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Realistic Rendering

We want to render realistic pictures
@ Realistic models (geometry, materials, lights...)
@ Accurate simulation of the lighting (Global lllumination)

o Efficient lighting from environment maps such as light probes
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Rendering a Picture

Several methods...
@ Rasterization
@ Ray tracing
To solve the Global lllumination solution:
o Radiosity
@ Monte Carlo methods

@ many other techniques...
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Motivations (1)

@ The Monte Carlo estimator depends on the arbitrary choice of
the sampling density.

@ Hence, the same set of observed integrand sample values will
lead to different estimates depending on the chosen sampling
density.

@ This violates a principle of Bayesian statistics: the Likelihood
Principle.
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Motivations (2)

@ Monte Carlo ignores sample locations and use only the value
of integrand samples.

@ Two samples falling on the same or close location will have
equal importance, whereas the second sample brings no extra
information.

e Stratified sampling and/or (deterministic ) quasi-Monte Carlo
reduce the occurrence of theses cases

@ Classical Monte Carlo wastes important information.



The Bayesian Approach

@ The Bayesian approach turns the problem of evaluating the
integral into a Bayesian inference problem.

e For a given x, the integrand f(x) is considered as a random
because it is unknown (and thus uncertain) before its
evaluation.

@ Bayesian Monte Carlo relies on an a priori knowledge of a
probabilistic model of the integrand (e.g. gaussian process
model).



The Bayesian Approach

In classical Monte Carlo, we want to evaluate:

| = /f(x)p(x)dx
where p(x) is a pdf.

Recall that Classical Monte Carlo gives:

I
/:T;f(xt)

where X; are random samples drawn from p(x).



The Bayesian Approach

Bayesian view is that all forms of uncertainty are represented by
probabilities: we think of the unknown desired quantity as being
random.

e ] and f(x) are unknown until we evaluate them.

e How do we model the uncertainty on 7 and f(x)?
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The Bayesian Approach

@ Put a prior on f (gaussian process model),
@ Combine with a vector of observations D,
@ We obtain a posterior over f, (also a gaussian process)

@ This posterior gives a conditional distribution p(/|D),
(gaussian)

@ The expected value of the distribution gives us i (maximum
likelihood estimation).
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Gaussian Process

@ Collection of random variables, any finite number of which
have a gaussian distribution,

o Defined by a mean function f(x) and a covariance function:
Cov|[f(x1), f(x2)] = k(x1, x2)

o Notation : GP[f(x), k(x, x')]

e the GP is stationnary if f(x) is constant and
k(x,x") = k(x —x"). If k(x —x") = k(|x — x'|), k() is a radial
basis function (RBF).

@ k(x1,x2) must semi definite positive (SDP)

@ With this function close samples are highly correlated wheras
k(x1,x2) =~ 0 for distant samples, which means that the
function values are almost independent.
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The Bayesian Monte Carlo problem formulation

The gaussian process model GP[f(x), k(x, x")] is the prior
Assume an independent gaussian additive noise (0, 02) with
samples €;. The observations y; are:

yi = f(xi) + €

The covariance of the observed data is then:
COV(yP’ -yQ) = k(ypv Yq) + 0_26pq

@ X = [xo,X1,-..,Xn] is a set of samples.
@ D =1[y1,...,yn] is the set of corresponding observations.
@ Problem: find the best estimate of / given D.
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Bayesian Monte Carlo Estimator

As p[f(X), D] is a jointly gaussian p.d.f., the Bayesian estimate of
I is:
1=E(D) =M+ Z'Q7Y — F(X)]

where
zZ = /k(X,X)p(x)dx

My = /?(X)p(X)dX
QR = K(X,X)+%l,

I, is the n x n identity matrix
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Bayesian Monte Carlo Estimator

E(I|D) — // x)dxp(f/ D)df
_ /[/ p(/D)df]p(x )dx—/?D(x)p(x)dx

where fp(x) is the posterior mean function.
@ In SMC if two samples happen to fall close to each other the
function value there will be counted with double weight.

@ That means that large numbers of samples are needed to
adequately represent p(x).

@ BMC circumvents this problem by analytically integrating the
mean function w.r.t. p(x).

