Autonomous Agents I nteracting With Their Virtual Environment Through
Synoptic Objects

Abstract

We describe in this paper the STARFISH
(Synoptic-objects for Tracking Actions Re-
ceived From Interactive Surfaces and Humanoids)
architecture that uses Synoptic Objects to allow
real-time object manipulation by autonomous
agents in an informed environment. We define a
minimal set of primitive Basic Actions which are
used to build Complex Actions. We then assign
these actions to Interactive Surfaces which are the
parts of an object’s geometry that are concerned by
the action. The agent then uses these Interactive
Surfaces to get the data specific to the object
when it wants to manipulate it and to adapt its
behavior accordingly. We will show how to model
a Synoptic Object and assign an internal state
machine to it that allows it to track the progress of
the actions. We finally illustrate our approach with
a detailed example of an agent opening a door.
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1 Introduction

When populating a virtual world with synthetic actors, one of
the problems that arise is how to make these actors manip-
ulate the objects which surround them. Two approaches are
usually taken to solve this problem: the motion capture ap-
proach where all actions on all objects are pre-recorded and
replayed at will, and a more flexible approach where infor-
mation is stored into the virtual world, which is then referred
to as an informed environment [1], to give the actors informa-
tion on how to proceed.

Our goal, is to create an informed environment which con-
tains enough information to allow autonomous agents to in-
teract with it but with enough flexibility as to allow a cer-
tain freedom and laxness when the interaction occurs. In this
paper, we first give an overview of the different approaches
to this problem and then briefly present the Synoptic-objects
for Tracking Actions Received From Interactive Surfaces and
Humanoids (STARFISH) system. We will first present the
STARFISH Actions and Interactive Surfaces which are the
basic components of every Synoptic Object and then focus
on the Synoptic Objects, which are at the heart of STARFISH.

We will finally demonstrate how these objects allow us to cre-
ate believable interactions between autonomous agents and
their surroundings.

2 Related work

Examples of motion capture interaction can be seen in most
video games nowadays. A good showcase of such an ap-
proach is the game The Sims [2]. All possible interactions
with all possible objects are recorded using motion cap-
ture and then replayed as is, completely unaltered, whenever
needed. This gives extremely realistic animations since it re-
plays motions performed by a live human being. But this
realism comes at the price of having the same animation and
the same behavior repeated whenever an action is performed,;
and this, in the long run, tends to be unrealistic since real hu-
mans never perform the same action twice in exactly the same
way.

A hybrid approach is used by Badler et al. in the Pa-
rameterized Action Representation (PAR) system [3], where
objects are integral parts in defining the action to be taken.
An object specific reasoning (OSR) module [4] addresses the
agent-object interaction issue. The OSR keeps some inter-
action information for each object, such as graspable site,
hand shape and approach direction that are sufficient for de-
ciding and performing grasping tasks, but not for interacting
with more complex objects. The gestures accomplished by an
agent during interaction are completely synthetic, and created
by using the EMOTE model [5] which is an interpretation of
the Laban Movement Analysis. Thanks to that it is possible to
parameterize the gestures in a way that affects their outcome
and thus create different behaviors adapted to different situ-
ations. But the PAR itself is entirely pre-specified and thus
needs to be re-adapted offline if the targeted object is to be
changed. We qualify this approach as hybrid because, even
though there is no information in the environment itself, the
actions to be taken depend directly on the objects they are
applied to.

As for informed environments, one such environment is
STEVE [6]. In STEVE, some basic information is stored in-
side the objects, to allow some manipulations such as push-
ing a button or pulling a lever. But the tasks STEVE is able
to perform are limited and very domain specific. It is used
for procedural training in virtual reality for maintenance tasks



aboard a ship and is not adapted to a more general every-
day environment. A more generic approach is taken by Kall-
mann [7, 8] with the Smart Object architecture. All the in-
formation necessary to interact with the object is contained
in the object itself. A Smart Object which can hold a rela-
tively complex action, will instruct the synthetic actor on the
actions to do step by step. The architecture uses a basic set
of primitive gestures which are modified in real time using
inverse kinematics to adapt the agent’s motion to the position
of the object it is interacting with. All the information relative
to the interaction is stored in the objects themselves and the
agent becomes nothing more than an empty shell animated by
the object. This is, in our opinion, contrary to the notion of
autonomous agents.

