A Bayesian Monte Carlo approach for Global
[llumination

J. Brouillat, B. Loos, C. Bouville, K. Bouatouch

Irisa Rennes, Bunraku team

October 02, 2009



Introduction

Realistic Rendering

We want to render realistic pictures
@ Realistic models (geometry, materials, lights...)

@ Accurate simulation of the lighting (Global lllumination)

)
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Introduction

Rendering a Picture

Several methods...
@ Rasterization
@ Ray tracing
To solve the Global lllumination solution:
@ Radiosity
@ Monte Carlo methods

@ many other techniques...
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Motivations
Tt an Approach
onte Carlo Estimator

Bayesian Monte Carlo

Motivations (1)

@ The Monte Carlo estimator depends on the arbitrary choice of
the sampling density.

@ Hence, the same set of observed integrand sample values will
lead to different estimates depending on the chosen sampling
density.

@ This violates a principle of Bayesian statistics: the Likelihood
Principle.
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Bayesian Monte Carlo

Motivations (2)

@ Monte Carlo ignores sample locations and use only the value
of integrand samples.

@ Two samples falling on the same or close location will have
equal importance, whereas the second sample brings no extra
information.

e Stratified sampling and/or (deterministic ) quasi-Monte Carlo
reduce the occurrence of theses cases

@ Classical Monte Carlo wastes important information.
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Motivations
e Bayesian Approach
Bayesian Monte Carlo Estimator

Bayesian Monte Carlo

The Bayesian Approach

@ The Bayesian approach turns the problem of evaluating the
integral into a Bayesian inference problem.

e For a given x, the integrand f(x) is considered as a random
because it is unknown (and thus uncertain) before its
evaluation.

@ Bayesian Monte Carlo relies on an a priori knowledge of a
probabilistic model of the integrand (e.g. gaussian process
model).
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ian Approach
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Bayesian Monte Carlo

The Bayesian Approach

In classical Monte Carlo, we want to evaluate:

I:/f(x)p(x)dx
where p(x) is a pdf.

Recall that Classical Monte Carlo gives:

where X; are random samples drawn from p(x).
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Bayesian Monte Carlo

The Bayesian Approach

Bayesian view is that all forms of uncertainty are represented by
probabilities: we think of the unknown desired quantity as being
random.

e 1 and f(x) are unknown until we evaluate them.

e How do we model the uncertainty on 7 and f(x)?
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Bayesian Monte Carlo

The Bayesian Approach

Put a prior on f (gaussian process model),
Combine with a vector of observations D,

We obtain a posterior over f, (also a gaussian process)

e 6 o6 o

This posterior gives a conditional distribution p(/|D),
(gaussian)

A

The expected value of the distribution gives us / (maximum
likelihood estimation).



Bayesian Monte Carlo e AEEsds

Monte Carlo Estimator

Gaussian Process

@ Collection of random variables, any finite number of which
have a gaussian distribution,

o Defined by a mean function f(x) and a covariance function:
Cov[f(x1), f(x2)] = k(x1, x2)

e Notation : GP[f(x), k(x, x')]

e the GP is stationnary if f(x) is constant and
k(x,x") = k(x —x"). If k(x —x") = k(|x — x'|), k() is a radial
basis function (RBF).

@ k(x1,x2) must semi definite positive (SDP)
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Bayesian Monte Carlo

The Bayesian Monte Carlo problem formulation

o The gaussian process model GP[f(x), k(x, x")] is the prior
o Assume an independent gaussian additive noise A(0, 02) with
samples €¢;. The observations y; are:
yi = f(x;) + €
@ The covariance of the observed data is then:
cov(¥p, Yq) = k(¥p, Yg) + 0%0pg
® X = [xo,X1,...,Xn] is a set of samples.
@ D =[yi,...,yn] is the set of corresponding observations.
@ Problem: find the best estimate of / given D.
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Bayesian Monte Carlo s Apmesd:

