• Only 1 reflected ray:
because we assume the
surface perfectly
specular

N

L

H

V

Some Remarks …

• Suppose (L’,N) = (V,N) and (V’,N) = (L,N)
• Then : (N,H) = (N,H’)
• Ir = ks . <N,H>n . Is
• Ir’ = ks . <N’,H’>n . Is’
• Thus : ks . <N,H>n = ks . <N,H’>n

• This is the reciprocity of the reflection model

N
R

L
V

H R’ N
L’

V’

H’

Reflections

• We normally deal
with a perfectly
diffuse surface.

• With ray-tracing, we
can easily handle
perfect reflections.

• Phong allows for
glossy reflections of
the light source.

To sum up

• Division of the reflectance into 2 components
– Diffuse

• one 3D vector kd

– Specular
• one 3D vector ks

• one coefficient n (shininess)
N L

R

V

θθ
α

Example

•Parameters :
– Kd =0.25
– Ks =0.75
– n=1.0

Approximation de la réflectance

•Paramètres :
– Kd =0.25
– Ks =0.75
– n=50.0

Approximation de la réflectance

•Paramètres :
– Kd =0.25
– Ks =0.75
– n=200.0

Approximation de la réflectance

•Paramètres :
– Kd =0.25
– Ks =0.75
– n=50.0

Approximation de la réflectance

•Paramètres :
– Kd =0.25
– Ks =0.25
– n=50.0

Approximation de la réflectance

•Paramètres :
– Kd =0.75
– Ks =0.25
– n=50.0

Recap: Different Light Transports

Ambient Term

Ia

Ia

Ia

Ia
Ia

Ia

N
-The indirect diffuse
component due to
multiple reflections is
supposed to be the result
of the diffuse reflection of
an ambient term Ia

- Iid = kd . Ia

- Ia is the same for all the
surfaces

Principle

View point
Screen

Reflected ray

Shadow ray

Normal
Primary ray

Refracted ray

Principle
• Trace a primary ray passing through a pixel
• P : intersection point
• Compute the contribution of the sources to P by tracing shadow

rays toward the light sources.
• If a shadow ray intersects an opaque object between P and the light

source then P is shadowed
• Compute the contribution to P of other points within the scene by

tracing secondary rays: reflected and refracted
• A reflected ray is traced only if the material is specular
• A refracted ray is traced only if the material is transparent
• A secondary ray intersects the scene at a point P’
• Again compute the contribution of the sources to P’ by tracing

shadow rays toward the light sources.
• Repeat the process
• Each ray brings its contribution to the luminance of a point

Principle

Y

X

Z

eye

screen

incident ray

world
coordinates

scene
model

nearest
intersected

surface

refracted
ray

reflected
ray

shadow
“feeler” ray

Principle

Principle
2D Example

right = towards x up

Θ = frustum half-angle
d = distance to view plane

P1 = P0 + d*towards – d*tan(Θ)*right
P2 = P0 + d*towards + d*tan(Θ)*right

P = P1 + (i/width + 0.5) * (P2 - P1)
= P1 + (i/width + 0.5) * 2*d*tan

(Θ)*right

V = (P - P0) / ||P - P0 ||

Ray: P = P0 + tV

Ray Generation

• Pinhole camera

for (x= 0; x < xres; x++)
for (y= 0; y < yres; y++)
{
d= f + 2(x/xres - 0.5)⋅x

+ 2(y/yres - 0.5)⋅y;
d= d/|d|; // Normalize
r.d = d; r.o = o ;
color= ray_cast(r,scene,depth);
write_pixel(x,y,color);

} u
f

y

x

d

o

REFLECTION

V N

() N.VN2 ⋅− V

R

() VN.VN2R +⋅−=
N

R

REFRACTION

E
r

N

T

1n

2n
N−

α

β

() ()βα sinsin 21 nn =

Refraction: Using Snell’s Law

• Using this law it is possible to show that:

• Note that if the root is negative then total
internal reflection has occurred and you just
reflect the vector as normal

21
1

2

sin
sin η

η
η

β
α

==

()()1cos1cos 22
121212 −⋅+−⋅+−= αηαηη NET

Ray-Tracing: Pseudocode
• For each ray r from eye to pixel, color the pixel with the value

returned by ray_cast(r , scene,depth):

ray_cast(r, scene,depth)
{

If(depth >Max_Depth) {color ← black}
else {

If (intersection(r,scene)) {
p ← point_of_intersection(r, scene);
u← reflect(r, p);
v← refract(r, p);
color ← phong_direct(p, r) +

ks × ray_cast(u, scene, depth+1) +
kt× ray_cast(v, scene , depth+1);

} else color ← background_color ;
}

return(color);
}

Pseudocode Explained

• p ← point_of_intersection(r, scene);
– Compute p, the point of intersection of ray r

with the scene
• u← reflect(r, p); v← refract(r, p);

– Compute the reflected ray u and the refracted
ray v using Snell’s Laws

Pseudocode Explained
• phong(p, r)

– Evaluate the Phong reflection model for the ray r at
point p on surface s, taking shadowing into account