There is also a top-down approach which consists in using
image recognition, planning and learning in order to dynam-
ically build and create manipulation data for agent-object in-
teraction. To our knowledge, such an approach has not yet
been implemented for real-time virtual human simulations
and has only been used in robotics. And it is our opinion
that, if such an approach were to be used, it would still not
be able to solve the problem of interacting with complex ma-
chines. This kind of interaction would necessitate knowledge
not readily available by this technique, such as functionality
and inner workings.

3 STARFISH

STARFISH, is a new system which allows the easy definition
of interactions between autonomous agents and the objects in
the environment.

At the heart of STARFISH are Synoptic Objects which are
objects containing information describing the way they can be
interacted with. This information is made available through
two main components:

STARFISH Actions which can be broken down into two
subparts:

¢ Basic Actions which are a minimal set of primitive
atomic actions.

e Complex Actions which are built by composing
Basic Actions.

I nteractive Surfaces which are usually parts of an object’s
surface that act like hotspots during interaction.

We will do a brief introduction of these components as they
are essential in understanding the workings of the Synoptic
Objects. We will also present the whiteboard, which allows
the communication between the agents and the objects. Then,
in Section 4 we will detail the Synoptic Object concept which
is the main topic of this paper.

3.1 STARFISH Actions

The first category of STARFISH Actions consists of a group
of simple atomic actions, the Basic Actions which are the
building blocks used to create the Complex Actions. A sim-
ilar approach is used in Brahms [9, 10], a domain general,
agent oriented language used to simulate everyday activities.
It uses Primitive Activities to create behaviors that are used to
model complex work practice scenarios. The set of primitive

activites used in Brahms is not a closed one, and can be added
to and enriched constantly. This does create a variety for the
definition of complex behaviors but it requires to completely
define a primitive activity whenever one is introduced in the
system, and readapt the system to work with it.

Inspired by Schank’s Theory of Conceptual Depen-
dency [11], Basic Actions are an extension of the theory’s
primitive ACTs. Schank says that in order to create concep-
tual structures that will uniquely and unambiguously repre-
sent the meaning of an utterance, it is necessary to establish
"primitive’ underlying actions and states into which verbs can
be mapped [12]. These primitive underlying actions is what
he called the primitive ACTs. Since Schank was able to de-
construct all sentences in common English into these ACTs,
why not take these ACTs and use them to generate more com-
plex actions? We use a subset of Schank’s ACTs that allow
us to define any action that has an impact on the physical
world. Through the Basic Actions described in Table 1, we
can build more complex and varied actions. We have omit-
ted the ACTs relating to mental processes such as thinking
and decision making since STARFISH is not yet capable of
managing such processes. Note that for the remainder of this
paper, whenever we refer to a Basic Action, its name will be
typeset in bold faceto differentiate it from the corresponding
verb.

Give Transfer a relationship ( give, take )
Transfer | Transfer location of an object ( go, carry)
Displace | Apply force to an object ( throw )

Move Move own body part ( kick, reach )
Grasp Grab an object ( grasp)

Ingest Take an object into own body (eat )
Speak Produce sound ( say, sing )

Attend Focus sense organ ( listen, look at)

Table 1: The complete set of Basic Actions.

For example, the Open Door action can be easily decom-
posed into its Basic Actions:

e Transfer self to the door.
e Movearm towards knob.
e Grasp knob.

e Movehand to turn knob.
¢ Movearm to open door.

e un-Grasp to let go of the knab.

It is possible to specify actions which have to be executed
in parallel such as Attend-ing the agents eyes to its arm (and
eventually Move-ing its head) as it is Move-ing its arm to-
wards the knob. It is also important to note that a Basic Ac-
tion can, by itself, be used as a full fledged STARFISH Ac-
tion: the action of kicking a can for example only consists in
M ove-ing the agent’s leg until it comes into contact with the
can.



The action is thus completely defined. The agent then uses
the Interactive Surfaces of the door to take the necessary pa-
rameters it needs to actually compute the path of its arm and
hand.

3.2 Interactive Surfaces

Interactive Surfaces are used to model and describe the affor-
dances of an object, a term coined by Gibson in his Theory
of Affordances [13]. Quoting Gibson’s own definition, the af-
fordances of the environment are what it offers the animal,
what it provides or furnishes. The animal is, in our case, the
autonomous agent and the environment an informed virtual
one.