Bayesian Monte Carlo Estimator

Bayesian Monte Carlo Estimator

As p[f(X), D] is a jointly gaussian p.d.f., the Bayesian estimate of
| is:
I=E(I|D)] = Mo+ Z' QY — F(X)]

where
zZ = /k(X,X)p(X)dX

My = /?(X)p(x)dx
Q K(X, X) + o?l,

I, is the n x n identity matrix
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The Bayesian Approach
Bayesian Monte Carlo Estimator

Bayesian Monte Carlo

Bayesian Regression

1 estimator uses E[f(x)|D] as an interpolant for f (bayesian regression).
Examples from the Rasmussen-Williams' book: "GP for machine
learning” .

2 2

output, f(x)
og

output, f(x)
=) =

-1
-2 72\
-5 0 5 -5 0 5
input, x input, x
(a), prior (b), posterior

@ a) No observations, only GP[f(x), k(x, x")] is known,

@ b) The a posteriori estimate of f(x).
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Bayesian Monte Carlo an Approach

Bayesian Monte Carlo Estimator

Bayesian Monte Carlo Estimator

Bayesian Monte Carlo can significantly outperform classical Monte
Carlo if the prior is appropriate. But:

@ How to choose the prior i.e. the GP GP[f(x), k(x,x")] ?
@ How to compute the Z vector coefficients and My ?

o How to deal with the matrix inversion Q1 ?
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Application to Global Illlumination

Can Bayesian Monte Carlo approach be used for Global
Illumination

© Can we obtain better rendering quality for the same number
of samples?

@ s it practical? (better rendering quality for the same
computation time)
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Application to Global lllumination
Irradiance incoming at a given point

Our Approach Bayesian Monte Carlo Rendering
Optimized Distributions

Irradiance incoming at a given point

We apply Bayesian Monte Carlo in the case of computing
irradiance at a given point x.

E:/QL(x,w)cos(H)dw.

We need a covariance function k (luminance values incoming from
closed directions are likely to be the same). L(x,w) could stem
from an Environment Map.
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Application to Global lllumination
Irradiance incoming at a given point
Our Approach Bayesian Monte Carlo Rendering

Optimized Distributions

Irradiance at a Given Point

Luminance incoming at x from all the hemisphere
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Application to Global lllumination
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d Distributions

The gaussian process model

We take a Square Exponential (SE) function to model k():

—lx1—xo|
k(Xl,Xz) = k(’Xl — Xz‘) = wpe 22

@ Xx; are direction vectors i.e. points on the unit sphere and
|x1 — x2| is a 3D cartesian distance

@ wy is the variance of f()

@ / (the lenghtscale) characterizes the strength of the
correlation between samples

@ The mean function f is assumed constant
o {wo,/,f,o} are the hyperparameters of the model.
But how to choose these hyperparameters ?
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Application to Global lllumination
Irradiance incoming at a given point

Our Approach Bayesian Monte Carlo Rendering
Optimized Distributions

Effect of hyperparmeters on the variance of BMC estimate

Observed variance from a set of BMC estimate computations at a
given point of the scene:
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Our Approach Bayes Monte Carlo Rendering
Optimized Distributions

Hyperparameters Determination

The covariance function of the observations y;:

—xp—xg]
K(xp: Xq) = K(Ixp — Xql) = woe ™ 27 + 0%3pq

First, we measure the actual covariance of the signal, then fit it to
the model.

k(A) = E[(L(x1) — L)(L(x2) — L)] with A = |x; — x|
Measured covariance of the incoming luminance (25k couples):

wo=6.2-1073 ¢=02615 02=0.24

21 /55



Application to Global lllumination
Irradiance incoming at a given point
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Optimized Distributions

Covariance Function

1073 ' '
x
7 computed covariance
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Application to Global lllumination
Irradiance incoming at a given point

Our Approach Bayes Monte Carlo Rendering
Optimized Distributions

Comparison with Classical Monte Carlo

Much less variance with BMC but:

e We use 50k samples to get an approximation of ¢ and o2...
for computing a 256-samples integration!

o Computation of z and k(D,D)~! takes more times than
getting more samples...
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Rendering a picture...

