
The Orchestration of Behaviours using
Resources and Priority Levels

F. Lamarche1 and S. Donikian2

[flamarch, donikian]@irisa.fr
IRISA, Campus de Beaulieu, 35042 Rennes, FRANCE

Abstract.
Reproducing daily behaviours requires the ability to schedule behaviours depend-
ing on resources (body parts for example) and priority (intentions or physiolog-
ical parameters) constraints. A simple way is to say that behaviours which are
using the same resources are mutually exclusive. This approach is not sufficient
to achieve realism purpose, as in real life, humans are able to combine them in a
much microscopic way. All day long, humans mix different behaviours, as for ex-
ample reading a newspaper while drinking a coffee and smoking a cigarette. If all
behaviours using common resources were mutually exclusive, an agent could not
reproduce this example, except if a specific behaviour is created. This solution
becomes rapidly too complex and has motivated the work presented in this paper.
It consists in an extension of HPTS, our behavioural model, by the introduction
of resources and priority levels. In the contrary of some previous approaches, it is
not necessary to specify exhaustively all behaviours that are mutually exclusive;
this is done implicitely by attaching resources to nodes and a priority function to
each state machine, and by using a scheduler.

Introduction

The goal of behavioural models is to simulate autonomous entities like organisms and
living beings. The issue addressed in our work concerns the specification of a gen-
eral formalism for behaviour modeling based on psychological studies and compatible
with real-time constraints. Information needed to describe the behaviour of an entity
depends on the nature of this entity. No theory exists for determining either neces-
sary or sufficient structures needed to support particular capabilities and certainly not
to support general intelligence. As direction and inspiration towards the development
of such a theory, Newell[12] posits that one way to approach sufficiency is by model-
ing human cognition in computational layers or bands. Reproducing daily behaviours
requires to schedule behaviours depending on resources (body parts for example) and
priority (intentions or physiological parameters) constraints. A simple way is to say that
behaviours which are using the same resources are mutually exclusive. This approach
is not sufficient to achieve realism purpose, as in real life, humans are able to combine
them in a much microscopic way. All day long, humans mix different behaviours, as
for example reading a newspaper while drinking a coffee and smoking a cigarette. If
all behaviours using common resources were mutually exclusive, an agent could not re-
produce this example, except if a specific behaviour is created. This solution becomes
rapidly too complex. We have proposed in the past the HPTS model which integrates

1University of Rennes I
2CNRS



several psychological requirements. In this paper, we propose to extend this model to
be able to manage, in a generic way, resources, adaptation and priority levels. It be-
comes possible to describe behaviours independently and to adapt automatically their
execution when they are running in parallel, with respect to their priorities.

In the next section, related works are presented, while section three focuses on the
HPTS model. The integration of resources and priority levels and the overview of the
scheduler are presented in section four. Finally section five focuses on an example to
illustrate advantages of this new approach.

1 Related Works

Behavioural models have been developed to describe the human behaviour in specific
tasks. The common characteristics of these models are: reactivity, parallelism and dif-
ferent abstract levels of behaviours. As humans are deliberative agents, purely reactive
systems are not sufficient to describe their behaviour. It is necessary to integrate both
cognitive and reactive aspects of behaviour. Cognitive models are rather motivated by
the representation of the agent’s knowledge (beliefs and intentions). Intentions enable
an agent to reason about its internal state and that of others. The center of such a delib-
erative agent is its own representation of the world which includes a representation of
his mental state and the one of other agents which he is currently interacting with[9].
To achieve such a purpose, Badler et al.[3] propose to combine Sense-Control-Action
(SCA) loops with planners and PaT-Nets. SCA loops define the reflexive behaviour and
are continuous systems which interconnect sensors and effectors through a network of
nodes, exactly like in the sensor effector approach described above. PaT-Nets are es-
sentially finite state automata that can be executed in parallel (for example the control
of the four fingers and of the thumb for a grasping task). The planner queries the state
of the database through a filtered perception to decide how to elaborate the plan and to
select an action. More recently they have introduced Parameterized Action Represen-
tation (PAR) to give a description of an action, and these PARs are directly linked to
PaT-Nets. It allows a user to control Autonomous Characters actions with instructions
given in natural language[4]. In this system, like in others[13], the action is directly as-
sociated with each node, which does not allow an explicit management of concurrency.

