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Abstract|We introduce a modi�ed Matching Pursuit al-

gorithm, called Fast Ridge Pursuit, to approximate N-
dimensional signals with M Gaussian chirps at a compu-
tational cost O(MN) instead of the expected O(MN2 logN).
At each iteration of the pursuit, the best Gabor atom is �rst
selected, then its scale and chirp rate are locally optimized
so as to get a \good" chirp atom, i.e. one for which the

correlation with the residual is locally maximized. A ridge
theorem of the Gaussian chirp dictionary is proved, from

which an estimate of the locally optimal scale and chirp is
built. The procedure is restricted to a sub-dictionary of
local maxima of the Gaussian Gabor dictionary, so as to ac-

celerate further the pursuit. The e�ciency and speed of the
method is demonstrated on a sound signal.

Keywords| adaptive signal processing, signal represen-
tations, approximation methods, time-frequency analysis,
chirp modulation, frequency estimation, redundant systems,

complexity theory.

I. Introduction

There has been a considerable interest last decade in de-
veloping analysis techniques to decompose non-stationary
signals into elementary components, called atoms, that
characterize their salient features. As many signals display
both oscillatory phenomena, which time-frequency meth-
ods can extract, and transients or singularities, to which
time-scale techniques [1], [2], [3] are better adapted [4], [5],
[6], adaptive decompositions were developed, using redun-

dant families of atoms that can characterize independently
scale and frequency (Local Cosine [7], Wavelet Packets [8],
Gabor multiscale dictionary [9], [10]).
Chirp atoms were introduced to deal with the non-

stationary behavior of the instantaneous frequency of some
signals [11]. Baraniuk and Jones [12] built orthonormal
bases and frames of such chirp atoms, while Mann and
Haykin [13] de�ned a \Chirplet Transform". Roughly
speaking, this transform compares a signal x(t) with each
chirp atom

g(s;u;�;c)(t) =
1p
s
g

�
t� u

s

�
ei(�(t�u)+

c
2 (t�u)2) (1)

of a large family, the chirp dictionary D+, which is an ex-
tension of the Gabor multiscale time-frequency dictionary
D [9] [10]. These atoms are characterized by their scale s,
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time u, frequency � and chirp rate c. Their instantaneous
frequency !(t) = � + c(t� u) varies linearly with time.
In an orthonormal basis of chirp atoms [12], a given sig-

nal can be e�ciently decomposed into elementary chirps.
However the elementary atoms are somehow too \rigid"
for many applications, as their parameters s, � / 1=s and
c / 1=s2 are not independent one from another. On the
other hand, the chirplet transform is very redundant and
does not have this intrinsic rigidity. It can thus provide
with a large variety of viewpoints to look at the signal,
in order to �nd meaningful structures in it. However its
redundancy is also its weakness as it makes the computa-
tional complexity of the chirplet transform very large.
Bultan [14] suggested to use the Matching Pursuit algo-

rithm of Mallat and Zhang [15] to decompose a signal into
elementary chirp atoms. He demonstrated the interest of
this technique, but its practical use was limited by the large
computational complexity O(MN2 logN) needed to get an
M -term approximation of an N -sample signal. In order to
limit the complexity, Bultan suggested to reduce the size of
the dictionary by limiting the resolution of the chirp rate.
In this work we show that it is possible to get rid of such a

limitation and get a low complexity O(MN) by modifying
the underlying \Matching Pursuit" algorithm and using a
Gaussian chirp dictionary. To get such a low complexity
we introduce a (substantially) modi�ed pursuit algorithm,
by using some ridge techniques and the local maxima of the
Gabor dictionary.
The paper is organized as follows. In the next section,

we review the de�nition of the multiscale time-frequency
chirp dictionary D+ and show the numerical complexity
implied by its very large size. In section III the de�nition
and basic properties of the Matching Pursuit are recalled.
Section IV is devoted to the detailed study of the ridges
of the Gaussian multiscale Gabor dictionary. We use those
results to analyze the selection of the locally optimal chirp

atom. In section V we summarize the Ridge Pursuit al-
gorithm with the real-valued chirp dictionary, and show
how it can be further accelerated with a sub-dictionary
technique. Finally we analyze in section VI the numeri-
cal results obtained with our new algorithm on an acoustic
signal.

