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Abstract. In this paper, we show that the use of diversified COTS
servers allows to detect intrusions corresponding to unknown attacks. We
present an architecture that ensures both confidentiality and integrity at
the COTS server level and we extend it to enhance availability. Repli-
cation techniques implemented on top of agreement services are used to
avoid any single point of failure. On the one hand we assume that COTS
servers are complex softwares that contain some vulnerabilities and thus
may exhibit arbitrary behaviors. While on the other hand other basic
components of the proposed architecture are simple enough to be ex-
haustively verified. That’s why we assume that they can only suffer from
crash failures. The whole system is assumed to be asynchronous and
furthermore messages can be lost. In the particular case of Web servers
connected to databases, we identify the properties that have to be main-
tained and the alarms that have to be raised. We describe in details how
the different replicated levels interact together and, for each level, we pre-
cise the reasons that have led us to use a particular agreement service.
Performance evaluations are conducted to measure the quality of service
of the Intrusion Detection System (quantity of false positives and lack of
false negatives) and the additional cost induced by the mechanisms used
to ensure the availability of this secure architecture.

Keywords: Intrusion detection, dependability, diversity, COTS, agree-
ment protocols.
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1 Introduction

In the context of computer security, the strategies carried out to ensure the
confidentiality and the integrity of a system often have a major drawback: they
do not include some specific mechanisms to ensure its availability in the event of
accidental or intentional faults. Hence, the system is sensible to crashes/attacks
as it can be interrupted temporarily or permanently when such failures occur.

Due to their high complexity, COTS servers have bugs and vulnerabilities
that can be exploited by a remote attacker. Within the DADDi project (Depend-
able Anomaly Detection with Diagnosis), we have designed a first architecture [1]
which provides an IDS (Intrusion Detection System) component in charge of de-
tecting intrusions in an information system by comparing the outputs delivered
by several diverse servers. In this approach, the idea is to take advantage of the
existing software and hardware diversity in a way quite similar to the ”n-version
programming” strategy. As the COTS servers have been designed and developed
independently, they do not exhibit the same vulnerabilities. Moreover, if the n
different softwares (that provide the same functionalities) are neither running
on the same operating system, nor on the same hardware, one can expect that
a request carrying a malicious payload will exploit a vulnerability exhibited by
at most one COTS server and will have no impact on the others.

In case of an attack, the aforementioned solution guarantees confidentiality.
A confidential information (according to the COTS confidentiality policy) can
appear in at most one of the generated responses. Hence, it can be filtered by
simple comparison of the generated responses. An attack against integrity may
also be detected if the response returned by a server carries enough information
to identify all the modifications of the internal server state induced by the exe-
cution of the corresponding request. Moreover, this IDS has a nice property: it
can detect new attacks whose signatures are not already known.

However, this basic architecture ([1]) exhibits a single point of failure. The
availability of the IDS is not ensured. In order to enhance the dependability
of this component, we propose now a solution in which classical mechanisms
used in the domain of safety (such as replication and agreement services) are
combined to the new techniques used in the context of intrusion detection that
have been described above (diversity-based approaches). Comparatively to [1],
the main contribution of this paper is to provide the design and evaluation of
an architecture where both availability and security issues are addressed.

The paper is structured as follows. In Section 2 we briefly describe how to
benefit from the software and hardware diversity to detect intrusions. The basic
architecture, described in Section 2.1, allows to tolerate attacks against confiden-
tiality and some attacks against integrity. As this architecture does not ensure
availability, we identify the extensions required to ensure that the provided ser-
vices operate without noticeable interruption. Replication of the IDS is presented
in Section 2.2. The choice of both the replication scheme (active or passive) and
the level of replication n depends on the failure model that has been adopted.
We outline two particular failure models (the byzantine failure model and the
crash failure model) that are well suited in the context of our study. We argue
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in favor of the following motivated choice: while byzantine failures will be con-
sidered within the set of diversified COTS servers, a crash failure model will
be adopted within the group of replicated IDS. In Section 3, we discuss some
related works. Section 4 is dedicated to the description of the Eden [2, 3] group
communication toolkit. In this section, we outline the fact that the key compo-
nent of Eden (namely, a consensus protocol) matches all the assumptions we
made regarding the failure models. Section 5 addresses a more specific problem,
namely, how to ensure simultaneously availability, confidentiality and integrity
in the particular case of web servers connected to databases. We complete the
proposed architecture by identifying four types of replicated entities. Then we
identify the agreement primitives that have to be used and describe how these
primitives are called at different stages of the execution of an HTTP request.
In Section 6, we provide some experimental results. Our aim on the one hand
is to evaluate the quality of service of the proposed detection mechanism and,
on the other hand, the cost induced by the use of replication mechanisms im-
plemented on top of agreement services such as an atomic broadcast service.
Finally, Section 7 concludes this paper.

