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Radiometry

• The goal of a global illumination algorithm 
is to compute a steady-state distribution of 
light in a scene

• To compute this distribution, we need an 
understanding of the physical quantities 
that represent light energy

• Radiometry is the basic terminology used 
to describe light
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Photons

• The basic quantity in lighting is the photon

• The energy (in Joule) of a photon with 
wavelength λ is: qλ = hc/λ
– c is the speed of light

• In vacuum, c = 299.792.458m/s
– h ≈ 6.63*10-34Js is Planck’s constant
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(Spectral) Radiant Energy

• The spectral radiant energy, Qλ, in nλ
photons with wavelength λ is

• The radiant energy, Q, is the energy of a 
collection of photons, and is given as the 
integral of Qλ over all possible 
wavelengths:

λλλ qnQ =
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Radiant Power or Radiant Flux

• Radiant flux, also called radiant power, is the 
time rate flow of radiant energy

• Flux expresses how much energy (Watts = 
Joule/s) flows to/through/from an (imaginary) 
surface per unit time

• For wavelength dependence, spectral radiant 
flux is defined as

dt
dQ

=Φ
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dQλ
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Radiant Flux Area Density
• The radiant flux area density is defined as 

the differential flux per differential area 
dΦ/dA
– In English: The energy arriving at or leaving a 

surface over a short interval of time
• Traditionally, radiant flux area density is 

separated into irradiance, E, which is flux 
arriving at a surface and radiant exitance, 
M, which is flux leaving a surface
– Radiant exitance is also known as radiosity, 

denoted B
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Radiance
• Probably, the most important quantity in global 

illumination is radiance
• Radiance is defined as emitted flux per unit projected 

area per unit solid angle (W/(steradian*m2))
• Intuitively, radiance tells us how much energy leaves a 

small area per unit time in a given direction
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Solid Angle
• Solid angle is the measure for ‘angles’ 

in 3D
– The unit for solid angle is steradians, ω є

[0, 4π]

• The solid angle subtended by an 
object is defined as the area of the 
object projected onto a sphere of 
radius 1 centered at the viewpoint

• The ’size’ of a differential solid angle
in spherical coordinates is 
dω = sinθdθdφ
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Back To Radiance

• Radiance is defined as flux per unit projected 
area per unit solid angle (W/(steradian*m2))

• An important property of radiance is 
that, in vacuum, it is constant along a line of 
sight
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Scattering of Light

• When light reaches a surface, it is either 
scattered or absorbed
– We assume that the light is scattered 

immediately after reaching the surface
• Thus, we ignore fluorescence effects

– We also assume that light incident at some 
point also exits at that same point

• This effectively means no subsurface scattering
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BRDF

• A ray of light hits a surface:
– arriving from a direction ki,
– and reflected in the direction ko

• How much of this light is reflected in the direction 
ko?

• This question is answered by the bidirectional 
reflectance distribution function, BRDF
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BRDF

• The brdf is a 4 dimensional function defined as

• BRDF could change over a surface (texture)
• Ls is the outgoing radiance
• Li is the incoming radiance
• is the differential solid angle associated with 

the incident direction
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BRDF Properties

• A brdf can take on any positive value
– fr(x,ki,ko) є [0;∞[

• The value of a brdf remains unchanged if 
the incident exitant directions are 
interchanged
– fr(x,ki,ko) = fr (x,ko,ki)

• A physically plausible brdf conserves 
energy, that is: ∫ ≤∀

o
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Directional Hemispherical 
Reflectance

• Related to the BRDF, we may wish to know 
exactly how much light is reflected due to light 
coming from a fixed direction ki

• This is answered by the directional hemispherical 
reflectance, R(ki), given as:
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Example

• A Lambertian surface is an idealized diffuse 
surface with a constant brdf, fr = c

• So, for a perfectly reflecting lambertian surface, 
we have fr = 1/π, and if R(x,ki)=r, fr = r/π
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The Rendering Equation

• Consider again the brdf:
• Rearranging the terms, we get

• Integrating over the entire hemisphere, we get 
the reflected radiance

– This is known as the rendering equation
– For translucent objects, we need the lower 

hemisphere as well
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Alternate Transport Equation
• The rendering equation describes the reflected 

radiance due to incident radiance on the entire 
hemisphere

• Sometimes we’ll need the transport equation in 
terms of surface radiance only
– Because radiance is constant along a

straight line, the field radiance Li(x,ki)
is equal to the surface radiance from
some surface: Li(x, ki) = Li(x’, -ki)

– The solid angle subtended by a 
– Surface is
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Alternate Transport Equation

• Putting this together, we get

– Where v(x, x’) is a visibility term, equal to 1 if x and x’ 
are mutually visible and 0 otherwise

–

• Integral equation: 
to be solved
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