• ks × ray_cast(u,scene,depth)
– Multiply the contribution from the reflected ray u by

the specular color ks for surface s containing p. Only
(specular-to-specular)* light transport is handled. Ideal
specular (mirror) reflection

• kt × ray_cast(v,scene,depth)
– Multiply the contribution from the refracted ray v by

the specular-refraction coefficient kt for surface s.
Only (specular-refraction)* light transport is handled

About Those Calls to ray_cast()...
• The function ray_cast() calls itself recursively
• There is a potential for infinite recursion

– Consider a “hall of mirrors”
• Solution: limit the depth of recursion

– A typical limit is five calls deep
– Note that the deeper the recursion, the less the ray’s

contribution to the image, so limiting the depth of
recursion does not affect the final image much

About Those Calls to ray_cast()...
• Another solution

– Ei: direct lighting at
point Pi

– Ks: vector (R,G,B)
– Kt: scalar ranging

between 0 and 1
– Contribution of the red

path

E1

E8 E7 E6

E5E4

E0

E2

E9 E10

E3

Ks5 Ks4 Ks3

Ks2 Ks1

Ks0 Kt0

Kt1

Kt4 Kt5

- I : Intensity due to this ray path :
I = Ks0 . (Kt1 (Ks4 . E7 + E4) + E1)

= Ks0 . Kt1 . Ks4 . E7 + Ks0 . .Kt1 . E4 + Ks0 . E1
- Stop tracing rays when the cumulative product Ks.Kt… is below a certain
threshold

Example

N1
N2

N3

L1
L2L3

P2

P3
P1

I1

I2
I3

O
S Ij H1 : bisecting line of angle S P3 P2

H2 : bisecting line of angle S P2 P1
H1 : bisecting line of angle S P1 O
Idai : intensity due to direct lighting
and the ambient term for point Pi
Idai = kdi . Ia

+ kdi . Is . cos(Li,Ni)
+ ksi . Is . cos(Ni,Hi)n

I3 = Ida3
I2 = Ida2 + ks2 . I3
I1 = Ida1 + ks1 . I2

Reflections
• If only one reflected ray is considered, then ray-

tracing will only handle perfect mirrors.

Reflections
• Glossy reflections (multiple reflected rays) blur

the reflection.

Reflections

• Mathematically, what does this mean?

What is the
reflected

color?

Glossy Reflections
• We need to integrate the color over the reflected

cone.
• Weighted by the reflection coefficient in that

direction.

Translucency

• Likewise, for blurred refractions, we need
to integrate around the refracted angle.

Translucency

Translucency

Calculating the integrals

• How do we calculate these integrals?
– Two-dimensional of the angles and ray-depth

of the cone.
– Unknown function -> the rendered scene.

• Use Monte-Carlo integration

Shadows

• Ray tracing casts shadow from a point
light source.

• Many light sources are illuminated over a
finite area.

• The shadows between these are
substantially different.

• Area light sources cast soft shadows
– Penumbra
– Umbra

Soft Shadows

Soft Shadows

Umbra

Penumbra

Soft Shadows

• Umbra – No part of the light source is
visible.

• Penumbra – Part of the light source is
occluded and part is visible (to a varying
degree).

• Which part? How much? What is the Light
Intensity reaching the surface?

Pros and Cons of Ray Tracing
• Advantages of ray tracing

– All the advantages of the Phong model
– Also handles shadows, reflection, and

refraction
• Disadvantages of ray tracing

– Computational expense
– No diffuse inter-reflection between surfaces
– Not physically accurate

• Other techniques exist to handle these
shortcomings, at even greater expense!

An Aside on Antialiasing
• Our simple ray tracer produces images

with noticeable “jaggies”
• Jaggies and other unwanted artifacts can

be eliminated by antialiasing:
– Cast multiple rays through each image pixel
– Color the pixel with the average ray

contribution
– An easy solution, but it increases the number

of rays, and hence computation time, by an
order of magnitude or more

Intersection
Principle

• The scene is supposed to be expressed in the world coordinate
system (WCS).

• It may be: A set of independent objects
• Purpose: intersect a scene with a ray whose equation is given by :
• P = P0 + t . D
• where :

P0 is the ray origin;
D = (dx, dy, dz) is the direction vector of the ray ;
t > 0

• Intersection result = { ti / ti is a value of t corresponding to an
intersection point }.

• Only the closest point to the ray origin is used to compute shading
and secondary shot rays.

Intersection
Sphere
• d0: Orthogonal distance between the ray and the

center of the sphere of radius r and center C
• P = P0 + t . D : the ray equation
• P0 = (X0, Y0, Z0) D=(dx,dy,dz)
• If d0

2 <= r2, then the ray intersects the sphere
• Intersection points = solutions of

|| P0 - C ||2 + 2t . (P0 - C) . D + t2 . || D ||2 = r2

• d0 is evaluated by minimizing the
distance d between C and a point P on the ray.