2 Overview of a Generic Intrusion Detection Architecture

2.1 A Basic Architecture to Ensure Confidentiality

The architecture proposed in [1], shown on Figure 1, is clearly inspired by the
classical architecture of the ”n-version programming” technique used to mask
software design faults. Here, our goal is to provide a way to detect intrusions
that could affect a COTS server. The basic architecture is composed of three
different components: a proxy, an IDS, and a set of servers.

COTS
Service 1

COTS server 1

COTS
Service 2

COTS server 2

COTS
Service 3

COTS server 3

Fi
re

w
a

ll

Service Proxy

Service IDS

Fig. 1. Basic architecture

The role of the proxy is to handle the client’s requests. It forwards the request
received from a client to the COTS servers and later forwards the response
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received from the IDS to this client. It ensures that the COTS servers receive
the same sequence of requests and thus evolve consistently. It is the sole part
of the architecture directly accessible by the clients. The IDS is in charge of
comparing the responses returned by the COTS servers. To select the response
that has to be sent back to the client, it uses a majority voting algorithm. If
it detects some differences among the responses, it raises an alarm. A set of
COTS servers constitutes the core of the architecture: they provide the services
requested by the client. All these servers offer the same services but they are
diverse in terms of application software, operating system and hardware. This
helps reducing the probability of a common-mode failure as it is also the case
in the ”n-version programming” technique. In the context of our studies, the
vulnerabilities of the COTS servers are supposed to be different. If we assume
that a malicious payload contained in a request cannot take advantage of two
different vulnerabilities, then an intrusion may occur in only one COTS server
at a time. In this case, because the other COTS servers are not exhibiting the
same vulnerability, they are not affected by this attack and they all provide a
same response that is supposed to be different from the response provided by
the corrupted COTS server. A majority voting algorithm implemented within
the IDS allows to detect the intrusion and to tolerate it.

In the architecture shown on Fig. 1, we use three COTS servers. It allows to
tolerate one intrusion on one server without modifying the security properties of
the whole architecture. It provides also a way to identify the failed server with a
simple comparison algorithm: this would not have been possible on a two-versions
architecture without additional mechanisms (e.g., server diagnostic). Once an
intrusion has occurred, this architecture with three COTS servers cannot tolerate
another intrusion before the reconfiguration of the compromised server has been
completed. Of course it is possible to use more than three servers in order to
tolerate more intrusions before performing a reconfiguration. Let’s note that the
reconfiguration can be made periodically or as soon as an intrusion is detected.

This architecture was applied to the particular case of Web servers. In Sec-
tion 6, we provide some results that allow to measure the quality of service offered
by such an IDS mechanism. More experimental results can be found in [1].

2.2 Enhancing Availability of a Basic Architecture

The solution described in Section 2.1 relies on existing software diversity to
ensure confidentiality. Yet, as the proposed architecture is based on a single
proxy/IDS couple, failures that affect this couple cannot be masked. To enhance
availability, a classical solution consists in replicating the proxy/IDS couple. All
the replicas of the proxy/IDS couple form a group whose composition may evolve
dynamically and is controlled by a group membership service [4]. New replicas
can be added by the administrator to enhance the resilience of the architecture.
Replicas can be withdrawn from the group due to an administrative decision or
because their crash has been detected.