II. Multiscale Dictionary of Time-frequency

chirp atoms

Every chirp atom (1) is obtained from an elementary
window g(t) by dilation, translation, frequency and chirp
modulation. It can thus be described with its index
(s; u; �; c). The window g(t) is localized around 0 both
in the time domain and the frequency domain. As a re-



sult g(s;u;�;c) is localized at time u with a temporal dis-
persion proportional to its scale s. The Wigner-Ville dis-
tribution WV [g(s;u;�;c)](t; !) [16], [17] of a chirp atom de-
�nes a quadratic time-frequency energy distribution. It
is localized around the line of instantaneous frequency
!(t) = �+ c(t�u). Its dispersion is proportional to 1=s in
the ! direction. A Gaussian chirp atom is built from the
unit Gaussian window g(t) = ��1=4e�t

2=2. Such an atom
is displayed on Figure 1 with its Wigner-Ville distribution.
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Fig. 1. A Gaussian chirp atom (top) and its Wigner-Ville distribution
(bottom). The energy density is grey-coded from the smallest
values (white) to the largest values (black).

A. Sampling the dictionary

The set
�
g(s;u;�;0); (s; u; �) 2 R+ � R � R

	
of chirp

atoms with chirp rate c = 0 is exactly the multiscale Gabor
dictionary [9], [15], [10]. The discrete Gabor dictionary D
is the collection of atoms g(s;u;�;0) (denoted for short by
g(s;u;�)) such that (s; u; �) = (aj ; naj�u; ka�j��); j; n; k 2
Z, where �u and �� are some constants. Watson and
Gilholm [18] showed that this sampling of the scale, time
and frequency parameters is uniform with respect to the
natural Riemannian metric of the continuous dictionary in-
duced by d(g1 ; g2) = 1� jhg1 ; g2ij, where hx(t); y(t)i =R +1
�1 x(t)y(t)dt is the standard inner product on L2(R).
The same point of view leads to sampling the chirp rate as
c = la�2j�c, l 2 Z. The discrete chirp dictionary D+ is
thus the family of atoms g(s;u;�;c) such that (s; u; �; c) 2 �+,
where

�+ =
�
(aj ; naj�u; ka�j��; la�2j�c); j; n; k; l 2 Z	 : (2)

As the set of atoms at a given scale j and chirp rate l is
a Weyl-Heisenberg frame, it can only span L2(R) if �u �
�� � 2� [19]. When �u � �� < 2�, D is complete [15],
thus D+ � D is also complete.

B. Size of the discrete chirp dictionary

The size of the discrete chirp dictionary D+ is a function
of the sampling steps a;�u, �� and �c. When analyz-

ing a discrete N point signal, one also has to consider the
limitations of the sampling rate and the signal size. The
scale aj can thus only vary between 1 and N , which makes
a total of O(logN) scales. At each scale, there are O(N)
sampled values of (u; �) 2 [0; N � 1]� [��; �]. Because of
the Nyquist condition, the instantaneous frequency is con-
strained to �+ c(t�u) 2 [��; �]; 8t 2 [u�aj=2; u+aj=2],
i.e. jcj aj=2 � � � j�j. For given aj and �, the chirp rate
c can take O((� � j�j)aj) values. On the average, at scale
aj , it thus takes O(aj) distinct values. The total number
of chirp atoms in the discrete chirp dictionary D+ is thus
of the order of

PlogN
j=0 O(N=aj)�O(aj)�O(aj) = O(N2).