• This gives:
d2 = || P0 + t . D - C ||2 = || P0 - C ||2 +
2t . (P0 - C) . D + t2 . || D ||2

• By setting to 0 the derivative of d2 , we obtain :
t = ((P0 - C) . D / || D ||2) = - (P0 - C) . D

• After substitution : d0
2 = || P0 - C ||2 –

((P - C) . D)2

C

P0

P

d0

r

ray

distance to minimize

D

Intersection
Axis-aligned Parallelepiped

• Faces: perpendicular to the axes of the world coordinate system.
• First, the intersections between the ray and the faces x = x1 and x =

x2 are computed.
• Two values of t are then obtained
• t1 = (x1 - x0) / dx and t2 = (x2 - x0) / dx.
• Interval: [Ix, Mx] = [min(t1, t2), max(t1, t2)]
• Same processing applied to the faces perpendicular to the y and z

axes. Two other intervals: [Iy, My] and [Iz, Mz]
• The result is then an intersection interval given by :

[I, M] = [max(Ix, Iy, Iz), min(Mx, My, Mz)]
• If I <= M then the ray intersects the parallelepiped bounding volume,

otherwise it does not intersect it
• Closest intersection point: t=I

Intersection
Polyhedron

• Polyhedron = set of pairs of
parallel faces

• Ni: normal to a pair of faces
• A pair of parallel faces is

called slab

Intersection
Polyhedron

• The intersection test is similar to that of a
parallelepiped, except that the faces are not
perpendicular to the axes of the coordinate
system

• For each pair i, compute interval [Ii, Mi]
• Let N be the normal to a face
• N . P + d = 0 the equation of the plane

containing the face.

Intersection
Polyhedron

• The value of t corresponding to the
intersection between the ray and this
face is computed by substituting the
ray equation into that of the plane :
t = - (d + N . P0) / N . D

• For each slab i , N=Ni and ===

• Given a slab i, these values are the
same for all the polyhedra used as
object bounding volumes

DNi
PNii

DNi
i

idt i

•
•−

=

•
−

=

+∗=

0

1

β

α

βα

Intersection
Cylinder

• The cylinder : intersection between an infinite height cylinder and the
subspace delimited by two planes which equations are
z = 0 and z= h

• The intersection between the ray an the infinite height cylinder is first
performed. This yields a first interval [t1,t2]

• The intersection with the two planes gives a second interval [t3, t4].
• The final intersection interval [I, M] results from the combination of these

two intervals (as for the parallelepiped).

r

h

z

y

x

Intersection
Cylinder: continued

• obtaining [t1, t2]
– The equation of the infinite height cylinder :
– x2 + y2 = r2

– Substituting the ray equation in this equation we obtain:
t2 . (dx2 + dy2) + 2t . (x0 . dx + y0 . dy) + (x0

2 + y0
2 - r2) = 0

– Solving this equation gives the interval [t1, t2].
• obtaining [t3, t4]

– Let A and B the two values of t resulting from the intersection
with the two planes :

A = - z0 / dz and B = (h - z0) / dz
• We get :

t3 = min(A,B) and t4 = max(A, B)

Intersection
Cone

• Intersection: performed in the LCS of the cone
• Cone: intersection between an infinite height cone and the subspace

delimited by two planes, the equations of which are z = 0 and z = h.
• Intersection between the ray and the infinite height cone is first

performed.
• The equation of this cone is given by :

h2 . (x2 + y2) - r2 . z2 = 0. z

y

x

h

r

Intersection

Cone
• Substituting the ray equation in this equation

yields an interval [t1, t2].
• Then the planes are in their turn intersected to

give a second interval [t3, t4] such that :
t3 = min(A, B) and t4 = max(A, B)

• where A = - z0 / dz and B = (h - z0) / dz.
• The final interval is the combination of these two

intervals (as for the cylinder)

Intersection
Polygon
• Several ray-polygon intersection methods have

been proposed in the literature.
• Only two of them are presented .
• For all these methods, the intersection process

consists of two steps :
– First step: Ray-Plane intersection test

• the goal of the first step is to perform the intersection
between the ray and the plane containing the polygon

– Second step: Inside - Outside test
• the second step tests if the resulting point is inside or outside

the polygon.

Intersection - Triangle
• Barycentric coordinates

– Non-degenerate triangle ABC
P= λ1A + λ2B + λ3C

– λ1 + λ2 + λ3 = 1
– λi >= 0
– λ3 = area(APB) / area(ACB),
– λ2 = area(APC) / area(ACB),
– λ3 = area(CPB) / area(ACB),
– Area(APB)=

B

1

A

C

0
λλ33

P

)ˆsin(
2
1

2
1),det(

2
1 PBPAPBPAPBPAP

rrrrrr
=×=

Intersection
• Polygon: Snyder's method

• Ray-triangle intersection: extension to a polygon.
• Let Pi be the vertices of a triangle and Ni the associated

normals which are used for normal interpolation across
the triangle.

• Normal to the triangle: N = (P1 - P0) x (P2 - P0)
• A point P lying on the triangle plane satisfies :

P . N + d = 0 where d = - P0 . N.
• To intersect a ray P = O + t . D with a triangle, first

compute the t parameter of the intersection between the
ray and the triangle plane

t = (d - N . O) / N . D.