Even if the code of the proxy/IDS couple is quite simple (in particular, it does
not analyze the content of the requests issued by clients), one cannot preclude
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that some replicas will behave maliciously. For example, due to a buffer overflow
attack, a replica of the proxy/IDS could deviate from its specification. This
kind of faulty behavior is well-known and called byzantine behavior [5] in the
literature. In that case, an active replication scheme of the proxy/IDS couple
has to be chosen to resist to such faults. Different solutions have been proposed
to provide group communication protocols and output voting protocols in the
presence of malicious faults [6, 7]. All these solutions require an high replication
degree: at least n > 3f replicas, where f is the maximal number of faulty replicas,
have to be executed concurrently. As all the replicas execute the same code and
react to the same external solicitations, a single attack can affect all of them.
Hence, the assumption that at most f < n/3 replicas can be malicious is a
strong assumption that is difficult to guarantee. As long as the risk of malicious
behaviors is not totally eradicated, relying on the fact that attacks will just
succeed on a limited number of replicas is not a realistic assumption. For this very
reason, we believe that byzantine faults have to be addressed at the server level
(thanks to diversity) but not necessarily at the proxy/IDS level. Using high-level
programming languages with safe memory management combined with formal
verification techniques could allow to reduce the risk of a malicious behavior to a
very low probability. In that case, less expensive solutions can be adopted. This
is the position we adopt in this paper. We assume that a replica of the proxy/IDS
couple behaves always according to its specification but may stop prematurely
at any time (fail/stop failure model). In this failure model, the set of processes is
partitionned into two subsets: the correct processes and the faulty processes. A
faulty process is a process that will eventually fail. Conversely, a correct process
is a process that never fails. This failure model is consistent with the assumption
that an intrusion occurs in only one COTS server at a time. Indeed, [8] shows
that there are very few common mode failures in a pool of COTS database
servers and a study of the vulnerabilities of IIS and Apache [9] exhibits the same
property. As COTS servers are not affected by the same vulnerabilities, our
architecture allows to detect intrusions and to tolerate them. This is true for
any kind of intrusion and we do not have to make any assumption about what
the attacker can or cannot do.

Nevertheless, if an attack has no impact on the behavior of the replicas, it
may (1) arbitrarily slow down processes and (2) affect the communication net-
work. This precisely characterizes a purely asynchronous system: there is no
bound neither on relative speed of processes nor on transfer delays of messages.
However, we assume that this model is augmented with unreliable failure de-
tectors [10]: it allows to solve agreement problems. We also consider fair-lossy
communication links: if a message is sent infinitely often to a correct receiver,
then it is received infinitely often by that receiver.

3 Related Work

Delta-4 [11] was an European ESPRIT project ended in 1992. It focuses on build-
ing dependable secure and robust replicated systems that can tolerate both value
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faults and crashes. The Delta-4 architecture provides fault-tolerance by replica-
tion in an open distributed processing environment (where clients are external
to the server group). Both active and passive replication schemes [12] are imple-
mented using a group communication sub-system that is structured as a layered
architecture and built on top of an atomic multicast protocol [13]. Replication
services are used to implement mechanisms that aim at masking intrusions [14]:
replicas of a server collaborate to agree on the response that will be provided to
the client. Assuming that a majority of the replicas generates correct and iden-
tical responses, a valid response is provided to the client even when an intruder
has successfully corrupted some replicas. Similarly to the approach adopted in
this paper, the replicated security services offered in Delta-4 rely on agreement
services. However, assumptions regarding the environment are different. Delta-4
assumes a synchronous communication network.

The DIT (Dependable Intrusion Tolerance) architecture [15, 16] was devel-
oped in the context of the OASIS program (Organically Assured and Survivable
Information Systems) of the DARPA. The goal was to develop Internet servers
able to provide continuously a correct service despite the presence of attacks.
The DIT architecture is based on the principles of redundancy and diversifica-
tion. Redundancy is used to increase system availability and diversification is
used to increase independence between the redundant sub-systems from the at-
tacker point of view. The design was funded on the two following assumptions.
Firstly, intrusions can succeed only on a limited number of components at the
same time. Secondly, all non-faulty and non-compromised servers are determin-
istic (they generate the same response to a given request). The DIT architecture
is composed of redundant tolerance proxies that mediate requests to a redundant
bank of application servers which implement the application-specific functional-
ities needed to fulfill the client requests. The architecture includes a diversified
set of detection mechanisms chosen for their complementarity. They propose the
use of an adaptive redundancy level that is defined according to the alert level in
the system in order to make an optimal compromise between security and per-
formance. The proposed architecture is quite similar to the one described in this
paper. Yet, we focus on asynchronous systems and we use in our performance
evaluation a library of agreement components that do not rely on any strong
timing assumptions.

In [17], researchers from the University of Texas at Austin present an ar-
chitecture for byzantine fault tolerant state machine replication. In this work,
several levels of replication are distinguished. Agreement services that tolerate
byzantine failures [6] are used to coordinate the activities of the replicas. The
system is supposed to be asynchronous and messages can be lost. Our work
differs from this one on two points. Firstly, we consider that some components
follow a crash failure model while others (the COTS servers in particular) can
exhibit arbitrary behavior. Secondly, we are also interested in evaluating the
quality of service of the proposed IDS: in practice, a difference between the re-
sponses generated by some Web servers does not imply that an attack has really
occurred (existence of false positives).
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4 The Eden Group Communication Toolkit

In Section 2.2, we expressed the need for availability of the proxy/IDS couple.
To fullfill this requirement, replication is a classical solution. However, due to
the considered asynchronous model, it can be difficult to implement correctly.
To circumvent this difficulty, we have recourse to the commonly used group
communication paradigm. We use a group communication toolkit, called Eden,
which has been designed for the particular fail/stop failure model.

