

- Photons
- The basic quantity in lighting is the photon
- The energy (in Joule) of a photon with wavelength λ is: $q_{\lambda} = hc/\lambda$
 - c is the speed of light
 - In vacuum, c = 299.792.458m/s
 - $-h \approx 6.63^{*}10^{-34}$ Js is Planck's constant

(Spectral) Radiant Energy

• The spectral radiant energy, Q_{λ} , in n_{λ} photons with wavelength λ is

 $Q_{\lambda} = n_{\lambda} q_{\lambda}$ • The radiant energy, Q, is the energy of a collection of photons, and is given as the integral of Q_{λ} over all possible wavelengths:

$$Q = \int_0^\infty Q_\lambda d\lambda$$

3

IRISA

Radiant Power or Radiant Flux

• *Radiant flux*, also called *radiant power*, is the time rate flow of radiant energy

 $\Phi = \frac{dQ}{dt}$

- Flux expresses how much energy (Watts = Joule/s) flows to/through/from an (imaginary) surface per unit time
- For wavelength dependence, *spectral radiant* flux is defined as $\frac{dQ_{\lambda}}{dQ_{\lambda}}$

IFSIC

Radiant Flux Area Density

- The radiant flux area density is defined as the differential flux per differential area dΦ/dA
 - In English: The energy arriving at or leaving a surface over a short interval of time
- Traditionally, radiant flux area density is separated into *irradiance*, E, which is flux arriving at a surface and *radiant exitance*, M, which is flux leaving a surface
 - Radiant exitance is also known as *radiosity*, denoted B

5

Radiance

IRISA

- Probably, the most important quantity in global illumination is *radiance*
- Radiance is defined as emitted flux per unit projected area per unit solid angle (W/(steradian*m²))
- Intuitively, radiance tells us how much energy leaves a small area per unit time in a given direction

Solid Angle

- Solid angle is the measure for 'angles' in 3D
 - The unit for solid angle is steradians, $\omega \in [0,\,4\pi]$
- The solid angle subtended by an object is defined as the area of the object projected onto a sphere of radius 1 centered at the viewpoint
- The 'size' of a differential solid angle in spherical coordinates is dω = sinθdθdφ

6

sic

BRDF

• The brdf is a 4 dimensional function defined as

 $f_r(x,k_i,k_o) = \frac{dL_s(x,k_o)}{dE(x,k_i)} = \frac{dL_s(x,k_o)}{L_i(x,\mathbf{k}_i)\cos\theta_i d\omega_i}$

- BRDF could change over a surface (texture)
- L_s is the outgoing radiance
- L_i is the incoming radiance
- $d\omega_i$ is the differential solid angle associated with the incident direction

|--|--|

Directional Hemispherical Reflectance

- Related to the BRDF, we may wish to know exactly how much light is reflected due to light coming from a fixed direction k_i
- This is answered by the directional hemispherical reflectance, R(k_i), given as:

 $R(x,\mathbf{k}_i) = \int_{\mathrm{all}\,\mathbf{k}_i} f_r(x,\mathbf{k}_i,\mathbf{k}_o) \cos\theta_o d\omega$

BRDF Properties

- A brdf can take on any positive value

 f_r(x, k_i, k_o) ε [0;∞[
- The value of a brdf remains unchanged if the incident exitant directions are interchanged
 - $f_r(x, \mathbf{k}_i, \mathbf{k}_o) = f_r(x, \mathbf{k}_o, \mathbf{k}_i)$
- A physically plausible brdf conserves energy, that is: ∀k_i: ∫_{allki} f_r(x, k_i, k_o) cos θ_odω≤1

Example

 A Lambertian surface is an idealized diffuse surface with a constant brdf, f_r = c

```
R(x, \mathbf{k}_{i}) = \int_{\text{all}\,\mathbf{k}_{i}} c \cos \theta_{o} d\omega= \int_{0}^{2\pi} \int_{0}^{\pi/2} c \cos \theta \sin \theta d\theta d\phi= \pi c
```

• So, for a perfectly reflecting lambertian surface, we have $f_r = 1/\pi$, and if $R(x, \mathbf{k}_i) = r$, $f_r = r/\pi$

15

13

14

The Rendering Equation

- Consider again the brdf: $f_r(x, \mathbf{k}_i, \mathbf{k}_o) = \frac{dL_s(x, \mathbf{k}_o)}{L_s(x, \mathbf{k}_i) \cos \theta_i d\omega_i}$
- Rearranging the terms, we get

 $dL_s(x, \mathbf{k}_o) = f_r(x, \mathbf{k}_i, \mathbf{k}_o) L_i(x, \mathbf{k}_i) \cos \theta_i d\omega_i$

• Integrating over the entire hemisphere, we get the reflected radiance

 $L_s(x, \mathbf{k}_o) = \int_{\Omega} f_r(x, \mathbf{k}_i, \mathbf{k}_o) L_i(x, \mathbf{k}_i) \cos \theta_i d\omega_i$

- This is known as the rendering equation
- For translucent objects, we need the lower hemisphere as well

SIC

17

Alternate Transport Equation

IRISA

- The rendering equation describes the reflected radiance due to incident radiance on the entire hemisphere
- Sometimes we'll need the transport equation in terms of surface radiance only
 - Because radiance is constant along a straight line, the field radiance L_i(x,k_i) is equal to the surface radiance from some surface: L_i(x, k_i) = L_i(x', -k_i)
 - The solid angle subtended by a
 - Surface is $d\omega = \frac{dA\cos\theta'}{d\omega}$

18

Alternate Transport Equation

• Putting this together, we get

 $L_{s}(\mathbf{x}, \mathbf{k}_{o}) = \int_{\text{all}\mathbf{x}_{o}} \frac{f(x, \mathbf{k}_{i}, \mathbf{k}_{o}) L_{s}(\mathbf{x}', \mathbf{x} - \mathbf{x}') v(\mathbf{x}, \mathbf{x}') \cos \theta_{i} \cos \theta' dA}{|\mathbf{x} - \mathbf{x}'|^{2}}$

 Where v(x, x') is a visibility term, equal to 1 if x and x' are mutually visible and 0 otherwise

- $K_i = \overrightarrow{x'x}$

• Integral equation: to be solved

19