A lot of models have also been proposed for human like minds in the agent
community[11]. They are all based on the perception/treatment/action loop, but they
mainly differ in the way the treatment unit is built. As in the Newell theory, A.
Sloman[15] proposed an architecture of an intelligent agent in different layers (re-
flexes, automatic processes, resource-limited reflective management processes, meta-
management processes), involving different routes through the system form perception
to action. In his theory, automatic processes have dedicated portions of the brain and
can operate in parallel whenever they need, while different management processes have
to share a common working memory, and their parallelism is then restricted. F. Brazier
et al. [5] proposed a model of a rational agent using notions such as beliefs, desires
and intentions. In their task hierarchy, beliefs and desires influence each other recip-
rocally, and they both influence intentions and commitments. S. Ambroszkiewicz and
J. Komar[2] distinguish six parts in an agent model: perception, desire, knowledge and
belief, rational behaviour, reasoning process and intention, and they propose a formal
model based on this decomposition.

V. Decugis and J. Ferber[6] address an interesting problem: how to combine reac-
tivity and planning capabilities in a real-time application. They propose to extend the
ASM (Action Selection Mechanism) proposed by Maes[10] into hierarchical ASMs.



At the bottom of the hierarchy, basic reflexes are found, such as reflex movements ori-
entation and basic perceptive mechanisms, while higher levels integrate more complex
behaviours. B. Rhodes [14] has proposed another extension of ASM, called Phish-Nets.
This model permits to use parameterized actions and to specify relations between them
(inhibiting and preceding). In such models, reactive planning is possible, but the main
drawback is the need of an exhaustive specification of all possible interactions between
actions.

According to Newell, our goal is to build a model which will allow some adaptative
and flexible behaviour to any entity evolving in a complex environment and interact-
ing with other entities. Interactive execution is also fundamental. This has lead us
to state that paradigms required for programming a realistic behavioural model are:
reactivity (which encompasses sporadic or asynchronous events and exceptions), mod-
ularity in the behaviour description (which allows parallelism and concurrency of sub-
behaviours), data-flow (for the specification of the communication between different
modules), hierarchical structuring of the behaviour (which means the possibility of pre-
empting sub-behaviours). HPTS[8], as HCSM[1], is a model based on hierarchical
concurrent state machines, and it offers a set of programming paradigms which permit
to address hierarchical concurrent behaviours. HPTS offers also the ability to manage
time informations (such as reaction time, state frequency, delay, minimal and maximal
durations) and undeterministic choices[7].

2 HPTS

HPTS[8] which stands for Hierarchical Parallel Transition Systems, consists of a reac-
tive system, which can be viewed as a multi-agent system in which agents are organized
as a hierarchy of state machines. Each agent of the system can be viewed as a black-
box with an In/Out data-flow and a set of control parameters. The synchronization of
the agent execution is operated by using state machines. To allow an agent to manage
concurrent behaviours, sub-agents are organized inside sub-state machines. In the fol-
lowing, agents will be assimilated to state machines. Each state machine of the system
is either an atomic state machine, or a composite state machine. Though the model
may be coded directly with an imperative programming language like C++, we decided
to build a language for the behaviour description. Figure 1 presents the syntax of the
behavioural programming language which fully implements the HPTS formalism. As
this paper focuses on the integration and management of resources and priority levels,
the behavioural description language is not described in details. For a complete de-
scription of the model (except for resources and priorities) refers to [7]. Keywords are
written in bold, whereas italic typeface represents a non-terminal rule. A � stands for
a 0::n repetition while a + stands for a 1::n repetition and a statement enclosed in f g
is optional. The description of a state machine is done in the following way: the body
of the declaration contains a list of states and a list of transitions between these states.
A state is defined by its name and its activity with regard to data-flows. A state accepts
an optional duration parameter which stands for the minimum and maximum amount
of time spent in the state. A state machine can be parameterized; the set of parameters
will be used to characterize a state machine at its creation. Variables are local to a state
machine. Only variables that has been declared as outputs can be viewed by the meta
state machine. A transition is defined by an origin, an extremity, a transition expres-
sion, two optional parameters and a transition body. The transition expression consists
of two parts: a read-expr which includes the conditions to be fulfilled in order to fire
the transition, and a write-expr which is a list of the generated events and basic activity



