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Motivations (1)

I =

∫
f (x)p(x)dx

The Monte Carlo estimator depends on the arbitrary choice of
the sampling density.

Hence, the same set of observed integrand sample values will
lead to different estimates depending on the chosen sampling
density.

This violates a principle of Bayesian statistics: the Likelihood
Principle.
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Motivations (2)

Monte Carlo ignores sample locations and use only the value
of integrand samples.

Two samples falling on the same or close location will have
equal importance, whereas the second sample brings no extra
information.

Stratified sampling and/or (deterministic ) quasi-Monte Carlo
reduce the occurrence of theses cases

Classical Monte Carlo wastes important information.
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The Bayesian Approach

The Bayesian approach turns the problem of evaluating the
integral into a Bayesian inference problem.

For a given x , the integrand f (x) is considered as random
because it is unknown (and thus uncertain) before its
evaluation.

Bayesian Monte Carlo relies on an a priori knowledge of a
probabilistic model of the integrand (e.g. gaussian process
model).
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The Bayesian Approach

In classical Monte Carlo, we want to evaluate:

I =

∫
f (x)p(x)dx

where p(x) is a pdf.

Recall that Classical Monte Carlo gives:

Î =
1

T

T∑

t=1

f (Xt)

where Xt are random samples drawn from p(x).
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The Bayesian Approach

Bayesian view is that all forms of uncertainty are represented by
probabilities: we think of the unknown desired quantity as being
random.

Î and f (x) are unknown until we evaluate them.

How do we model the uncertainty on Î and f (x)?
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The Bayesian Approach

Put a prior on f (gaussian process model),

Combine with a vector of observations D,

We obtain a posterior over f , (also a gaussian process)

This posterior gives a conditional distribution p(I |D),
(gaussian)

The expected value of the distribution gives us Î (maximum
likelihood estimation).
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Gaussian Process

Collection of random variables, any finite number of which
have a joint gaussian distribution,

Defined by a mean function f̄ (x) and a covariance function:
Cov [f (x1), f (x2)] = k(x1, x2)

Notation : GP[f̄ (x), k(x , x ′)]

the GP is stationnary if f (x) is constant and
k(x , x ′) = k(x − x ′). If k(x − x ′) = k(|x − x ′|), k() is a radial
basis function (RBF).

k(x1, x2) must be semi definite positive (SDP)

With this function close samples are highly correlated wheras
k(x1, x2) ≈ 0 for distant samples, which means that the
function values are almost independent.
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The Bayesian Monte Carlo problem formulation

The gaussian process model GP[f̄ (x), k(x , x ′)] is the prior

Assume an independent gaussian additive noise N (0, σ2) with
samples εi . The observations yi are:

yi = f (xi ) + εi

The covariance of the observed data is then:
cov(yp, yq) = k(yp, yq) + σ2δpq

X = [x0, x1, . . . , xn] is a set of samples.

D = [(x1, y1), . . . , (xn, yn)] is the set of corresponding
observations.

Problem: find the best estimate of I given D.
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Bayesian Monte Carlo Estimator

The posterior Gaussian process is

E (f (x)|D) = f̄ (x) + k(x)tQ−1[Y − F̄ ]

Cov(f (x), f (x ′)|D) = k(x , x ′)− k(x)tQ−1k(x ′)

where

k(x) = (k(X1, x), ...., k(Xn, x))t

Y = (Y1, ....,Yn)

Q = K (X ,X ) + σ2In

F̄ = (f̄ (X1), ...., f̄ (Xn))

In is the n × n identity matrix
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Bayesian Monte Carlo Estimator

The posterior distribution of the integral I is

Î = E (I |D) = Ī + Z tQ−1[Y − F̄ ]

Var(I |D) = V̄ − Z tQ−1Z

where

V̄ =

∫ ∫
k(x , x ′)p(x)p(x ′)dxdx ′

Z =

∫
k(X , x)p(x)dx

Ī =

∫
f̄ (x)p(x)dx

Q = K (X ,X ) + σ2In

F̄ = (f̄ (X1), ...., f̄ (Xn))

In is the n × n identity matrix
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Bayesian Monte Carlo Estimator

The previous equation giving the estimate of the integral I can be
rewritten as:

Î = E (I |D) = Ī0 + ctY

Ī0 = Ī − ct F̄

c = Q−1z

This is a quadrature rule in which c is the vector of quadrature
coefficients.
These coefficients could be precomputed for predefined sample sets
Xi and hyperparameter values.
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Bayesian Monte Carlo Estimator

E (I |D) =

∫ ∫
f (x)p(x)dx p(f /D)df

=

∫
[

∫
f (x)p(f /D)df ]p(x)dx =

∫
f̄D(x)p(x)dx

where f̄D(x) is the posterior mean function.