Intersection
Polygon: Snyder's method

• Projecting the triangle into any other plane, except
one that is orthogonal to the triangles plane will not
change the barycentric coordinates of the triangle.

• This allows to simplify computations, since we can
choose any of the coordinate system's three axis-
aligned planes to project our triangle, thus throwing
away one of the three coordinates and reducing the
barycentric equations to R2.

• For reasons of numerical stability we want to choose
the dominant axis of the triangles normal for the
projection.

• An index i0 is computed: equal either to 0 if | Nx | is
maximum (i.e. the x axis is dominant) or to 1 if | Ny | is
maximum or to 2 if | Nz | is maximum.

∈

Intersection
Polygon: Snyder's method

• Let i1 and i2 (i1, i2 {0, 1, 2}) be two unequal indices different from i0.
Compute the i1 and i2 components of the intersection point I:

Ii1 = Oi1 +t . Di1 and Ii2 = Oi2 + t . Di2
• The inside-outside test can be performed by computing scalars ß0, ß1 and

ß2 according to :
ßi = [(Pi+2 - Pi+1) x (I - Pi+1)]i0 / [N]i0

• The ßi are the barycentric coordinates of the point where the ray intersects
the triangle plane.

• I is inside the triangle if and only if 0 ≤ ß ≤ 1 for i {0, 1, 2}.
• The interpolated normal at point I is given by :

N' = ß0 . N0 + ß1 . N1 + ß2 . N2.
• Snyder's method can be easily extended up to polygons.
• The main idea is to consider a polygon as a union of triangles.

∈

Intersection
Marchal’s method

• I is the ray-plane intersection point.
• The Pi are transformed to the two dimensional

coordinates system (u, v) whose origin is vertex
P0.

• The plane of this coordinates system is the
polygon plane.

• The inside-outside test determines if an edge
PiPi+1 intersects the v axis at a point M (this may
occur when the u components of Pi and Pi+1 have
different signs).

• If so, and if P0I < P0M then I is inside the polygon,
else it is outside.

• On the other hand, if none of the edges intersect
the v axis, then I lies outside the polygon.

u

v

P

P

P

P

P

I

0

1

2

3

4

M

Intersection
Marchal’s method

• The interpolated normal at point I is given by :

NI = (P0I / P0M) . NM + (1 - P0I / P0M).N0

• where the normal NM at point M is given by :

NM = (PiM / PiPi+1) . Ni+1 + (1 - PiM / PiPi+1) . Ni

• and Ni, Ni+1 are the normals at point Pi and
Pi+1. PiPi+1 is the intersected edge.

u

v

P

P

P

P

P

I

0

1

2

3

4

M

Bounding box
• To reduce the amount of ray-object

intersections, its is absolutely necessary to use a
hierarchical data structure .

• This data structure is a tree of bounding
volumes.

• Bounding volumes are simple geometric objects
which fit around the objects.

• They are chosen to be simple to intersect with a
ray, such as spheres or parallelepipeds that
have faces perpendicular to the axes.

Bounding box

• Example of a
hierarchy of
bounding boxes
: binary tree.

parallelepiped sphere

cylinders

Bounding Volume
Different kinds of bounding Volume

• Parallelepiped
– For the sake of speed up, the faces of this bounding volume are

perpendicular to the axes of the World Coordinates System.
– Its perspective projection onto the screen plane is often used to

filter the primary rays (rays starting at the eye location).
• Sphere and Ellipsoid

– They may be used to filter the reflected and refracted rays and
those directed to the light sources.

• Polyhedron
– Intersection of slabs: a slab is a pair of parallel faces

Bounding Volume Hierarchy

• Organize objects into a tree
• Group objects in the tree

– based on spatial relationships

• Each node in the tree
contains a bounding box of all
the objects below it

Bounding Volume Hierarchy (BVH)

• Determining optimal BVH
structure is NP-hard problem

• Heuristic approaches:
– Cost models (minimize volume

or surface area)
– Spatial models

• Categories of approaches:
– Top down
– Bottom up

Median Cut BVH Construction

Top down approach:

• Sort objects by position on
axis
– cycle through x,y,z
– use center of bounding box

• Insert tree node with half of
objects on left and half on
right

Median Cut BVH Construction
1. L= {list of bounding volume numbers}
2. Choose widest slab:

dmax[2] – dmin[2] or dmax[1] –
dmin[1]
(In this example :
max width = dmax[1] – dmin[1]

3. Then choose slab of max width
4. Sort the bounding volumes wrp to

increasing
dmin[number_of_widest_slab]

5. We get a sorted list L = {1,5,3,2,4}
6. Split L into two sub-lists L1 and L2
7. We get : L1 = {1,5,3} L2 = {2,4}
8. Go to 1 with L = L1 then L = L2

Leaf = one or more objects

dmax[2]

dmin[2] dmin[1] dmax[1]