SMACHINE Id ;
f

// Parameters
PARAMS type Id f, type Idg�;
// Variables
VARIABLES f ftype Id ;g� g
OUT Id f, Idg� ; // Outputs
PRIORITY = numeric expression ;
INITIAL Id ; FINAL Id ;
STATES // States Declaration
ff

Id f[Id f, Idg]g fRANDOMg
fUSE resource listg;
ff /* state body */ gg

g+g

fTRANSITION Id
fPREFERENCE Valueg;
f

ORIGIN Id ;
EXTREMITY Id ;
fDELAY float ;g
fWEIGHT float ;g
read-expr / write-expr
fTIMEGATEg ;
ff /* transition body */ gg

gg�

g

Figure 1. Syntax of the language.

primitives on the state machine. The body of a transition (C++ code) is executed after
the action part. As for the body part of a state, it is possible to call extern functions
or methods and to access to the value of outputs of sub-state machines. Afterwards,
C++ code for our simulation platform is generated. It is totally encapsulated: all tran-
sitions systems are included in their own class directly inheriting from an abstract state
machine class which provides pure virtual methods for running the state machines and
debugging methods. An interpreter has also been implemented, which is very useful
for the behaviour specification phase as it allows to modify state-machines during the
execution phase.

3 Behaviour synchronization

In order to synchronize behaviours and to allow efficient mixing of behaviours in ac-
cordance with their relative importance, notions of resources, degrees of preference and
priorities have been introduced. Resources allow to describe exclusions between be-
haviours while degrees of preference are used to describe different possible realizations
or possibilities of adaptation of a behaviour. Using this information, a scheduler auto-
matically synchronize the different behaviours according to their respective priorities.

3.1 Resources

For all state machines running in the HPTS hierarchy, a set of resources is defined.
Those resources are considered as semaphores, thus they are used for mutual exclusion.
A set of resources is associated to each node of a state machine; it contains all resources
used by a node. Hence, resource allocations are adapted to the state machine granularity.
This type of description allows to handle resource allocations automatically:

� Entering a node implies that its associated resources are taken.
� Exiting a node implies that its resources are released.



� A resource will be kept if two nodes connected by a transition use it.

As resources are semaphores, one constraint has to be respected while running parallel
state machines: all nodes executed in parallel have to use different resources. Using this
constraint it becomes possible to synchronize the execution of parallel state machines
according to the resources they use, by only authorizing transitions in nodes which do
not use allocated resources.

Given that several parallel state machines are using the same set of resources, the
problem of dead lock has to be studied. A dead lock occurs when the dependency graph
of resources is cyclic. Therefore, in order to ensure maximum security and to make
synchronization easier to handle, it is necessary to provide a mechanism ensuring that
no dead lock can arise. While compiling the different state machines, information about
resource allocation dependencies are pre-compiled. Thus, at runtime, the scheduler is
able to use this information in order to check upon the fact that executing two nodes
in parallel can not lead to a deadlock. This mechanism is very useful because it allows
describing behaviours without precise knowledge on other behaviours.

As HPTS is a hierarchical model, each state machine can create sons and wait for
their ending; this type of synchronization creates dependencies between state machines.
Consequently, it exists risks of dead lock if a state machine using same resources than
one of its son is waiting until its ending. Thus, another constraint has been added:
resources used by a state machine must be different than resources used by its descen-
dants. Respecting this constraint ensures that all descendants can be executed and ter-
minated before the ending of their ascendants. As structure of state machines is known
before runtime, this constraint can be checked while compiling state machines. By now
those resources are used to describe internal resources of the agent like its hands, eyes
or legs. They allow synchronizing behaviour in accordance to body parts they use.

3.2 Degrees of preferences

The notion of degree of preference has been introduced in order to provide the ability
to describe different possibilities of adaptation of a behaviour, depending on resources
availability.

A degree of preference (p) is associated to each transition of a state machine. It
is a real coefficient with value in interval [�1; 1]. This coefficient corresponds to the
state machine proclivity to use this transition when the associated condition is true.
Depending on its value, it has different meanings:

� p > 0: This transition favors the realization of the behaviour. By default, the
transition having the greatest degree of preference should be chosen.

� p < 0: This transition does not favor the realization of the behaviour. Those
transitions are used to describe a coherent way of stopping behaviour or adapting
its execution while releasing some resources.