In SMC if two samples happen to fall close to each other the
function value there will be counted with double weight.

That means that large numbers of samples are needed to
adequately represent p(x).

BMC circumvents this problem by choosing samples that are
not close to each other, since p(x) is not a pdf but a known
function.
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Bayesian Regression

Î estimator uses E [f (x)|D] as an interpolant for f (bayesian regression).
Examples from the Rasmussen-Williams’ book: ”GP for machine
learning”.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

2.2 Function-space View 15
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Figure 2.2: Panel (a) shows three functions drawn at random from a GP prior;
the dots indicate values of y actually generated; the two other functions have (less
correctly) been drawn as lines by joining a large number of evaluated points. Panel (b)
shows three random functions drawn from the posterior, i.e. the prior conditioned on
the five noise free observations indicated. In both plots the shaded area represents the
pointwise mean plus and minus two times the standard deviation for each input value
(corresponding to the 95% confidence region), for the prior and posterior respectively.

which informally can be thought of as roughly the distance you have to move in
input space before the function value can change significantly, see section 4.2.1.
For eq. (2.16) the characteristic length-scale is around one unit. By replacing
|xp−xq| by |xp−xq|/` in eq. (2.16) for some positive constant ` we could change
the characteristic length-scale of the process. Also, the overall variance of the magnitude

random function can be controlled by a positive pre-factor before the exp in
eq. (2.16). We will discuss more about how such factors affect the predictions
in section 2.3, and say more about how to set such scale parameters in chapter
5.

Prediction with Noise-free Observations

We are usually not primarily interested in drawing random functions from the
prior, but want to incorporate the knowledge that the training data provides
about the function. Initially, we will consider the simple special case where the
observations are noise free, that is we know {(xi, fi)|i = 1, . . . , n}. The joint joint prior

distribution of the training outputs, f , and the test outputs f∗ according to the
prior is [

f
f∗

]
∼ N

(
0,

[
K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
. (2.18)

If there are n training points and n∗ test points then K(X,X∗) denotes the
n × n∗ matrix of the covariances evaluated at all pairs of training and test
points, and similarly for the other entries K(X,X), K(X∗, X∗) and K(X∗, X).
To get the posterior distribution over functions we need to restrict this joint
prior distribution to contain only those functions which agree with the observed
data points. Graphically in Figure 2.2 you may think of generating functions
from the prior, and rejecting the ones that disagree with the observations, al- graphical rejection

a) No observations, only GP[f̄ (x), k(x , x ′)] is known,

b) The a posteriori estimate of f (x).
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Bayesian Monte Carlo Estimator

Bayesian Monte Carlo can significantly outperform classical Monte
Carlo if the prior is appropriate. But:

How to choose the prior i.e. the GP GP[f̄ (x), k(x , x ′)] ?

How to compute the Z vector coefficients and Ī ?

How to deal with the matrix inversion Q−1 ?
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Application to Global Illumination

Can Bayesian Monte Carlo approach be used for Global
Illumination and Environment Map Sampling?

1 Can we obtain better rendering quality for the same number
of samples?

2 Is it practical? (better rendering quality for the same
computation time)
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Irradiance incoming at a given point

We have first applied Bayesian Monte Carlo to compute the
irradiance at a given point x .

E =

∫

Ω
L(x , ω) cos(θ)dω.

We need a covariance function k (luminance values incoming from
closed directions are likely to be the same). L(x , ω) could also
stem from an Environment Map.
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Irradiance at a Given Point

Luminance incoming at x from all the hemisphere
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The gaussian process model

We take a Square Exponential (SE) function to model k():

k(x1, x2) = k(|x1 − x2|) = w0e
−|x1−x2|

2`2

xi are direction vectors i.e. points on the unit sphere and
|x1 − x2| is a 3D cartesian distance

w0 is the variance of f ()

` (the lenghtscale) characterizes the strength of the
correlation between samples

The mean function f̄ is assumed constant for final gathering
application

{w0, `, f̄ , σ} are the hyperparameters of the model.