More precisely, Eden [3, 2] is a library of agreement components used to
implement group communication services in an asynchronous distributed sys-
tem prone to fail/stop failures. As it will be stated later, group membership
and atomic broadcast are the two main services required in the proposed ar-
chitecture. In the Eden toolkit, these services are provided using a consensus
building block [18]. The design of this key component took as a starting point
the Chandra-Toueg ♦S algorithm [10]. The protocol is based on the rotating
coordinator paradigm. A sequence of rounds is executed. Each round is man-
aged by a coordinator that tries to converge to the decision value. Thanks to
a sliding window mechanism [19], each process can be involved simultaneously
in up to n consecutive rounds (rather than in a single round as it is the case
in most ♦S protocols). As each round has a fixed duration, the proposed solu-
tion allows to tolerate the lost of consensus messages without requiring a strong
synchronization between the different local clocks. A failure detector is used to
withdraw crashed processes from the group. To limit the occurrences of erro-
neous suspicion, long timeouts are used; this has no impact on the performance
of the consensus protocol that does not use any information provided by the
failure detector. Moreover, a process remains within the group as long as it is
not suspected by a majority of the group members. Again, the aim is to avoid a
useless and dangerous crumbling of the group when some communication links
become temporarily very slow. This conservative strategy is not risky as long as
a majority of the members of the group are still alive. When this assumption is
satisfied, crashes, messages losses (fair-lossy assumption) and messages delays do
not prevent the consensus protocol to satisfy its safety properties (this protocol
is indulgent).

5 Case Study: Enhancing Integrity for Web Servers

In Section 2, we have proposed and discussed an architecture for intrusion detec-
tion whose availability has been improved. This solution guarantees confidential-
ity of data managed by the COTS servers. Indeed, even in case of an attack that
would reveal confidential information, the COTS servers diversity ensures that
only a minority of servers got corrupted. Hence, the majority voting algorithm
implemented in the proxy/IDS would filter such information.

Although, as stated in the introduction, ensuring the integrity of these data
is not an intrinsic property of this solution. To address this problem, we need
additional assumptions about the particular COTS servers that are deployed.
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Our choice is to focus on a particular case study, namely a Web server that
delivers dynamic content. This technology traditionally implements the storage
of this content in a database backend that receives read/write operations issued
by the Web server. This latter executes scripts written in an interpreted language
(such as PHP) that can query the database backend. These scripts are in charge
of translating the SQL replies into HTML/XML code.

An interesting property of this technology resides in the fact that the whole
internal state of the COTS servers is located in the database backend. Further-
more, any change to the internal state is carried out by the means of SQL queries.
We take advantage of this property in order to ensure integrity of the data. To
that purpose, we introduce a second set of proxies located between the Web
servers and the database whose goal is to compare the SQL queries submitted
by the diverse Web servers to the database. Indeed, unexpected SQL queries
issued by a corrupted Web server can threaten data integrity. Using a majority
voting algorithm to compare queries submitted to the database allows to detect
and mask any attempt to data integrity.

We have identified several prerequisites that must be satisfied in order to
improve the dependability of the system : (1) availability of the SQL backend
must be guaranteed (2) SQL queries that are transmitted to the SQL backend
must not have been generated by a Web server under attack. To ensure these two
properties, we have chosen to replicate the SQL backend. In order to simplify
the architecture, we use the same replication degree for the SQL servers as for
the Web servers. Note that we do not assume that the different SQL servers
are functionally diversified, even if with small changes, our architecture would
be able to take advantage of such a diversification to detect and mask attacks
targeted at the SQL backend itself.

In this section we first briefly describe the proposed architecture and intro-
duce a model that allows us to formally describe the expected properties we
want to guarantee and also the kind of attacks we detect. Secondly, we describe
the path followed by an HTTP request submitted by a client up to the point
it reaches the Web servers. Finally, we depict the path followed by SQL queries
induced by a given HTTP request.