III. Standard Matching Pursuit with D+

The Matching Pursuit [15] is a greedy strategy to decom-
pose a signal x into a linear combination of atoms chosen
among a dictionary D = fg ;  2 �g, i.e. a redundant fam-
ily of unit vectors in a Hilbert spaceH. It iteratively de�nes
an mth-order residual Rm�1x (starting with R0x = x) in
the following way :

1. Compute
��
Rm�1x; g

���2 for all  2 �.
2. Select the best atom of the dictionary

gm = argmax
2�

��
Rm�1x; g
���2 : (3)

3. Compute the new residual by removing the component
along the selected atom

Rmx = Rm�1x� 
Rm�1x; gm
�
gm : (4)

After M iterations, one gets an M -term approximation
xM = x � RMx =

PM
m=1



Rm�1x; gm

�
gm . The en-

ergy is split among the selected components as kxk2 =PM
m=1

��
Rm�1x; gm
���2+RMx

2. The Matching Pursuit
is very similar to the Projection Pursuit principle intro-
duced in statistics by Huber [20], which strong convergence
limM!1

RMx
 = 0 was proved by Jones [21] whenever

the dictionary D is complete, i.e. span(D) = H.
Let us note that the Matching Pursuit does not provide

the best approximation to x by a linear combination of
M atoms from D. Actually, getting such a best M -term
approximant is an NP-hard problem [22]. In �nite dimen-
sion N , at most N atoms should be needed to represent a
signal x, but in general the Matching Pursuit goes on for-
ever without ever giving an exact decomposition. This can
be �xed with a variant, the Orthonormal Matching Pur-
suit [23]. However, as the Orthonormal Matching Pursuit
performs a Gram-Schmidt orthonormalization of the fam-
ily fgmgm�1, its computational cost is signi�cantly higher
than that of the \pure" Matching Pursuit.
With the chirp dictionary D+ and a N -point signal,

the computation of


Rm�1x; g

�
; g 2 D+ can be done

with O(N2 logN) operations, using FFT-based algorithms
with appropriate windows [14], [18]. The search for the
\best" atom (3) costs O(N2), and the update of the
residual (4) only costs O(N), hence the total complexity
O(MN2 logN) of M iterations of pursuit with the chirp
dictionary. Such a \brute force" Chirp Matching Pursuit



is thus limited to the analysis of small signals, with only
few iterations.

IV. Ridge Pursuit

Because of the large size of D+, one cannot a�ord to
compute the correlation



Rm�1x; g(s;u;�;c)

�
of the residual

with every atom of D+. As a consequence, the choice of
the \best" atom g(sm;um;�m;cm) must be done in an approx-

imate way. In other words, one needs to \guess" where a
\good" chirp atom is located, without scanning the whole
dictionary.

One can notice that the chirp dictionary D+ is only an
extension of the Gabor dictionary D. As D is complete, the
set of inner products



Rm�1x; g

�
, g 2 D contains all

the information available about Rm�1x. It is thus theoreti-
cally su�cient to compute these inner products to select the
best chirp atom. We will actually show, with Theorem 1,
that the behavior of



Rm�1x; g

�
in the neighborhood of

the best Gabor atom contains enough information to se-
lect a \locally optimal" chirp atom. A \good" chirp atom
g(sm;um;�m;cm) is selected with a two-step pursuit. First,
one selects the best Gabor atom

g(s?m;u?m;�?m)
�
= arg max

g(s;u;�)2D

��
Rm�1x; g(s;u;�)
��� : (5)

Then one explores its neighborhood in D+, so as to �nd a
good chirp atom

g(sm;um;�m;cm)
�
= arg max

g(s;u?m;�?m;c)

��
Rm�1x; g(s;u?m;�?m;c)

���
(6)

by selecting locally optimal chirp rate and scale parameters
sm and cm. The time and frequency parameters u?m and
�?m are kept constant. Generally speaking, we could allow
for re-optimization of the time and frequency parameters
too. However we chose not to re-estimate them, because
the re-optimized values are very close to the initial ones in
practice. On the contrary, the re-optimized values of sm
and cm can be substantially di�erent from the initial ones.