� p = 0: the behaviour is quite indifferent to this transition.

This coefficient allows to concentrate all information about a specific behaviour
into one state machine. Due to state machine structure, the concentration ensures con-
sistency during the realization of the behaviour. Let consider the state machine of figure
2; transitions are labeled with their associated conditions and degrees of preference. It
describes a behaviour consisting in moving an object. While moving an object, eyes
are necessary when taking the object and putting it somewhere; but while moving it, it
is possible to focus on the object or to look at something else. Transition starting from
state MoveAndWatch and ending by MoveObject has a degree of preference of �0:4



true, 1 GetHand

true, 1

true, 1

endOfMovement, 1
endOfMovement, 1
endOfMovement, −1

endOfMovement, 1
endOfMovement, −1

PutObject

End

{rH, H}

true, 0.4

true, −0.4
true, −1 true, −1

endOfMovement, 0.6

MoveAndWatch

{rH}

Begin TakeObject

MoveObject

{rH, H, E} {H, E}

{rH, H, E}

endOfMovement, −1
endOfMovement, 1

Figure 2. Moving object behaviour.

which specifies that, by default, this transition should not be used, except if another
behaviour needs to take eyes resource. The reciprocal transition has a degree of prefer-
ence of 0.4 according the same positive preference to return into state MoveAndWatch.
Using degrees of preference, this behaviour is totally described. Then the scheduler
will choose to force behaviour to transit in the state which does not use eyes or to stay
in the state which uses the eyes if no other behaviour needs the eyes.

3.3 Priority

The notion of priority has been introduced to provide the ability to specify the impor-
tance of a behaviour relatively to others. A priority function is associated to each state
machine running in HPTS hierarchy. This function returns a real value representing the
importance of a behaviour in a given context. Depending on its sign, this function has
different meanings:

� priority > 0: the behaviour must be achieved, and is adapted to the current con-
text. This value can be interpreted as a coefficient of adequacy between context
and behaviour.

� priority < 0: the behaviour is inhibited, the value can be interpreted as a coeffi-
cient of inadequacy between context and behaviour.

This function is user defined. Thus, it can be correlated to different parameters, such as
for example:

� physiological parameters;
� a value related to a plan generated by a rational model, in that case, it is correlated

to the importance of the goal this action contributes to satisfy:
� a stimuli related to the environment to handle reflex behaviours.

This priority function provides an easy way to control the behaviour realization.

3.4 Scheduling

Notions explained below are used to create a scheduler. It allows to schedule different
parallel behaviours in such a way that behaviours having the greatest priority will be
favored in their execution and will automatically adapt their execution, if it is possible,
to the other ones which are running. State machines are executed at a fixed frequency.
Thus, a scheduling is computed at each time step. At the beginning of the time step,



the scheduler collects information from each state machine. This information is com-
pounded of the current state of a state machine plus all accessible nodes (i.e. nodes
ending a transition with a true condition and starting from current node) ; this results in
the creation of a set of possible transitions.

Then the scheduler computes a weight for each transition of this set. Let note prio
the current priority of the considered state machine, p the degree of preference asso-
ciated to the transition ending with the state e. The weight (W ) associated to this
transition is computed as follow:

W = prio � p (1)

Let consider a weight W associated to a proposition, this weight has different mean-
ings:

� W > 0: state machine is proned to transit in the state associated to the proposi-
tion. Two cases can arise:

– (prio > 0) ^ (p > 0): transiting to this node favors the accomplishment of
the behaviour.

– (prio < 0) ^ (p < 0): the behaviour is inhibited; transitions that conduct
to a coherent stop of the behaviour have to be favored.

� W < 0: state machine is not proned to transit in this node. Two cases can arise:

– (prio > 0) ^ (p < 0): transiting in this state does not favor the realiza-
tion of the behaviour. This case can be used for proposing a possibility of
adaptation of the behaviour by releasing some resources. It can also be used
to stop behaviour execution because a behaviour having a greater priority
needs resources used by the considered behaviour.

– (prio < 0) ^ (p > 0): the behaviour is inhibited, this case can be used to
propose an other possibility of stopping behaviour by using less resources.

� W = 0: state machine is indifferent to transit in this node.