5

4

1 3
2

Bottom up BVH Construction

• Add objects one at a time to
tree

• Insert to subtree that would
cause smallest increase to
area

Bottom up BVH Construction

• Add objects one at a time
to tree

• Insert to subtree that
would cause smallest
increase to area

Bottom up BVH Construction

• Add objects one at a
time to tree

• Insert to subtree that
would cause smallest
increase to area

Bottom up BVH Construction

• Add objects one at a time
to tree

• Insert to subtree that would
cause smallest increase to
area

Intersection Test Using the BVH
• Once the hierarchy of bounding volumes has been

built, the ray-scene intersection test is performed as
follows.
– The hierarchy is searched from the root to the leaves.
– During this search, at a node N, the associated bounding

volume is checked for an intersection with the current ray.
– If the bounding volume of N is intersected, those of its

children node are in their turn checked for an intersection.
• This process is repeated recursively and ends up at

the leaf nodes.
• Else, if the bounding volume of N is not intersected

by the ray, the associated subtree is left out, that is, it
is not searched, which saves time.

Spatial Subdivision
• The rectangular bounding volume of the scene

is subdivided into 3D cells
• Each cell contains a few objects of the scene
• When a ray enters a cell, we check the objects

within this cell for an intersection with the ray
• If the intersection process ends up with success

then no need to check the rest of the objects
• If the ray fails to hit any object in the cell then it

moves to the next 3D cell
• Repeat the process until intersection is found

Spatial Subdivision

• Two procedures
– A procedure which performs a spatial

subdivision of the scene into 3D cells, each
of them containing a small portion of the
database

– A second procedure which determines the
next cell along a ray

Spatial Subdivision

• Two procedures

Uniform Grid

Non uniform Grid

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing in a
subdivided space?

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing in a
subdivided space?

What is Ray Tracing in a
subdivided space?

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing in a
subdivided space?

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing in a
subdivided space?

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing in a
subdivided space?

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing in a
subdivided space?

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing in a
subdivided space?

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing in a
subdivided space?

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing in a
subdivided space?

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing in a
subdivided space?

Spatial Subdivision

• Different kinds of subdivision

Uniform Spatial Sub Quadtree/Octree kd-tree BSP-tree

Uniform Grid
• The rectangular bounding

volume of the scene is
subdivided into a uniform 3D
grid of rectangular cells

• The grid is represented by a 3D
array, the indices of which are
i, j and k corresponding to the x,
y and z axes respectively

• Each cell is represented by a
data structure containing a
pointer to the objects partially or
totally within the cell

Uniform Grid
Ray Traversal Algorithm: Classical Method

• Let G[i][j][k] be the 3D array representing the 3D grid
• Let P the point where the ray leaves the current cell and D the ray

direction
• P is the outgoing point
• Let w be the axis perpendicular to the face which contains P
• Let u (x, y or z) be the index (i, j or k) of the current cell corresponding to

w
• If Dw > 0 then the index u of the next cell is u = u + 1, the other indices

are unchanged
• Else it is : u = u – 1
• Example :
• If w = z then u = k
• If Dz > 0 then the index of the next cell along the ray is k = k + 1, while the

other indices do not change
• If the current cell is G[i][j][k] then the next cell along the ray is G[i][j][k + 1]

if Dz > 0, or G[i][j][k - 1] if Dz < 0

Uniform Grid
Ray Traversal Algorithm: Classical Method

y

x0 1 2 3 4

4

3

2

3

0 i

j

P

P
(3,1)

(2,1)(2,0)

(1,0)

(3,2)

(2,3)
(2,0

(2,2)

(1,3)

(1,3)

Uniform Grid
• Ray Traversal Algorithm: Amanatide’s Algorithm

ty = ty + tDeltay

tDeltax

tDeltay

tx

ty

Initial Voxel

tx= tx +tDeltax

Uniform Grid
Ray Traversal Algorithm: Amanatide’s Algorithm
Initialization
• Ray equation : P = P0 + t . D
• Identify the voxel containing the ray origin O
• If O is outside the grid, find the point through which the ray enters

the grid and determine the adjacent voxel
• X, Y and Z : voxel indices
• StepX, stepY and stepZ : initialized to 1, incremented or

decremented as the ray crosses the voxel boundaries
• tx, ty and tz : values of t corresponding to the points resulting from

the intersection between the ray and 3 faces of the initial voxel
• tDeltaX, tDeltaY and tDeltaZ : distance travelled by the ray between

two successive faces perpendicular to the x, y and z faces
respectively

Uniform Grid
Ray Traversal Algorithm:

Amanatide’s Algorithm

Algorithm
Min = min(tx,ty,tz) ;
switch(Min)
{

case tx :
X += stepX ;
tx += tDeltax ;
break ;

case ty
Y += stepY ;
ty += tDeltay ;
break ;

case ty
Z += stepZ ;
tz += tDeltaz ;
break ;

}

ty = ty + tDeltay

tDeltax

tDeltay

tx

ty

Initial Voxel

tx= tx +tDeltax

Uniform Grid

• Advantages?
– easy to construct
– easy to traverse

• Disadvantages?
– may be only sparsely

filled
– geometry may still be

clumped (say, densely
grouped)

Non Uniform Grid
• The rectangular bounding volume of the scene is recursively sliced :

– either simultaneously by 3 planes perpendicular to the x, y and z
axes: Octree

– or by one plane at a time perpendicular to an axis: Kd-tree, Bsp
tree

– or by one plane at a time non necessary perpendicular to an
axis: Bsp tree

• Each slicing plane divides a space (a 3D cell) into two subspaces
(3D cells)

• The subdivision process stops either when a cell contains partially or
totally a minimum number of objects, or the maximum subdivision
level is reached for each axis

• The result is a linear array of rectangular cells or a binary tree or an
octree

• Each cell is represented by a data structure containing a pointer to
the objets partially or totally within it

Non Uniform Grid

• Subdivide until each cell contains no more
than n elements, or maximum depth d is
reached

Non Uniform Grid
• Advantages?