15/1



Bayesian Regression

1 estimator uses E[f(x)|D] as an interpolant for f (bayesian regression).
Examples from the Rasmussen-Williams' book: "GP for machine
learning” .
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input, x input, x

(a), prior (b), posterior

@ a) No observations, only GP[f(x), k(x, x)] is known,

@ b) The a posteriori estimate of f(x).
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Bayesian Monte Carlo Estimator

Bayesian Monte Carlo can significantly outperform classical Monte
Carlo if the prior is appropriate. But:

@ How to choose the prior i.e. the GP GP[f(x), k(x,x")] ?
@ How to compute the Z vector coefficients and My ?

@ How to deal with the matrix inversion Q1 ?
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Application to Global lllumination

Can Bayesian Monte Carlo approach be used for Global
[llumination and Environment Map Sampling?

© Can we obtain better rendering quality for the same number
of samples?

@ s it practical? (better rendering quality for the same
computation time)
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Irradiance incoming at a given point

We apply Bayesian Monte Carlo in the case of computing
irradiance at a given point x.

E:/QL(x,w)cos(Q)dw.

We need a covariance function k (luminance values incoming from
closed directions are likely to be the same). L(x,w) could stem
from an Environment Map.
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Irradiance at a Given Point

Luminance incoming at x from all the hemisphere




The gaussian process model

We take a Square Exponential (SE) function to model k():

—Ix1—xo|
k(x1,x2) = k(|x1 — x2|) = wpe™ 22

X; are direction vectors i.e. points on the unit sphere and
|x1 — x2| is a 3D cartesian distance

wo is the variance of ()

¢ (the lenghtscale) characterizes the strength of the
correlation between samples

@ The mean function f is assumed constant
o {wp,/,f,o} are the hyperparameters of the model.

But how to choose these hyperparameters ?



Effect of hyperparmeters on the variance of BMC estimate

Observed variance from a set of BMC estimate computations at a
given point of the scene:
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Hyperparameters Determination

The covariance function of the observations y;:

—Ixp—xq|
K(xp: Xq) = K(Ixp — Xq|) = woe ™ 22+ 0%3pq

First, we measure the actual covariance of the signal, then fit it to
the model.

k(A) = E[(L(x1) — L)(L(x2) — L)] with A = |x; — x|
Measured covariance of the incoming luminance (25k couples):

wo=6.2-1073 ¢ =0.2615 o°=0.24



Covariance Function
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Comparison with Classical Monte Carlo

Much less variance with BMC but:

@ We use 50k samples to get an approximation of ¢ and o2...
for computing a 256-samples integration!

o Computation of z and k(D,D)~! takes more times than
getting more samples...



Rendering a picture...

To render a picture, we compute (BMC/MC) estimates for each
visible point.
@ ¢ and o are measured over all the visible points from the
camera, using 25k couples of incoming directions

@ picture of 512 x 512 pixels: cost of computing £ and ¢ is only
one sample every 5 pixels.

Still holds the problem of computing My, Z and Q1.



Evolution of the RMSE (image level)
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Comparison with Classical Monte Carlo

Perform several integral estimations then compute the variance of
the results.
Compare:

o Classical Monte Carlo
@ Monte Carlo with Importance Sampling
@ Bayesian Monte Carlo

@ Bayesian Monte Carlo with Importance Sampling



RMSE Comparison
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Making BMC Rendering Practical

Still holds the problem of computing My, Z and Q1.
@ How do we choose My (f)?
@ How do we compute the integrals associated with Z7
@ How do we manage the cost of inverting @1 (n x n matrix)?

For each computation...
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Determining My and f

We need to compute My value and Z vector.

My = /?(x)p(x)dx
f = Iy the classical Monte Carlo estimator value .
MO = 7TF

If ¢ value is too low or is equal to 0, BMC estimator provides the
same value as MC in worst cases (e.g. low ¢ value).
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Choice of f
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z depends only on the samples positions:

Z= /k(X,X)p(x)dx zi = /k(x,-,x)p(x)dx

@ z; is thus a function of £ and the sampling direction x;
(actually depends on 6; only).

@ As the function z(¢,0;) is very smooth, we precompute a
lookup table and interpolate between the table values .
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Precomputing distributions

Z and the covaraince matrix Q! depend only on the relative
position of the samples to each other. For a given distribution of
directions, we can precompute Z and Q1.