5.1 Models and Notations

The proposed solution relies on four distinct groups of entities, called WSPi,
WSi, DBPi and DBi, whose respective roles are explained later. For sake of
simplicity we assume that the replication degree is the same at each level. This
replication degree is denoted n. Assuming that 1 ≤ i ≤ n, the following notations
are used to identified these different entities: (1) WSPi denotes the ith proxy
that receives HTTP requests; (2) WSi denotes the ith diversified Web server.
By design, each WSi is equipped with a wrapper in charge of interacting with
the WSP s (its role will be detailed in Section 5.2); (3) DBPi denotes the ith

proxy that acts as an intermediary between the Web servers and their associated
databases; (4) DBi denotes the ith database. By design, DBi interacts only with
its corresponding DBPi proxy and conversely.
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HTTP requests addressed by external clients are ordered by the group of
WSP s. The unique sequence that is obtained is called the history H of HTTP
requests. By definition, the request that appears at position x is denoted hx and
thus H = h1.h2. · · ·hx · · ·.

The response generated by a server WSi, in reply to the request hx is denoted
rx,i. If WSi generates no response (consequently to a crash failure or an attack),
rx,i is assumed to be equal to ⊥.

During the execution of an HTTP request hx by a server WSi, a sequence
of SQL requests denoted Sx,i is generated. Of course this sequence is empty
when the execution of hx does not require access to the database. By defini-
tion, length(x, i) is equal to the number of SQL requests generated during the
execution of hx by WSi. The sequence Sx,i is equal to s1

x,i.s
2
x,i. · · · .s

length(x,i)
x,i .

We now define the concept of legality for a SQL query. A query s is legal if
(1) it has been produced by a majority of Web servers and (2) its rank is the
same in all the sequences of queries produced by these servers. More formally:

Definition 1 A SQL query s is said to be legal if and only if ∃x such that
hx ∈ H, ∃I, a subset of indexes in [1, n] such that | I |> n/2, ∃u such that
∀i ∈ I, u ≤ length(x, i) and s = su

x,i ∈ Sx,i.

By definition, a legal SQL query s does not depend on the Web servers that
produced it (at least a majority of them). Hence, it is uniquely determined by
(1) the index x of its associated HTTP request and (2) its rank into the sequence
of SQL queries induced by hx. So, we will note s = su

x,−. By definition, when no
attack occurs all the SQL requests are legal even in a system prone to failure.

The proposed architecture implements an IDS that guarantees the confiden-
tiality and the integrity of the data managed by the Web servers. When an
attack against confidentiality or integrity is detected, the IDS raises an alarm.
This happens when one of the three scenarios occurs:

– ∃hx,∃i, ∃j such that (rx,i 6= ⊥) ∧ (rx,j 6= ⊥) ∧ (rx,i 6= rx,j)
An attack has occurred since two servers have provided different responses
to the same HTTP request.

– ∃hx,∃i such that (rx,i = ⊥)
An attack or a failure has occurred since a server does not reply.

– ∃hx,∃i, ∃u such that u ≤ length(x, i) and su
x,i ∈ Sx,i such that su

x,i is not
legal.
An illegal SQL query is detected which is the signature of an attack against
integrity.

In the rest of this section, we describe in a more detailed manner the path
of a request within the system. Each request follows a path composed of two
parts. The first part of its journey within the system is mandatory and deals
with its processing by the Web servers (we call this part the HTTP path). The
second part is optional and is related to the potential SQL requests induced by
the HTTP request (we call this part the SQL path).
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5.2 HTTP path of a request

Leader election Each request to be submitted to the system is only addressed
to the leader of the group of Web proxies WSP s. This leader is elected by a group
leader election that is part of the underlying GCS (Group Communication Sys-
tem) called Eden and described in Section 4. The leader election algorithm has
the following property: it maintains the previous leader in its role if it does belong
to the new view in order to minimize the perturbation of external clients. Other-
wise a new leader is deterministically chosen among the set of proxies WSP that
compose the new view. Note that due to the inherent asynchrony of the system,
the situation where at a given time multiple proxies may have installed discor-
dant views is still possible. However, all agreement protocols implemented by the
GCS (membership protocol, atomic broadcast, etc.) are based on a consensus
protocol. This protocol requires that all decisions to be taken, must have been
approved by a majority of processes. Hence only the last view to be installed,
and its associated leader can be promoted by a majority of proxies at a given
time. This property precludes old leader (when it exists) to process any request.
To sum up, at any given time, only one leader is supported by at least a major-
ity of proxies and its role is to process requests sent by external clients. Hence
all the requests must be addressed to the leader. This problem can be tackled
by several mechanisms. We have chosen to use a virtual IP address which is
automatically associated to the current leader. When a new view is installed,
its leader will start an ARP cache update protocol whose goal is to associated
its MAC address with the virtual IP address. Once this protocol has completed,
layer 2 network equipment (such as Ethernet switch) will automatically deliver
to the leader, all messages addressed to the virtual IP.