– grid complexity matches geometric density
• Disadvantages?

– more expensive to traverse (especially octree)

Non Uniform Grid: Kd-Tree
• Subdivide only 1 dimension
• Do not subdivide at the center
• Which axis to pick?
• What point on the axis to pick?
• One heuristic:

– Sort objects on each axis
– Pick point corresponding to “middle” object
– Pick axis that has “best” distribution of objects
– L = n/2, R = n/2 (ideal), where L Left and R Right
– Realistically,

• minimize (L-R) and
• L approx. n/2, R approx. n/2

kD-Trees

kD-Trees

kD-Trees

kD-Trees: Data Structure
Struct KdTreeNode {

int axis; // Both, x or y or z split plane (0,1,2), 3 for leaf

float value; // Interior, split position x, y or z

int nPrims; // Leaf

Bounding_Box bounds;
KdTreeNode *LeftChild; // interior
KdTreeNode *RightChild; // interior

}

A

DC

KD-Tree: Traversal

B

X

Y

Z X

Y Z

A B C D

tmin

tmax
Range of t: [tmin,tmax]

KD-Tree: Traversal
•Input: a tree and a ray

•Search for the first intersected primitive in the tree

•Traversal: start from the root

•Use of a stack

•First range of t, [tmin,tmax]: associated with the scene bounding box

•Internal node encountered: ray is classified wrp to the splitting plane

•If range lies entirely in one side of the plane, traversal moves to the
appropriate child

•If the range straddles the plane, traversal will continue to the first
child hit by the ray while the second child is pushed onto the stack
along with its range [tmin,tmax]

•Traversal proceeds down the tree, occasionally pushing items onto the
stack, until a leaf node is reached.

KD-Tree: Traversal

tmax tmax

tmax tmax

tmin

tmin

tmin

tmintsplit

tsplit

NearFar(a) (b)

(c) (d)

•(a) Initial parametric
range [tmin, tmax] :
intersection ray-
bounding box

•(b) The ray first enters
the child “near” which
has [tmin,tsplit] as
parametric range. If leaf
then intersection,
otherwise child nodes
are processed

•(c) If no hit or a hit
beyond [tmin,tsplit]
then “far node” is
processed

•(d) Sequence continues, processing tree
nodes in depth first, front-to-back traversal,
until closest intersection is found or the ray
exists the tree

KD-Tree: Traversal
kd-search(tree, ray)

(global-tmin, global-tmax) = intersect(tree.bounds, ray)
{
search-node(tree.root, ray, global-tmin, global-tmax)
}

search-node(node, ray, tmin, tmax)
{

if(node.is-leaf)
search-leaf(node, ray, tmin, tmax)

else
search-split(node, ray, tmin, tmax)

}

KD-Tree: Traversal
search-split(split, ray, tmin, tmax) {

a = split.axis
thit = (split.value - ray.origin[a]) / ray.direction[a]
(first, second) = order(ray.direction[a], split.left,split.right)
if(thit >= tmax or thit < 0)

search-node(first, ray, tmin, tmax)
else if(thit <= tmin)

search-node(second, ray, tmin, tmax)
else {

stack.push(second, thit, tmax)
search-node(first, ray, tmin, thit)

}
}

KD-Tree: Traversal
search-leaf(leaf, ray, tmin, tmax) {

// search for a hit in this leaf
if(found-hit and hit.t < tmax)

succeed(hit)
else

continue-search(leaf, ray, tmin, tmax)
}

continue-search(leaf, ray, tmin, tmax){
if(stack.is-empty)

fail()
else {

(n, tmin, tmax) = stack.pop()
search-node(n, ray, tmin, tmax)

}
}

•Remark

If stack empty, then no
intersection along the
ray and the search
terminates

KD-Tree Traversal

X

Y Z

A B C D

DC

A

B

X

Y

Z

DC

A

B

X

Y

Z

Kd-tree traversal: Observation

X

Y Z

A B C D

Current leaf’s tmax = Next leaf’s min
=

Kd-tree traversal: Observation

• Eliminate stack operations
• How?