But how to choose these hyperparameters ?
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Hyperparameters Determination

The covariance function of the observations yi :

k(xp, xq) = k(|xp − xq|) = w0e
−|xp−xq |

2`2 + σ2δpq

First, we measure the actual covariance of the signal, then fit it to
the model.

k(d) = E [(L(x1)− L̄)(L(x2)− L̄)] with d = |x1 − x2|

Measured covariance of the incoming luminance (25k couples):

w0 = 6.2 · 10−3 ` = 0.2615 σ2 = 0.24
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Hyperparameters Determination

Covariance function fitting
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Hyperparameters Determination

Optimizating the likelihood function
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Comparison with Classical Monte Carlo

Perform several integral estimations then compute the variance of
the results.
Compare:

Classical Monte Carlo

Monte Carlo with Importance Sampling

Bayesian Monte Carlo

Bayesian Monte Carlo with Importance Sampling

24 / 52



Introduction
Bayesian Monte Carlo

Our Approach
Conclusion & Future Work

Application to Global Illumination
Irradiance incoming at a given point
Bayesian Monte Carlo Rendering
Optimized Distributions

RMSE Comparison

1.2 1.4 1.6 1.8 2 2.2 2.4
-55

-50

-45

-40

-35

-30 Monte Carlo
Importance Monte Carlo
Bayesian Monte Carlo

Importance Bayesian
Monte Carlo

log(n)

20
 lo

g(
 R

M
S

E
 )

Cornell Box

25 / 52



Introduction
Bayesian Monte Carlo

Our Approach
Conclusion & Future Work

Application to Global Illumination
Irradiance incoming at a given point
Bayesian Monte Carlo Rendering
Optimized Distributions

Making BMC Rendering Practical

Still holds the problem of computing Ī , Z and Q−1...

How do we choose Ī (f̄ )?

How do we compute the integrals associated with Z?

How do we manage the cost of inverting Q−1 (n × n matrix)?

For each computation...
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Determining Ī and f̄

We need to compute Ī value and Z vector.

Ī =

∫
f̄ (x)p(x)dx

f̄ = IMC (in case of constant mean function) the classical Monte
Carlo estimator value I.

Ī = πf̄

If ` value is too low or is equal to 0, BMC estimator provides the
same value as MC in worst cases (e.g. low ` value).
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Computing z

Z depends only on the samples positions:

Z =

∫
k(X , x)p(x)dx zi =

∫
k(xi , x)p(x)dx

zi is thus a function of ` and the sampling direction xi
(actually depends on θi only).

As the function zi (`, θi ) is very smooth, we precompute a
lookup table and interpolate.
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Precomputing distributions

Z and the covaraince matrix Q−1 depend only on the relative
position of the samples to each other. For a given distribution of
directions, we can precompute Z and Q−1.

draws M random distributions of N samples, with
M << nbPixels

precompute Z and Q−1 and the vector of quadrature
coefficients Cy = Q−1Z
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Precomputing distributions

During each the rendering, for each integration:

randomly pick a distribution D and the corresponding
precomputed Cy vector

rotate it around the normal axis (same coefficients Cy )

evaluate samples and compute monte carlo estimation of the
integral (f̄ )

use Cy to compute the bayesian estimation of the integral
with:

Î = M0 + CT
y (Y − ¯f (X ))

30 / 52



Introduction
Bayesian Monte Carlo

Our Approach
Conclusion & Future Work

Application to Global Illumination
Irradiance incoming at a given point
Bayesian Monte Carlo Rendering
Optimized Distributions

Bayesian Monte Carlo Rendering

Uniform MC - 144 samples Uniform MC - 144 samples

31 / 52



Introduction
Bayesian Monte Carlo

Our Approach
Conclusion & Future Work

Application to Global Illumination
Irradiance incoming at a given point
Bayesian Monte Carlo Rendering
Optimized Distributions

Bayesian Monte Carlo Rendering

Uniform MC - 144 samples Uniform BMC - 144 samples

32 / 52



Introduction
Bayesian Monte Carlo

Our Approach
Conclusion & Future Work

Application to Global Illumination
Irradiance incoming at a given point
Bayesian Monte Carlo Rendering
Optimized Distributions

Bayesian Monte Carlo Rendering

Uniform MC - 144 samples Stratified MC - 144 samples

33 / 52



Introduction
Bayesian Monte Carlo

Our Approach
Conclusion & Future Work

Application to Global Illumination
Irradiance incoming at a given point
Bayesian Monte Carlo Rendering
Optimized Distributions