Interactive Surfaces are generally parts of the object’s ge-
ometry that act as hotspots when a certain action is to be ac-
complished, such as where to place the agent’s hand when
Grasping the doorknob. Each Synoptic Object can have
as many Interactive Surfaces as needed, depending on how
much interaction it offers.

Interactive Surfaces can also be used to define the position-
ing of the agent relatively to the Synoptic Object it wants to
interact with. For example, an Interactive Surface might be
used to indicate a relative position where the agent should
be when it Transfers itself toward a Synoptic Object. In the
previous example, when the agent decides to open the door,
it uses the Interactive Surface corresponding to the Transfer
action, to place itself in a correct position to be able to con-
tinue to the next step in the Open Door STARFISH Action.
Since it is possible to execute Basic Actions in parallel, the
Transfer Interactive Surface can also be used as a constraint
for the agent: when the door is being opened, all its Interac-
tive Surfaces are moving with it. By constraining the agent
to stay in the appropriate area by Transfer-ing into the Inter-
active Surface, it will be able to stay out of the path of the
door.

In addition to defining a spatial area concerned by a cor-
responding action, Interactive Surfaces also contain informa-
tion to quantify the path and trajectory of that action. The ac-
tual animation of the agent is done by using [left blank] [14],
a motion adaptation system. Going back to the Basic Action
consisting of turning the knob to open the door, the Interactive
Surface used to perform that action tells the agent which way
the knob should be turned. Since we use a motion adaptation
system, the actual data contained in the Interactive Surface
is just an indication of what the action should consist of and
does not, in any way, define a complete animation. This goes
a long way to simplify the definition of an Interactive Sur-
face and also gives the possibility to the autonomous agent to
adapt its movements depending on body and limb position.
In other words, the way the agent moves to perform a specific
action always depends on where that agent is and where its
arm is positioned when it is asked to interact with an object.
This helps in reducing the effect of robot like behaviors.

The use of an Interactive Surface to indicate a general area
for interaction between a Synoptic Object and a virtual hu-
manoid combined with the motion adaptation system, adds a
relatively nondeterministic element to the simulation which

enhances its realism. Another advantage in using the mo-
tion adaptation system, is that it adapts the animation to the
agent’s morphology. The data that complements the Interac-
tive Surface is thus valid for whatever agent wants to use the
corresponding Synoptic Object and completely independent
of any physical constraints the agent might have. Through
STARFISH the agent can get the information needed to inter-
act with a Synoptic Object and then decides for itself whether
it can actually perform that action.

3.3 TheWhiteboard

The purpose of the STARFISH whiteboard is to simply bring
everything together. It keeps track of the physical location
in 3D space of all Synoptic Objects present in the simula-
tion. It acts as a database and is queried whenever interaction
information is needed. All communications between agents
and Synoptic Objects are initiated through the whiteboard.
The agent first asks the whiteboard whether it can start to
interact with a certain object. If the interaction is possible,
the whiteboard informs the agent about the object in question
and all further communication is done between the agent and
the object directly. Message passing is done through the [left
blank] [15], our virtual reality simulation platform.
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Figure 1: Typical process for a Grab action.
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Since the whiteboard is only solicited whenever an inter-
action is initiated, it is not necessary to update it in real time.
It is initialized at the start of the simulation and then explic-
itly refreshed whenever an interaction modifies the state of a
Synoptic Object.

The arrows in Figure 1 represent messages sent between
the different modules, and the numbers show the order in
which these events are sent. As can be seen, the whiteboard
is only updated by the Synoptic Object at load time and just
after the STARFISH Action is done.

4 Synoptic Objects

A Synoptic Object is an object designed to offer to the au-
tonomous agent a summary, or synopsis, of what interactions
it affords. When an agent queries such an object, it knows
what actions it can perform, where it should position itself,
where it should place its hands, what state the object is in,
whether it is allowed to perform the action, etc... All these
indications, are given through the use of Interactive Surfaces
and STARFISH Actions.