We now describe the fate of a request during the part of the path associated
to its processing by Web servers. We first describe what happens when no failure
occurs. Then we will detail the different possible scenarios in case of a leader
failure.

When the leader does not fail When the leader receives a request hx, it
broadcasts it within the group of proxies WSP using an atomic broadcast ser-
vice. Hence, a unique order among concurrent requests is established by this
service, so all the Web server replicas WSi will process these requests in the
same order. When no attack occurs the global state of the replicas is maintained
consistent. We cannot ensure this property when the system suffers from an at-
tack, since local states of a minority of Web servers and/or associated databases
can be corrupted and diverged. But as explained in section 2.1, we are able to
detect attacks, hence we can mask them.

Once a request hx has been delivered by atomic broadcast service to the
leader, this latter broadcasts it to the set of Web servers WS. In fact, what really
happens is more convoluted than this simple schema, but we will detail this later
when we will discuss failure scenarios. For now, we can assume that a regular
HTTP request is opened with each of the Web server. This request makes its
own progress within each copy WSi. The leader collects sufficiently many replies



Toward a Dependable Intrusion Detection Architecture 11

rx,i, so that at least a majority of them are equal. It is by assumption ensured to
succeed since we assume that there is only a minority of failures. By comparing
these replies, intrusion alarms can be raised as explained in section 5.1. A unique
reply is transmitted back to the client. Once the connection with the client is
closed, the leader informs others replicas that the last atomically delivered HTTP
request has been processed, and that it can be discarded from their log. To sum
up, the set of proxies WSP is building a totally ordered sequence of HTTP
requests that can be submitted to the set of servers. By detecting inconsistency
in the set of replies rx,i associated with a given HTTP request hx, they can
detect and mask attacks targeted at the Web servers.

In case of a proxy failure During the processing of a request, failures can oc-
cur. This can happen at several different places in time and space. Consequences
on the fate of a request are quite different depending on the component that
fails and when it occurs. First of all, a failure that concerns a Web proxy that is
not a leader is invisible to the outside world since it only triggers the installation
of a new view. As explained earlier, we guarantee that the leader remains the
same as long as possible such as to minimize the disturbance of external clients.
Hence now, we only focus on failures that may affect the leader. Note that any
failure of the leader that occurs during the processing of a client request will
affect the related TCP connection in two possible ways: a timeout or a connec-
tion reset. Anyway, the end user will be notified by its browser that an error
has occurred. We assume that he will perform a reload operation. However, we
want to guarantee that this operation is safe. To that purpose, we assume that
an operation which modifies the database is uniquely identified by the means of
its request content (either through its URL that includes an unique identifier, or
by cookies included in the body of the request). This will help proxies to detect
requests which have been partially processed (i.e that have suffered of broken
connections during a leader failure) by the use of a replay detection cache that
logs requests until it is safe to garbage collect them.

WSP3

WSP2

WSP1 (leader)

WS1

WS2

WS3

1 2 3 4 5

Fig. 2. Critical points in the processing of an HTTP request by the leader
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If we analyze the leader behavior, several critical points where failures can
occur can be identified : (1) before the leader has initiated the atomic broadcast,
(2) during or after the call to the atomic broadcast service but before the delivery
operation has occurred, (3) after the delivery operation, (4) during the broadcast
of the request to the Web servers WS, (5) after this broadcast. This is depicted
by Figure 2.

Case (1) is the most benign since the leader has not started processing the
request. Hence, the client will eventually be notified of a TCP timeout error.
It can safely reissue its request. In the meantime, a new leader will have been
elected, and be willing to process it.

Case (2). The atomicity property of the operation guarantees that all or none
of the proxies will deliver it. If they all deliver it, a future replay of the request
can be detected and the client can be informed of the returned value. Otherwise,
it is naturally safe for the client to replay its request.

Case (3) is similar to the previous case, but the processing of the request
has goes further, and we are sure that the request will be delivered to all other
proxies. Hence the detection replay cache will have to play its role if the leader
fails after this point.