– If the traversal reaches a leaf and
fails to find a hit:

• Restart the search at the root
• With tmin advanced to the end of the

leaf
• The first leaf intersected by the

modified range is the next leaf that
needs to be traversed

Kd-tree traversal: Restart

continue-search(leaf, ray, tmin, tmax)
{

if(tmax == global-tmax)
fail()

else {
tmin = tmax
tmax = global-tmax
search-node(tree.root, ray, tmin, tmax)

}
}

DC

A

B

X

Y

Z

Observation

X

Y Z

A B C D

Ancestor of A is parent of Z

DC

A

B

X

Y

Z

Kd-tree: Observation

X

Y Z

A B C D

Ancestor of A is parent of Z

• In the traditional, a node pushed onto the stack is always
the other (second) child of one of the current node’s
ancestors

• Thus, possible to reach the parent of the node atop the
stack by following a chain of parent links (which we can
store in the nodes of the tree) from the current node.

• If we again employ the tactic of advancing tmin to the end
of the last leaf visited, then we will be able to recognize
the appropriate parent as the closest ancestor that has a
nonempty intersection with the remaining (tmin; tmax)
range.

• Bounding boxes are stored with internal nodes
• Parents links are stored in all nodes
• Increase per-node storage

Kd-tree: Backtrack

continue-search(leaf, ray, tmin, tmax) {
if(tmax == global-tmax)

fail()
else {

tmin = tmax
tmax = global-tmax
backtrack(leaf.parent, ray, tmin, tmax)

{
}

backtrack(split, ray, tmin, tmax) {
(t0,t1) = intersect(split.bounds, ray, tmin, tmax)
if(no-intersection)

backtrack(split.parent, ray, tmin, tmax)
else

search(split, ray, t0, t1)
}

KD-Backtrack

BSP Tree

• Generalization of kd-
trees
• Splitting plane is not
axis aligned
• Used in games:
DOOM

BSP tree
• A Binary Space Partitioning (BSP) tree data structure

– Recursive, Hierarchical subdivision of n-
dimensional space into convex subspaces.

• BSP tree construction
– Partition a subspace by a hyper-plane that

touches the edge of the subspace.
– The result is two new subspaces that can be

further partitioned by recursive application of the
method.

• A "hyperplane" in an n-dimensional space is an n-1
dimensional object which can be used to divide the
space into two half-spaces.

• example:
– In three dimensional space,

the "hyperplane" is a plane.
– In two dimensional space,

it is a line.
• BSP trees are extremely versatile, because they

are powerful sorting and classification structures.
– Hidden surface removal
– Ray tracing hierarchies
– Solid modeling
– Robot motion planning.

• Intensive time and space preprocessing vs.
linear display algorithm.

BSP tree

Building a BSP tree
• Given a set of polygons in three dimensional space, we

would like to build a BSP tree which contains all of the
polygons.

• The algorithm to build a BSP tree:
– Select a partition plane.
– Partition the set of polygons with the plane.
– Recurse with each of the two new sets.

• The choice of partition plane depends on how the tree
will be used, and what sort of efficiency criteria you have
for the construction.

Building a BSP tree
• For some purposes, it is appropriate to choose the partition plane

from the input set of polygons
– Scan-conversion

• Other applications may benefit more from axis aligned orthogonal
partitions
– Ray tracing
– Space subdivision.

• It is desirable to have a balanced tree, where each leaf contains
roughly the same number of polygons.

• It is desirable to minimize polygon splitting.
– Finding the optimal split is hard, we use a heuristic

• Testing the plane against a small random number of (5-6)
polygons for split.

BSP tree: Partitioning
• Classify each member of the set with respect to

the plane.
• If a polygon lies entirely on one side of the

hyper-plane
– It is added to the partition set for the proper

side.
• If a polygon spans the plane – keep in the node
• If the polygon intersect the hyper-plane

– Split it as needed and add the parts the
proper sets.

BSP tree: When to stop?
• The decision to terminate the tree construction is a

matter of the specific application.
– Some applications will benefit from termination when

the number of polygons in a leaf node is below a
maximum value.

– Other methods continue until every polygon is placed
in an internal node.

• Another criteria that can be used is the maximum tree
depth.

BSP tree: example

• One of the most important properties of
BSP trees is that it is view independent.

• For example, consider the following case:

1
2

3
4

5
6

BSP tree: example

• Splitting the plane using the ordered lines
from the input, we get the following:

1
2

3
4

5
6

1

BSP tree: example

1
2

3
4a

5
6

4b

front
1

2

BSP tree: example

1
2

3
4a

5
6

4b

1

32

front back

BSP tree: example

1
2

3
4a

5
6

4b

1

32

4a

front back

front

BSP tree: example

1

32

4a 4b

6

5

1
2

3
4a

5
6

4b

front back

front back front

front

BSP tree: example
• Now, we can choose several view

points, and choose the painting
order according to the tree we
have created.

1
2

3
4

5
6

V1

V2

1

32

4a 4b

6

5

front back

front back front

front

BSP tree: Hidden Surface
Removal

• Probably the most common application of BSP trees
is hidden surface removal in three dimension.

• BSP trees provide an elegant, efficient method for
sorting polygons via a depth first tree walk. This fact
can be exploited in a back to front "painter's
algorithm“.

• The idea behind the painter's algorithm is to draw
polygons far away from the eye first, followed by
drawing those that are close to the eye.