4.1 Modeling a Synoptic Object
When a Synoptic Object is being modeled, the first step is to

specify the areas of the object’s surface we want to make in-
teractive and assign them some information in order to create



an Interactive Surface. A single Interactive Surface can con-
tain multiple independent surfaces which are not necessarily
contiguous. The definition of an Interactive Surface is done
through the STARFISH editor: the user basically selects a 2D
area in the editor’s window which is then projected into 3D
space onto the object itself. It is then possible to refine and
modify the projected surface. Once the geometric shape of
the Interactive Surface is satisfactory, the user can add some
properties such as the Basic Action it is associated to and the
parameters necessary to allow the correct execution of that
action. Figure 2 shows two different Interactive Surfaces as-
sociated to a door. The first one is associated to the Grab
action and is placed on the knob. The second one is adjacent
to the door and is used by the Transfer action to correctly
position the agent during the interaction.
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Figure 2: Modeling a door in the STARFISH Editor.

An Interactive Surface of a Synoptic Object can be used by
more than one Basic Action. If we turn again to the action
of opening a door, the information on where to Grasp the
knob, which way to Move the hand to open it, and also in
which direction to M ovethe arm to open the door (whether to
push, pull or slide) is contained in a single Interactive Surface
which is the surface of the doorknob itself.

On the other hand, a same Basic Action can be attached
to more than one Interactive Surface depending on what
STARFISH Action it is part of. If we take the example of
a suitcase, the agent will Grasp the case by the handle if it
wants to carry the case, by the lock if it wants to unlock it,
and by somewhere along the outer surface if it wants to open
it. The selection of the appropriate Interactive Surface is done
through the state machine assigned to the object in the next
step.

The second stage consists in defining the behavior a Syn-
optic Object by assigning a state machine to it. And this is
where the term synoptic comes from. Through the state ma-
chine, the Synoptic Object knows what state it is in, what
actions are allowed when it is in this state, and what states are
attainable from the current state. Transitions between states

are defined through Basic Actions and the Interactive Sur-
faces associated with them. There are also groups of states
we call paths, which correspond to the execution of the mul-
tiple Basic Actions compounding a STARFISH Action. The
transition to the first state of such a path has one more param-
eter which is the STARFISH Action it corresponds to. Once
the state machine is engaged in a path, the transitions from
state to state inside this path must be followed through to the
end to reach a stable state from which the Synoptic Object
can safely wait for other requests. When an agent decides to
interact with a Synoptic Object, it first queries the object to
know whether it is possible for it to perform the required ac-
tion. In other words, if the agent wants to open a door, it tells
the door that it wants to open it and the door either replies that
it is already open or tells the agent which STARFISH Action
to perform in order for the door to be open.
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Figure 3: State machine of the open door action.

Even though it is necessary to follow a path in order to
successfully accomplish a STARFISH Action, this does not
imply that a path must be followed through to the end. Fig-
ure 3 shows the state machin describing the path of the open
door action from the stable state closed (state 0), to the stable
state open (state 6). As can be seen in in teh figure, it is possi-
ble to abort the open door action at any time. This will result
in putting the door into a state (marked 10) which is neither
open nor closed. The next agent to interact with the door will
then know that both the open and close actions are valid and
that they will both eventually result in putting the Synoptic
Obiject into a stable state.

The state machines are controlled by [left blank] [16]
which is an extension of the [left blank] System [17]. The
latter is a system that allows the running of hierarchical and
parallel state machines. It has been extended into [left blank]
which introduces the notions of priority and resources. With
the extension, it becomes possible to choose which state to
transit to, depending on the priority assigned to it and the re-
sources that state uses. For example, if a door is locked and
the key resource is not available, it will never be able to tran-
sit into the open state and thus the open door action becomes
impossible to achieve without the proper resource.



Figure 3 shows an example of a very basic state machine.
The transition from one state to another is only done when the
Basic Action describing that transition is successfully com-
pleted. This means that the Synoptic Object will be in state
2 after the agent’s hand is successfully on the doorknob. The
completion of the action is detected by the agent which has
enough information to know that it has successfully accom-
plished the required task (e.g. the hand is touching the knob).
It then informs the Synoptic Object which transits into the
next state and gives the agent the data it requires to complete
the next step.