@ draws M random distributions of N samples, with
M << nbPixels

@ precompute Z and Q! and the vector of quadrature
coefficients C, = Q 1z
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Precomputing distributions

During each the rendering, for each integration:

@ randomly pick a distribution D and the corresponding
precomputed C, vector

@ rotate it around the normal axis

@ evaluate s_amples and compute monte carlo estimation of the
integral (f)

@ use C, to compute the bayesian estimation of the integral
with:

T=Mo+CJ(Y—f(X))
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Bayesian Monte Carlo Rendering

Uniform MC - 144 samples
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Bayesian Monte Carlo Rendering
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Bayesian Monte Carlo Rendering

Uniform MC - 144 samples
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Bayesian Monte Carlo Rendering

Uniform MC - 144 samples
y

Stratified BMC - 144 samp
il

les

«O» «Fr o«

it
v
a

a0
39/1



Bayesian Monte Carlo Rendering

Uniform MC - 144 samples

Uniform MC - 144 samples
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Bayesian Monte Carlo Rendering

Uniform BMC - 144 samples
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RMSE Comparlsons
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RMSE Comparisons
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Optimized Distributions

Given a covariance function k we can compute a theoretical
expression of the variance of the BMC estimate:

Var[l|f(D)] = Vo — Z'Q !z (1)

For a signal following our GP prior, the variance of the BMC
estimate depends on the choice of the samples. By an optimization
process, we can find a distribution which minimize Var[l|D].
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Bayesian Monte Carlo Rendering - Sibenik Cathedral
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Bayesian Monte Carlo Rendering - Sibenik Cathedral
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Bayesian Monte Carlo Rendering - Sibenik Cathedral
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Bayesian Monte Carlo Rendering - Sibenik Cathedral
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Bayesian Monte Carlo Rendering - Sibenik Cathedral
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Bayesian Monte Carlo Rendering - Sponza Lucy
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_Io Rendering - Sponza Lucy
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_Io Rendering - Sponza Lucy
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an Monte Carlo Rendering - Sponza Lucy

MC diff. (x10) - 256 samples
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_nte Carlo Rendering - Quadrature
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Bayesian Monte Carlo - Conclusion

@ We proposed to apply Bayesian Monte Carlo to computer
graphics.

@ We showed that despite the particular nature of luminance
signal, BMC can reduce the variance when computing
irradiance

@ We proposed a scheme to overcome the cost of classical BMC
(without optimized distributions)

@ We showed that BMC performs at least as good as MC, even
when used in conjunction with other noise-reduction methods
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Bayesian Monte Carlo - Future Works

@ Local computation of £ and o: practical?
@ Glossy reflections: z becomes 5-dimensional

@ Path tracing: higher dimensional integrand
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Thank you for your attention!
Questions?



Splitting the integrand

Split the integral into several integrals and apply appropriate
Monte Carlo optimisation on each part.

F(x) = fo(x) + A(x) + f2(x)
I_/Dfo(x)dx—i—/Dfl(x)dx—i—/ng(x)dx

o [ fo(x)dx will be evaluated with cosine importance sampling
(e.g. phong diffuse part)

o [, fi(x)dx will be evaluated with power cosine importance
sampling (e.g. phong specular part)

o [pfi(x)dx is too complex and will be evaluated with stratified
sampling only
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Control Variates

Sometimes the knowledge about f(x) can not be used for
importance sampling:

f(x) =g(x)+ f'(x) with 3x,g(x)=0

g(x) can be used as an importance sampling function only if:
Vx,g(x) =0=f(x) =0

Use g(x) as a control variate.
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Control Variates

We know that f(x) has a certain shape:
f(x)=g(x)+ f'(x) with 3x,g(x)=0.

g(x) is the control variate:

I:/Df(x)dx: G+/D(f(x)—g(x))dx with G:/Dg(x)dx.

The variance of the estimator depends on the choice of g(x).
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General rendering equation with an environment map

Environment map

Screen

Viewpoint

/(C):/R(c) hls — c|) [/Q £1i(s), rIL(r) cos 02| ds
. pixel center

°ecC

@ h(s) : anti-aliasing filter kernel
°

°

R(c) : anti-aliasing filter window
f'
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BMC for environment map rendering

@ break down the integral into diffuse and specular components
using:
f;'(iar): fs(ivr)_‘_fd

@ proposed covariance function for the integrand:

—ls =5 —lr—rP?

g I?

k(s,r,s',r') = wyexp

@ closed form solution for computing the z; coefficients when:

© the filter kernel is a box or gaussian
@ the BRDF is factorized (possibly in squared-exponential
functions)
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