Once weights associated to each proposition of transition of the state machines are com-
puted, the scheduler is searching for a combination of propositions between all state
machines respecting resource constraints (no resource conflict and no possible dead-
lock) and maximizing the sum of associated weights. Therefore, behaviours having the
greatest priorities will be favored in their execution while those having lowest priorities
will release their resources, if possible and in a consistent way. Adaptation between
concurrent behaviours becomes automatic when the concurrency concerns the sharing
of common internal resources.

4 Example

Let us consider a complex behaviour consisting in drinking a coffee and smoking a
cigarette while reading a newspaper. This kind of combination of multiple behaviours
can not be directly handled by systems using mutual exclusion on behaviours which
use themselves common resources. Moreover, a specific behaviour has to be created
for systems using only semaphores synchronization without notions of priority and
adaptation. In this section, we will study this example and show how the scheduler,
helped with notions of resources, degrees of preference and priorities, is able to repro-
duce this behaviour just by describing independently the three sub-behaviours and their
associated priority functions.



4.1 Behaviour description

All state machines use the following set of resources: Hl (left hand), Hr (right hand),
rHl (reserve left hand), rHr (reserve right hand), M (mouth) and E (eyes). Resources
rHl/rHr are used to handle releasing of resources Hl/Hr. The scheduler can only act
on the next transition of a state machine. Hands are resources that often need more
than one transition to be freed, for instance, putting down an object to free the hand
resource. Then a state which only use resource Hr/Hl corresponds to a behaviour of
freeing a hand resource.

The behaviour is compounded of three sub behaviours: read a newspaper, drink a
coffee and smoke a cigarette. All state machines used to solve this problem are pre-
sented in figures 3, 4 and 5. In these state machines, resource H stands for Hr or Hl as
it exists the same behaviour for each hand. Note that descriptions of state machines are
totally independent one from each other.

true, 1

Begin

GetHand

takeObject

true, −1

PutObject

End

true, −1

endOfMovement and not(endOfConsume), 1
endOfMovement and not(endOfConsume), −1

endOfMovement and endOfConsume, 1
endOfMovement and endOfConsume, −1

{rH}

MoveObjectToMouth

{rH, H, M}

Pause
{rH, H}

{rH, H, E} {rH, H, E}

{H, E}
Consume

endWait, −1

movementEnd, 1

true, 1

movementEnd, 1

true, 1

true, −1
true, −1

true, 1

endWait, 1

Figure 3. Common behaviour for drinking and smoking.

Begin
true, 1

ReadWord

End

focusOnWord, 1

WatchNextWord

true, −1

true, 1

endOfPhrase, −0.7

ParagraphPause

true, 0.7

true, 0.4

endOfParagraph, −0.4

true, 0.2

endOfChapter, −0.2

endOfPage, 1 

wordRead, 1

{E}{E}

SentencePause

ChapterPause

WordPause

Figure 4. Reading behaviour.

Drinking and smoking: Those two behaviours are described through the same state
machine consisting in grasping the object of interest, moving it to the mouth and keep-
ing the object into the hand. The object is put on the table if another behaviour needs
hand resource or if the current behaviour becomes inhibited.



Begin

true, 1 GetHand
{rH}

true, 1

TakeObject

endOfMovement, 1

{rH, H}

endOfMovement, −1

PutObject

endOfMovement, 1
endOfMovement, −1

End

MoveForVision

true, 1

true, −1 true, −1

{rH, H, E} {H, E}

Figure 5. Behaviour handling hands while reading.

Reading the newspaper: This behaviour consists in two parallel sub-behaviours.
One consists in reading the newspaper with different possibilities of pause depending on
the text structure. Those different levels of interruption are described through degrees
of preference. The second consists in manipulating the newspaper taking it into the
hand and moving it near the eyes.

Note that thanks to resources, each behaviour is described independently from the
others but propose different possibilities of adaptation. Each possibility of adaptation
is described through degrees of preference which allow to specify the cost of such
adaptation. Moreover, as a mechanism ensures that no deadlock can arise, conceiving a
behaviour does not need to know other described behaviours.

Defining priorities: the importance of behaviours described below depends on differ-
ent parameters. The difficulty arises with the fact of unifying priority functions that
depend on different parameters.