Bayesian Monte Carlo Rendering

Uniform MC - 144 samples Stratified BMC - 144 samples

34 / 52



Introduction
Bayesian Monte Carlo

Our Approach
Conclusion & Future Work

Application to Global Illumination
Irradiance incoming at a given point
Bayesian Monte Carlo Rendering
Optimized Distributions

Bayesian Monte Carlo Rendering

Uniform MC - 144 samples Uniform MC - 144 samples

35 / 52



Introduction
Bayesian Monte Carlo

Our Approach
Conclusion & Future Work

Application to Global Illumination
Irradiance incoming at a given point
Bayesian Monte Carlo Rendering
Optimized Distributions

Bayesian Monte Carlo Rendering
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Optimized Distributions

Given a covariance function k we can compute a theoretical
expression of the variance of the BMC estimate:

Var [I |f (D)] = V0 − Z tQ−1z (1)

For a signal following our GP prior, the variance of the BMC
estimate depends on the choice of the samples. By an optimization
process, we can find a distribution which minimize Var [I |D].
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Bayesian Monte Carlo Rendering - Sibenik Cathedral
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Bayesian Monte Carlo Rendering - Sibenik Cathedral

Optimized BMC - 144 samples Optimized BMC - 144 samples
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Bayesian Monte Carlo Rendering - Sponza Lucy

MC diff. (x10) - 256 samples BMC diff. (x10) - 256 samples
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Bayesian Monte Carlo Rendering - Quadrature

φ angle

θ 
an

gl
e

0 1 2 3 4 5 6

0

0.5

1

1.5

φ angle

θ 
an

gl
e

0 1 2 3 4 5 6

0

0.5

1

1.5

49 / 52



Introduction
Bayesian Monte Carlo

Our Approach
Conclusion & Future Work

Bayesian Monte Carlo - Conclusion

We proposed to apply Bayesian Monte Carlo to computer
graphics.

We showed that despite the particular nature of luminance
signal, BMC can reduce the variance when computing
irradiance

We proposed a scheme to overcome the cost of classical BMC
(without optimized distributions)

We showed that BMC performs at least as good as MC, even
when used in conjunction with other noise-reduction methods
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Bayesian Monte Carlo - Future Works

Local computation of ` and σ: practical?

Glossy reflections: z becomes 5-dimensional

Environment mapping

Path tracing: higher dimensional integrand

Upsampling: spatial and temporal
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Thank you for your attention!
Questions?
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Splitting the integrand

Split the integral into several integrals and apply appropriate
Monte Carlo optimisation on each part.

f (x) = f0(x) + f1(x) + f2(x)

I =

∫

D
f0(x)dx +

∫

D
f1(x)dx +

∫

D
f2(x)dx

∫
D f0(x)dx will be evaluated with cosine importance sampling

(e.g. phong diffuse part)∫
D f1(x)dx will be evaluated with power cosine importance

sampling (e.g. phong specular part)∫
D f1(x)dx is too complex and will be evaluated with stratified

sampling only
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Control Variates

Sometimes the knowledge about f (x) can not be used for
importance sampling:

f (x) = g(x) + f ′(x) with ∃x , g(x) = 0

g(x) can be used as an importance sampling function only if:

∀x , g(x) = 0⇒ f (x) = 0

Use g(x) as a control variate.
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Control Variates

We know that f (x) has a certain shape:

f (x) = g(x) + f ′(x) with ∃x , g(x) = 0.

g(x) is the control variate:

I =

∫

D
f (x)dx = G +

∫

D
(f (x)− g(x))dx with G =

∫

D
g(x)dx .

The variance of the estimator depends on the choice of g(x).

55 / 52



Appendix
Rendering with environment maps

General rendering equation with an environment map

Screen

V
s

P

N

Environment map

i

r

L(r)

θ

Viewpoint

I (c) =

∫

R(c)
h(|s − c |)

[∫

Ω2π

fr [i(s), r ]L(r) cos θdΩ

]
ds

c : pixel center

h(s) : anti-aliasing filter kernel

R(c) : anti-aliasing filter window

fr (i , r) : BRDF
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BMC for environment map rendering

break down the integral into diffuse and specular components
using:

fr (i , r) = fs(i , r) + fd

proposed covariance function for the integrand:

k(s, r , s ′, r ′) = w0 exp

[−|s − s ′|2
l2s

+
−|r − r ′|2

l2r

]

closed form solution for computing the zi coefficients when:
1 the filter kernel is a box or gaussian
2 the BRDF is factorized (possibly in squared-exponential

functions)
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