To render a picture, we compute (BMC/MC) estimates for each
visible point.

@ ¢/ and o are measured over all the visible points from the
camera, using 25k couples of incoming directions

@ picture of 512 x 512 pixels: cost of computing ¢ and o is only
one sample every 5 pixels.

Still holds the problem of computing My, Z and Q1.

24 /55



on to Global lllumination
i ing at a given point
Our Approach rlo Rendering
Optimized Distributions

Evolution of the RMSE (image level)
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Comparison with Classical Monte Carlo

Perform several integral estimations then compute the variance of
the results.

Compare:
@ Classical Monte Carlo
@ Monte Carlo with Importance Sampling
@ Bayesian Monte Carlo
°

Bayesian Monte Carlo with Importance Sampling
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Our Approach Bayesian Monte Carlo Rendering
Optimized Distributions

RMSE Comparison
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Application to Global lllumination
Irradiance incoming at a given point

Our Approach Bayesian Monte Carlo Rendering
Optimized Distributions

Making BMC Rendering Practical

Still holds the problem of computing My, Z and Q1.

@ How do we choose My (f)?

@ How do we compute the integrals associated with Z7?

o How do we manage the cost of inverting @1 (n x n matrix)?
For each computation...
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Determining My and f

We need to compute My value and Z vector.
My = /?(x)p(x)dx
f = Iy the classical Monte Carlo estimator value .
Mo = =f

If £ value is too low or is equal to 0, BMC estimator provides the
same value as MC in worst cases (e.g. low ¢ value).
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Our Approach Bayesian Monte Carlo Rendering
Optimized Distributions

Choice of f

Bias Quadratic error
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Irradiance incoming at a given point

Our Approach Bayesian Monte Carlo Rendering
Optimized Distributions

Computing z

z depends only on the samples positions:

Z= /k(X,x)p(x)dx zi = /k(x,-,x)p(x)dx

@ z; is thus a function of ¢ and the sampling direction x;
(actually depends on 6; only).

@ As the function z;(¢,0;) is very smooth, we precompute a
lookup table and interpolate between the table values .
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Precomputing distributions

Z and the covaraince matrix @1 depend only on the relative
position of the samples to each other. For a given distribution of
directions, we can precompute Z and Q1.

@ draws M random distributions of N samples, with
M << nbPixels

@ precompute Z and Q! and the vector of quadrature
coefficients C, = Q17

32 /55



Application to Global lllumination
diance incoming at a given point
Our Approach yesian Monte Carlo Rendering
Optimized Distributions

Precomputing distributions

During each the rendering, for each integration:

@ randomly pick a distribution D and the corresponding
precomputed C, vector

@ rotate it around the normal axis
@ evaluate samples and compute monte carlo estimation of the
integral (f)
@ use C, to compute the bayesian estimation of the integral
with:
T=Mo+CJ(Y - f(X))
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Bayesian Monte Carlo Rendering

Uniform MC - 144 samples

Uniform MC - 144 samples
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Bayesian Monte Carlo Rendering

Uniform MC - 144 samples Uniform BMC - 144 samples
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Bayesian Monte Carlo Rendering

Uniform MC - 144 samples
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Bayesian Monte Carlo Rendering

samples

Uniform MC - 144
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Bayesian Monte Carlo Rendering
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RMSE Comparlsons
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RMSE Comparisons
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Optimized Distributions

Given a covariance function k we can compute a theoretical
expression of the variance of the BMC estimate:

Var[l|f(D)] = Vo — ZtQ" !z (1)

For a signal following our GP prior, the variance of the BMC
estimate depends on the choice of the samples. By an optimization
process, we can find a distribution which minimize Var[/|D].
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Bayesian Monte Carlo Rendering - Sibenik Cathedral
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Bayesian Monte Carlo Rendering - Sibenik Cathedral