Drinking and smoking: those two behaviours have variable priorities evolving with
the time. Those priorities are directly correlated to the thirst/need of nicotine. Let note
p(t) the priority function where t represents the time. It has the following definition:

�
p(t) = p(t� dt) + dp1 � dt if not(consuming)

p(t) = p(t� dt)� dp2 � dt if consuming

(2)

where dp1 (respectively dp2) is the increase rate (respectively the decrease rate) of the
thirst or the need of nicotine. Consuming stands for drinking or smoking depending
on the behaviour. Then, when instantiating state machines corresponding to those be-
haviours, dp2 becomes a parameter as well as the priority function which is linked to
the thirst or the need of nicotine.

Reading: priority of reading behaviour is correlated to the interest of the reader for
the text. In this example the function is defined as a constant. The behaviour having
the greatest priority is the reading one while behaviour allowing to manipulate the sheet
has a lower priority.

Note that once behaviours are described through state machines, they are controlled
through their priority. This property allow to handle every type of executive behaviour
without need of information about their internal structure in term of resources or possi-
ble adaptations.



4.2 Scheduling the example

In order to handle the reading behaviour, another behaviour has been added which con-
sists in moving a sheet of paper with the right hand in front of the agent in order to read,
and when the sheet is read, it is moved and the next sheet is taken. Moving the sheet
of paper is handled by the behaviour described in figure 2. The priorities have been
defined as follow:

� Moving sheet, followed by reading the sheet have a constant priority of 2.0.
� Manipulating the sheet while reading have a constant priority of 1.5 and can be

realized with right or left hand.
� Drinking and smoking behaviours have a variable priority function. It is the func-

tion given in equation 2. Their increase rates are respectively set to 0.02/0.05 per
second whereas their decrease rates are respectively set to 0.08/0.07 per second.
Moreover, corresponding state machines stay in state Consume for a maximum
time of one second, and stay in state Pause for a minimum of 10 seconds.

During execution phase, moving sheet behaviour is followed by manipulating and read-
ing sheet behaviours, while drinking and smoking behaviours are continually running.

Figure 6. Evolution of drinking and smoking priorities during simulation. x axis corresponds to
elapsed time in seconds, y axis corresponds to the priority value.

Figure 7. Activity of behaviours during simulation.

Figure 6 describes evolution of drinking and smoking priorities during the simula-
tion. By default thirst and need of nicotine levels are increasing. Decrease is due to
consumption linked to drinking and smoking behaviours. Note that thirst and need of



nicotine never decrease at the same time, due to mutual exclusion on mouth noticed in
node Consume of their corresponding state machines.

Figure 7 shows activity of each running behaviour. Activity is defined by states
using resources Hr/Hl/E/M, which can be assimilated to active resources (i.e. resources
enabling manipulation of body parts). In this figure, 1 stands for the activity of reading
the sheet of paper, 2 the activity of moving the sheet of paper, 3 the activity of smoking
with the left hand, 4 the activity of drinking with the right hand, 5 the activity of ma-
nipulating the sheet of paper with the left hand and 6 the activity of manipulating the
sheet of paper with the right hand. Parallelization of actions shown in this figure and
mutual exclusion of behaviours are automatically handled by the scheduler. It exploits
all propositions of transitions of state machines describing behaviours. For example, at
time 30� 40, interruption of smoking behaviour, whereas its priority is active, is due to
request of left hand resource by behaviour consisting in manipulating the sheet, which
has a greater priority. This organization of behaviours has been automatically generated
by the scheduler such as the overall realization of the example (Cf. figure 8).

The overall example has been designed in one day, helped by a high level pilot al-
lowing to control character animation through simple primitives. It shows the advances
of the scheduling system which allows to describe independently all behaviours with
their different possibilities of adaptation. During running phase, their adaptation to all
other running behaviours is automatic. Moreover, consistency is ensured because the
scheduler can only exploit for each state machine consistent propositions of transition.

Figure 8. Behavioural Coordination Example.

5 Conclusion

We have presented in this paper a generic approach to integrate the management of
resources and priority levels into HPTS, our formal model. This formal model has been
implemented in a description language which is able to generate efficient C++ code
for GASP, our Simulation Platform. The behavioral model allows us to describe, in a
same way, different kinds of living beings, and to simulate them in the same virtual
environment, while most of behavioral models are presently restricted to the animation
of one model in a specific environment.