• Hidden surfaces will be written over in the image as
the surfaces that obscure them are drawn.

• Can assist in 3D clipping.
• Can support Back Face Culling.

BSP tree: Painting

• One reason that BSP trees are so elegant for
the painter's algorithm is that the splitting of
complex polygons is an automatic part of tree
construction.

• When building a BSP tree specifically for hidden
surface removal, the partition planes are usually
chosen from the input polygon set.

• However, any arbitrary plane can be used if
there are no intersecting or concave polygons.

BSP tree: Drawing the scene
• To draw the contents of the tree:

– Perform a back to front tree traversal.
– Begin at the root node and classify the eye position

with respect to the partition plane.
• Draw the subtree at the far child from the eye
• Draw the polygons in this node
• Draw the near subtree.

– Repeat this procedure recursively for each subtree.
• Front to back rendering is also possible.

BSP tree: Hidden Surface
Removal

• The painting order from V1:
– 3, 5, 1, 4b, 2, 6, 4a

• The painting order from V2:
– 3, 5, 1, 4b, 2, 4a, 6

1

32

4a 4b

6

5

front back

front back front

front

BSP tree: Ray Tracing

• Accelerating Ray Tracing

•Rectangular bounding volume of the scene:
recursively subdivided

•Subdivision: Splitting planes are axis aligned

•Each splitting plane splits a cell into two equally
sized sub-cells

•Choose x, y and z axis one at a time (alternate)

Octree
• Useful for reducing the number of ray-object

intersections.
• The bounded 3D world to be ray traced is

subdivided into cells of varying size. Each cell
contains a list of objects (of approximately the
same length) which intersect it.

• Given a ray to be traced, a list of cells intersected
by the ray is determined. Intersection
calculations are performed only with these
objects.

• Furthermore, if the cells may be accessed in the
order of advance of the ray, the procedure may
terminate once the first intersection is
discovered.

Octree
• Each node of the tree has eight

children, corresponding to halving
the space along all of the three
axes.

• A node is a leaf if the subspace it
represents intersects at most a
given number of objects.

• The two basic operations needed
for ray tracing octrees are:
– Locating the leaf cell

containing a given 3D point
(point location).

– Locating the next cell
intersecting a given ray.

• The first is a standard octree
traversal. The second is
accomplished by repeating the first
with a point along the ray just
outside the current cell.

Octree
• Octrees ignore the

directionality of objects.
• Subdivision is always in

predefined directions and
places.

• Advantage: Simple
construction. Point location is
easy.

• Disadvantage: Non-optimal
subdivision (large trees).

Octree: example

x

z

0 1

0 1

2

2

6 7

3 4 5 6 7
object is resting
 on x -y plane

Full

Empty

Partially Full

y 3 5

Octree: traversal
1. Determine the first intersection point F between the ray and the

scene’s axis aligned bounding box (SAABB)
2. Push F along the normal to the face containing it,
3. Pushing consists in adding to the P’s coordinates a value deltax

(resp. deltay, deltaz) which is equal to half the length of the x side
(resp. y, z) of the smallest cell.

4. Search for the cell (containing F) in the tree
5. If no intersection in the cell, compute outgoing point P
6. Push P along the normal to the cell’s face containing it
7. The results is another point P’
8. Search for the cell (containing P’) in the tree
9. Go to 1 until intersection

Remark: If P is on an edge or a vertex of a cell, push it simultaneously
in the directions of the normals to the faces sharing it

Octree: traversal

Uniform vs. Adaptive Subdivision

• Uniform:
too much
traversed
empty
cells

• Adaptive:
less
empty
cells

Cells & Portals

A
D

H

FCB

E

G

H

B C D F G

EA

Cells & Portals

A
D

H

FCB

E

G

H

B C D F G

EA

Cells & Portals

A
D

H

FCB

E

G

H

B C D F G

EA

Cells & Portals

A
D

H

FCB

E

G

H

B C D F G

EA

Cells & Portals

A
D

H

FCB

E

G

H

B C D F G

EA

Cells & Portals

Teller and Sequin’s Approach

(1) Decompose space into convex cells: use
walls as splitting polygons

(2) For each cell, identify its boundary edges
into two sets: opaque or portal

(3) Precompute visibility among cells
(4) During viewing (eg, walkthrough phase),

use the precomputed Potentially Visible
polygon Set (PVS) of each cell to speed-up
rendering

Cells & Portals: Space
Subdivision

Input Scene:

Spatial subdivision: Generated by computing
a k-d tree of the input faces

Determining Adjacent Information

Computing the PVS of a cell

S•R ≥ 0, ∀ L ∈ L
S•R ≤ 0, ∀ R ∈ RLinear programming problem:

Find_Visible_Cells(cell C, portal sequence P, visible cell set V)
V=V ∪ C
for each neighbor N of C

for each portal p connecting C and N
orient p from C to N
P’ = P concatenate p
if Stabbing_Line(P’) exists then

Find_Visible_Cells (N, P’, V)

Eye-to-Cell Visibility

The eye-to-cell visibility of any observer is
a subset of the cell-to-cell visibility for the cell
containing the observer

Results