Case (4) is handled by a dedicated mechanism. Recall that we previously
stated that once the leader has delivered the query by atomic broadcast, it will
initiate a broadcast of the HTTP request to all the Web servers. We stated
that it was doing so, by opening as many TCP connections as the number of
WS servers. This strategy, if employed, would lead to problematic situations in
case of a leader failure during this broadcast phase (broken TCP connections
with a Web server). To solve this issue we have introduced a set of dedicated
wrappers located on Web servers machines (one wrapper per Web server). Each
wrapper has in charge the receipt of a HTTP request, and its transmission to
the Web server. It supports broken connection that could arise from a failed
leader, and it also avoids duplicate transmission of a HTTP request that can
happened after the election of a new leader. Indeed, when a new leader is elected,
it starts its activity by replaying the latest HTTP requests which have not been
acknowledged by the previous leader. To sum up the role of a wrapper is to mask
the potential failure of a proxy leader.

Case (5) is handled similarly to case (4). The new elected leader will interact
with wrappers by replaying not acknowledged HTTP requests.

5.3 SQL path of a request

In this section, we describe the way we have chosen to deal with SQL queries
that can be generated by HTTP requests. Each SQL server DBi receives its
SQL queries from a dedicated proxy PDBi. This set of proxies forms a repli-
cated group PDB for the underlying group communication system. Contrarily
to the first replicated group of proxies, we have chosen here an active replication
schema. The goal of this set of proxies is to build a unique order among the set
of queries that are submitted to the SQL backend.



Toward a Dependable Intrusion Detection Architecture 13

To that purpose, we need to give the SQL proxies the ability (1) to link a SQL
query sv

x,i ∈ Sx,i with its associated HTTP request hx (2) to be able to retrieve
the index v of the query sv

x,i in the sequence Sx,i. This can only be achieved at
the Web server level. To achieve this goal, we have written a dedicated library as
a replacement for the SQL library loaded by the script language interpret (PHP)
used by the Web servers. This library can retrieve the index x of the associated
HTTP request being processed (by the use of information hidden in a cookie) and
it can also enumerate the SQL queries that belongs to the same HTTP request.
However, as we will see later, this piece of information is not sufficient to ensure
the detection of certain attacks. That’s why the total number of SQL queries
associated with the previous SQL query hx−1 is also logged by our library. This
number denoted length(x− 1, i) is equal to | Sx−1,i |.

The couple (sv
x,i, length(x − 1, i)) is broadcast by the library to the group

DBP of SQL proxies for each SQL query to be executed. Each proxy DBPi is
in charge of building a totally ordered sequence of SQL queries. This sequence
must preserve some important properties :

1. It contains only legal SQL queries.
2. Legal SQL queries are totally ordered using the total order relation < defined

by: s1 = su
x, < s2 = sv

y, if and only if x < y ∨ (x = y ∧ u < v).

Ensuring the first property. To ensure the first property each database proxy
submits only SQL queries that have been received from a majority of Web servers
and whose contents are identical. By definition, this is a non-blocking operation
for legal queries. A non legal query su

x,j associated with an HTTP request hx

will be detected by a proxy server DBPi according to the following rules : (i)
its content differs from the contents of the majority of queries received. It can
be discarded and an alarm can be raised. (ii) The query is surnumerous. The
detection of such a case might be delayed until the arrival of the next HTTP
request that generates SQL queries. To simplify the discussion5, assume it is
hx+1. Since hx+1 generates at least one SQL query, this one will be sent to
DBPi along with a counter length(x, ). This counter length(x, ) will be strictly
smaller than the rank u associated with the surnumerous query su

x,j . An alarm
can be raised. (iii) A query can be missing. This case can happen on a Web server
that is under attack. This may be detected either (a) by the first set of proxies
WSP that should detect differences in the replies of the corresponding HTTP
request (due to the fact that the missing SQL reply may induce a different reply
to the HTTP request from the corrupted server) or (b) by the inconsistency of
the counters associated with the next HTTP request that generates SQL queries
(similarly to rule (ii)).

Ensuring the second property. The second property which could be qualified of
a FIFO order is implemented by the use of counters carried by the SQL queries.
It ensures that the state of each database is maintained consistent, since they
will execute the same set of queries in the same order.
5 An HTTP request can generate no SQL query. In that case, SQL proxies will not be

able to detect that the last SQL query was surnumerous.
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Dealing with the response to an SQL query. The reply value of the database to
a SQL query is simply transmitted by a SQL proxy to its associated Web server.
However, note that a database proxy can already have submitted a SQL query
to its associated database even before the Web server has initiated the corre-
sponding SQL query. This desynchronization can be due to either the asynchrony
assumption, or to a successful attack on the Web server. This problem is solved
by logging the results of SQL queries that have been anticipatory sent to the
database. It is sufficient to replay the results when the Web server will issue the
corresponding requests.

