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Figure 2.2: Panel (a) shows three functions drawn at random from a GP prior;
the dots indicate values of y actually generated; the two other functions have (less
correctly) been drawn as lines by joining a large number of evaluated points. Panel (b)
shows three random functions drawn from the posterior, i.e. the prior conditioned on
the five noise free observations indicated. In both plots the shaded area represents the
pointwise mean plus and minus two times the standard deviation for each input value
(corresponding to the 95% confidence region), for the prior and posterior respectively.

which informally can be thought of as roughly the distance you have to move in
input space before the function value can change significantly, see section 4.2.1.
For eq. (2.16) the characteristic length-scale is around one unit. By replacing
|xp−xq| by |xp−xq|/` in eq. (2.16) for some positive constant ` we could change
the characteristic length-scale of the process. Also, the overall variance of the magnitude

random function can be controlled by a positive pre-factor before the exp in
eq. (2.16). We will discuss more about how such factors affect the predictions
in section 2.3, and say more about how to set such scale parameters in chapter
5.

Prediction with Noise-free Observations

We are usually not primarily interested in drawing random functions from the
prior, but want to incorporate the knowledge that the training data provides
about the function. Initially, we will consider the simple special case where the
observations are noise free, that is we know {(xi, fi)|i = 1, . . . , n}. The joint joint prior

distribution of the training outputs, f , and the test outputs f∗ according to the
prior is [

f
f∗

]
∼ N

(
0,
[
K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
. (2.18)

If there are n training points and n∗ test points then K(X,X∗) denotes the
n × n∗ matrix of the covariances evaluated at all pairs of training and test
points, and similarly for the other entries K(X,X), K(X∗, X∗) and K(X∗, X).
To get the posterior distribution over functions we need to restrict this joint
prior distribution to contain only those functions which agree with the observed
data points. Graphically in Figure 2.2 you may think of generating functions
from the prior, and rejecting the ones that disagree with the observations, al- graphical rejection