Uniform MC - 144 samples
"‘:; 11

Optimized BMC - 144 s

«O0>» «F>» «E» «

amples
1},\‘ i



Introduction

Application to Global lllumination
Bayesian Monte Carlo Irradiance incoming at a given point
Our Approach Bayesian Monte Carlo Rendering
Conclusion & Future Work

Optimized Distributions

Bayesian Monte Carlo Rendering - Sibenik Cathedral

Strat. Imp. MC -

5
Il

144 samples

Strat. Imp. MC - 144 samples

«O» «Fr o«

it

v

a
i



Introduction

Application to Global lllumination
Bayesian Monte Carlo Irradiance incoming at a given point
Our Approach Bayesian Monte Carlo Rendering
Conclusion & Future Work

Optimized Distributions

Bayesian Monte Carlo Rendering - Sibenik Cathedral

Optimized BMC - 144 samples

Optimized BMC - 144 samples
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Bayesian Monte Carlo Rendering - Sponza Lucy
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MC diff. (x10) - 256 samples BMC diff. (x10) - 256 samples
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Conclusion & Future Work

Bayesian Monte Carlo - Conclusion

@ We proposed to apply Bayesian Monte Carlo to computer
graphics.

@ We showed that despite the particular nature of luminance
signal, BMC can reduce the variance when computing
irradiance

@ We proposed a scheme to overcome the cost of classical BMC
(without optimized distributions)

@ We showed that BMC performs at least as good as MC, even
when used in conjunction with other noise-reduction methods

53 /55



Conclusion & Future Work

Bayesian Monte Carlo - Future Works

@ Local computation of £ and o: practical?
@ Glossy reflections: z becomes 5-dimensional

o Path tracing: higher dimensional integrand
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Conclusion & Future Work

Thank you for your attention!
Questions?
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Appendix Splitting the integrand
Control Variates

Splitting the integrand

Split the integral into several integrals and apply appropriate
Monte Carlo optimisation on each part.

f(x) = fo(x) + f(x) + f2(x)
I:/Dfo(x)dx—i-/Dﬁ(x)dx—i-/Dé(x)dx

° fD fo(x)dx will be evaluated with cosine importance sampling
(e.g. phong diffuse part)

o [, fi(x)dx will be evaluated with power cosine importance
sampling (e.g. phong specular part)

o [, fi(x)dx is too complex and will be evaluated with stratified
sampling only
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Appendix Splitting the integrand
Control Variates

Control Variates

Sometimes the knowledge about f(x) can not be used for
importance sampling:

f(x) =g(x)+ f'(x) with 3x,g(x)=0

g(x) can be used as an importance sampling function only if:
Vx,g(x) =0=f(x) =0

Use g(x) as a control variate.
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Appendix Splitting the integrand
Control Variates

Control Variates

We know that f(x) has a certain shape:
f(x) =g(x)+ f'(x) with 3x,g(x)=0.

g(x) is the control variate:

I:/Df(x)dx: G+/D(f(x)g(x))dx with G:/g(x)dx.

D

The variance of the estimator depends on the choice of g(x).
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Rendering with environment maps

General rendering equation with an environment map

Environment map

Viewpoint

I(c) = /R(c) h(|s — ¢l) [/Qh frli(s), r]L(r) cos 0d2| ds

@ c: pixel center

@ h(s) : anti-aliasing filter kernel
e R(c) : anti-aliasing filter window
e f,(i,r) : BRDF
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Rendering with environment maps

BMC for environment map rendering

@ break down the integral into diffuse and specular components
using:
fr(iar) - fs(lar)—i_fd
@ proposed covariance function for the integrand:
’2

—|s—+¢ —|r—r'?

Iz I?

k(s,r,s',r') = wyexp

@ closed form solution for computing the z; coefficients when:

@ the filter kernel is a box or gaussian
@ the BRDF is factorized (possibly in squared-exponential
functions)
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