Another important point is that our behavioral model has been built to generate
dynamic entities which are both autonomous and controllable, allowing us to use the
same model in different contexts and moreover with different levels of control. Re-
sources and priorities are described in an easy way, and behaviour incompatibilities



are automatically detected. The scheduling algorithm enables us to combine together
and to orchestrate several behaviours, depending on the human character intentions and
desires. In the contrary of some previous approach, it is not necessary to specify ex-
haustively all behaviours that are mutually exclusive; this is done implicitly just by
attaching resources to nodes and a priority function to each state machine, and by us-
ing a scheduler. Actually, our scheduler is able to handle a fixed number of resources
declared at compilation time. An extension would be to allow resource declaration at
runtime in order to handle external resources. Another extension will be to connect this
work to a higher level of reasoning. Video sequences related to the example can be
found at http://www.irisa.fr/prive/donikian/resources/.

References

1. O. Ahmad, J. Cremer, S. Hansen, J. Kearney, and P. Willemsen. Hierarchical, concurrent
state machines for behavior modeling and scenario control. In Conference on AI, Planning,
and Simulation in High Autonomy Systems, Gainesville, Florida, USA, 1994.

2. S. Ambroszkiewicz and J. Komar. Formal Models of Agents, volume 1760 of Lecture Notes
in Artificial Intelligence, chapter A Model of BDI-Agent in Game-Theoretic Framework,
pages 8–19. Springer, 2000.

3. N.I. Badler, B.D. Reich, and B.L. Webber. Towards personalities for animated agents with
reactive and planning behaviors. Lecture Notes in Artificial Intelligence, Creating Personal-
ities for synthetic actors, (1195):43–57, 1997.

4. R. Bindiganavale, W. Schuler, J. Allbeck, N.I. Badler, A.K. Joshi, and M. Palmer. Dynami-
cally altering agent behaviors using natural language instructions. In C. Sierra, M. Gini, and
J.S. Rosenschein, editors, International Conference on Autonomous Agents, pages 293–300,
Barcelona, Spain, June 2000. ACM Press.

5. F. Brazier, B. Dunin-Keplicz, J. Treur, and R. Verbrugge. Formal Models of Agents, vol-
ume 1760 of Lecture Notes in Artificial Intelligence, chapter Modelling Internal Dynamic
Behaviour of BDI Agents, pages 36–56. Springer, 2000.

6. V. Decugis and J. Ferber. Action selection in an autonomous agent with a hierarchical dis-
tributed reactive planning architecture. In Autonomous Agents’98, pages 354–361, Min-
neapolis, USA, 1998. ACM.

7. S. Donikian. HPTS: a behaviour modelling language for autonomous agents. In Fifth Inter-
national Conference on Autonomous Agents, Montreal, Canada, May 2001. ACM Press.

8. S. Donikian and E. Rutten. Reactivity, concurrency, data-flow and hierarchical preemption
for behavioural animation. In E.H. Blake R.C. Veltkamp, editor, Programming Paradigms in
Graphics’95, Eurographics Collection. Springer-Verlag, 1995.

9. J. Funge, X. Tu, and D. Terzopoulos. Cognitive modeling: Knowledge, reasoning and plan-
ning for intelligent characters. In SIGGRAPH’99, pages 29–38, Los Angeles, August 1999.

10. P. Maes. Situated agents can have goals. Robotics and Autonomous Systems, 6:49–70, 1990.
11. J.J. Ch. Meyer and P.Y. Schobbens, editors. Formal Models of Agents, volume 1760 of

Lecture Notes in Artificial Intelligence. Springer, 2000.
12. A. Newell. Unified Theories of Cognition. Harvard University Press, 1990.
13. H. Noser and D. Thalmann. Sensor based synthetic actors in a tennis game simulation. In

Computer Graphics International’97, pages 189–198, Hasselt, Belgium, June 1997. IEEE
Computer Society Press.

14. B. J. Rhodes. PHISH-Nets : Planning Heuristically In Situated Hybrid Networks. PhD
thesis, Massachusetts Institute of Technology, 1996.

15. A. Sloman. What sort of control system is able to have a personality. In R. Trappl and
P. Petta, editors, Creating Personalities for Synthetic Actors, volume 1195 of Lecture Notes
in Artificial Intelligence, pages 166–208. Springer-Verlag, 1997.