Seeing how both these stages are completely independent,
we don’t have to go through with them both when creating
a new Synoptic Object. When an object with a new shape
but with the same functionality has to be introduced into the
simulation, it is only necessary to model its appropriate In-
teractive Surfaces without having to modify their associated
behaviors. Suppose we already have a door with its Interac-
tive Surfaces and state machines already defined. If we need
to use a new door which opens in the same way, we only need
to modify the geometry of the Interactive Surfaces associated
with it so they are adapted to the geometry of the new door.
No further processing for the agent or the Synoptic Object is
necessary. In short, when we modify the geometry of an ob-
ject, we do not need to modify or readapt any of its behaviors.
If the geometry of the Interactive Surfaces reflects the geom-
etry of the Synoptic Object they belong to, the change will be
transparent to the agent which will still behave accordingly.

4.2 Interacting with a Synoptic Object, an example

We will now describe how interaction occurs between an au-
tonomous agent and a Synoptic Object during a real-time sim-
ulation. For this, we will go into the details of the Open Door
STARFISH Action we mentioned in section 3.1.

We will not go into the description of the decision cycle of
the agent since it is out of the scope of this paper. Instead we
will directly start the description after the decision is made,
which means that the agent now wants to open the closed door
that is in front of it. The agent knows the Basic Actions that
constitute the STARFISH Action that will eventually lead to
the door being in the open state. Also note that the commu-
nication between the agent and the Synoptic Object is done
through the whiteboard. This example is illustrated in Fig-
ure 4.

The first thing the agent does, is ask the door whether it can
be opened by the agent. The synoptic door object first checks
to see if it is in a state where the open door action can be
performed. It then checks to see if no other agent has already
requested that action and is currently performing it. If that
is the case, it is possible to ask the other agent to abort the
action. After that, the agent receives the permission to open
the door and is given the Interactive Surface corresponding to
the Transfer Basic Action. Having its destination, the agent
then Transfers itself towards the Interactive Surface it just
received by giving the Interactive Surface’s coordinates to a
navigation algorithm [18].

Once the destination is reached, the agent informs the syn-
optic door object that it wants to proceed to the next step.

Figure 4: An agent pulling open a door.

The door then gives the agent the geometry of the Interac-
tive Surface of the handle and its coordinates in space. The
agent then proceeds by estimating a path for its arm to Move
from its current position towards the knob. It does so by us-
ing the SWIFT++ [19] collision detection engine which is, is
capable of detecting collisions between non convex objects.
This important SWIFT++ property allows us to remove any
restrictions on the shapes of the Interactive Surfaces that be-
long to an object. Having performed the estimation, the agent
is able to calculate a contact point and contact normal be-
tween its hand and the knob. It then uses this information and
passes it to the motion adaptation engine which generates the
movement of the arm towards the knob.

Then the agent Grasps the knob. The automatic generation
of a grasping motion [20] being a very complex field and out
of the scope of our current work, we use an estimation of the
way the agent’s fingers should be placed.

The agent then receives information from the synoptic door
object on the direction in which it should M ove its hand in or-
der to turn the knob and unlatch it. This information, in the
form of a rotation vector, is transmitted to the motion adapta-
tion engine which twists the hand accordingly.

Depending on the way the door opens, different kinds of
information can be contained in this step. If the door opens
by sliding, a simple direction vector is enough to calculate the
arm’s trajectory. If it opens by pulling or pushing it is better,
for the time being, to give the complete arm trajectory to the
agent which will proceed to Move its arm accordingly. In
the future, a simple direction vector, outward for pulling and
inward for pushing, should be enough to be able to determine
the trajectory of the arm. But this is a work in progress.

The final step is letting go of the doorknob once the door is
completely open. The agent simply unflexes its fingers to un-
Grasp the handle, and brings its arm back to an idle position.



The door is now open.

5 Conclusion

We have presented an architecture capable of informing an
autonomous agent in a virtual world about its surroundings.
The resulting informed environment is rich enough to offer
many possibilities for the agent even though it is only based
on eight Basic Actions. The versatility of these Basic Actions
allows the building of almost any complex action and thus en-
ables the agent to perform virtually any interaction task. Fur-
thermore, the definition of these complex STARFISH Actions
is easy since it consists of simple geometric Interactive Sur-
faces completed by little more movement specific informa-
tion. This allows the agent to adapt the interaction behavior
to itself instead of adapting itself to the behavior.

We have shown in our paper how STARFISH is used in
a virtual reality simulation environment to create behaviors
and animations. Future work will focus on the extension
of STARFISH in order to provide the necessary information
needed to allow reasoning about object manipulation ans in-
teraction.
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