6 Experimental Results

The performance of the proposed solution can be analyzed according to two
metrics. First we analyze the quality of service of the IDS itself. Then we consider
the cost induced by the replication. The proposed solution has an impact on the
time required to execute a single request.

6.1 Quality of Service offered by the IDS

The basic architecture presented in Section 2 was applied to Web servers and
the results were presented in [1].

In summary, in the test carried out, the architecture was composed of three
servers: an Apache server running on MacOS-X, a thttpd server running on
Linux, and an IIS 5.0 running on Windows. They contained a copy of the Su-
pelec institute Web site. They were configured so as to generate a minimum
of differences in their respective outputs. The three servers were fed with the
requests logged during one month (it represents more than 800.000 requests).

During the tests, we observed the alerts emitted by the IDS. Only 0.016% of
the HTTP requests generated an alert. In one month, the administrator must
thus analyze 150 alerts, that means about 5 alerts a day. We observed that only
four first alert types were false positives (22% of the alerts). These results show
that the IDS generates very few false alarms (false positives), and did not miss
any intrusion (no false negatives). This is quite a good result, and it demonstrates
the quality of the approach proposed.

6.2 Atomic Broadcast Performances

Let us now consider the mechanisms used to increase the availability of the
system. As each HTTP request involves the use of the atomic broadcast ser-
vice, its cost must be carefully evaluated. Moreover, since HTTP requests are
sequentially executed, the throughput of the service can be severely degraded.
This drawback is not specific to our solution [17]. In Figures 3 and 4, we aim
at identifying some of the parameters that may impact the cost of the atomic
broadcast service. Figure 3 gives the mean request delivering duration for a fixed
arrival frequency of external requests (one request every 400ms). We sample this
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measure for a varying number of processes and different consensus round dura-
tions. Figure 3 clearly shows that the number of processes in the group (as long
as it remains in a reasonable range) only slightly influences the overall perfor-
mance of the atomic broadcast service. In this experiment, the arrival frequency
of external requests is rather low (one request every 400ms). In this case, the
consensus round duration is of limited influence. This parameter is of major in-
fluence only when a failure occurs. Indeed, the rotating coordinator paradigm
induces a penalty each time a round is coordinated by the failed process.
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In Figure 4, we consider a fixed value for the duration of the round (1000
ms) and we sample the mean delivering duration for various arrival frequencies
of the external requests and a varying number of processes. Figure 4 shows that
when the arrival frequency of requests reaches a critical value, the mean request
delivering duration increases significantly. However, this happens only when the
number of processes is larger than 6. Recall that when there are 5 processes in the
group, we can tolerate up to 2 failed processes (that is a reasonable assumption
for the considered application)

7 Conclusion

In this paper, we have presented a dependable intrusion detection architecture.
We started from a basic architecture that implements an intrusion detection
system (IDS) based on the functional diversification of a set of COTS servers.
This architecture is characterized by the fact that (1) it can detect previously
unknown attacks (2) it ensures the confidentiality policy enforced by the set of
non corrupted COTS servers. However, this architecture suffers from a single
point of failure. Indeed, if the proxy/IDS fails, the whole system is down. To
improve the availability of this architecture, we have employed a traditional so-
lution from the dependability domain: the replication of the proxy/IDS. Thanks
to this technique, we can tolerate up to a minority of failures among the set of
replicated proxy/IDS. We have argued in favor of a fail-stop failure model in the
case of the proxy/IDS, instead of the arbitrary failure model.

An inherent drawback of this architecture is that it is unable to ensure in-
tegrity of data manipulated by the COTS servers. This problem cannot be fixed
by a generic solution without any assumption about the application to be de-
ployed. Hence, we have focused on the particular case of a Web server for dynamic
content (stored into a database backend). We have proposed a solution that in
addition to ensuring confidentiality of data, also guarantees integrity of data
stored in the database backend with respect to the integrity policy enforced by
the Web servers. Replication of the different services in this architecture is made
possible through the use of a group communication system called Eden that
offers basic services such as atomic broadcast and membership.

Finally, we have conducted a series of tests to evaluate the relevance of our
solution along two axes. Firstly, we have shown that diversification of COTS
servers can improve the detection of attacks with respect to false positives. Sec-
ondly we have shown that the cost of the atomic broadcast service is reasonable
enough to be used in real applications where dependability is a key requirement.
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dans les systèmes distribués asynchrones. PhD thesis, Université de Rennes (2003)
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on a weak failure detector and a sliding round window. In: 20th Symposium on
Reliable Distributed Systems (SRDS 2001). (2001) 120–129