One can see that after selecting the best Gabor atom
(5), the second step (6) implies an exhaustive scanning of
the neighborhood of this atom. However this scanning is
still very costly. We replace it by a fast estimation O(1)
of sm and cm, using again Theorem 1, which helps us ex-
tract the information we need from the local behavior of
(s; u; �; c) 7! 


Rm�1x; g(s;u;�;c)
�
in the neighborhood of the

best Gabor atom. We hereby de�ne a Ridge Pursuit, which
complexity O(MN log2N) is identical to that of the stan-
dard Matching Pursuit with the Gabor dictionary D. Let
us outline one step of the Ridge Pursuit.

1. Select the best Gabor atom g(s?m;u?m;�?m).

2. Use the local behavior of � 7! ��
Rm�1x; g(s?m;u?m;�)

��� in
the neighborhood of �?m to estimate the chirp parameter
cm and get a better estimate of the scale parameter sm.
3. Compute the new residual using the chirp atom
g(sm;u?m;�?m;cm).

A. Ridges of the Gaussian chirp dictionary

Discrete signals xd 2 RN are obtained by sampling
band-limited continuous-time signals x(t), and the dis-

crete inner products hxd; ydi =
PN�1

n=0 xd[n]yd[n] are close

to their continuous counterparts hx; yi = R +1
�1 x(t)y(t)dt.

Chirplets are most useful for the representation of signals
that contain well de�ned instantaneous frequency !(t) and
chirp-rate !0(t). From now on, we consider the model
Rm�1x(t) = a(t)ei�(t) where these quantities !(t) = �0(t)
and c(t) = �00(t) are easily de�ned. Our results can be
extended to the case of a superposition of �nitely many
such continuous signals, provided a su�cient separation of
their instantaneous frequencies is granted.
The goal of the following ridge theorem (which is proved

in appendix A) is to show that, under certain regular-
ity conditions, the residual Rm�1x, seen \through" a
Gaussian chirp atom g(s;u;�;c), looks like another Gaus-

sian chirp atom g+(u) 2 D+, i.e.


Rm�1x; g(s;u;�;c)

� �
A(u)ei�(u)



g+(u); g(s;u;�;c)

�
:

Theorem 1: Let Rm�1x(t) = a(t)ei�(t). Suppose that

kak1 < 1, k�000k1 < 1 and kb000k1 < 1, with b(t)
�
=

� loga(t). Let u a time where b00(u) > 0, and let g(s;u;�;c)
a Gaussian chirp atom. Then

Rm�1x; g(s;u;�;c)

�
= A(u)ei�(u)

�

g+(u); g(s;u;�;c)

�
+ �(s; u; �; c)

�
(7)

where

A(u) =
a(u)

(b00(u)=�)
1
4

e
(b0(u))2
2b00(u) (8)

�(u) = �(u)� �0(u)
b0(u)
b00(u)

+
�00(u)
2

�
b0(u)
b00(u)

�2

(9)

+(u) =

 
1p
b00(u)

; u� b0(u)
b00(u)

; �0(u)� �00(u)
b0(u)
b00(u)

; �00(u)

!
(10)

and j�(s; u; �; c)j is bounded by

�max(s; u) =
(b00(u))

1
4 s

1
2

�
1
2

 
Ks3�33

6
e
1
6 +

4 kak1
a(u)

(Ks3)
1
3

exp 1
2(Ks3)2=3

!
(11)

with K
�
= kb000k1 + k�000k1 and �33

�
=
R jtj3 g(t)dt.

The hypothesis b00(u) > 0 simply corresponds to

a00(u)=a(u) < (a0(u)=a(u))2. For instance, it holds in
the neighborhood of smooth local extrema of a(u), where
a00(u)=a(u) � 0. In particular this is the case when
u is the time-location of the best Gabor atom, because
(s; u; �) 7! ��
Rm�1x; g(s;u;�)

��� is locally maximum. More-
over for such a u, b0(u) is very small, hence +(u) is almost
(1=
p
b00(u); u; �0(u); �00(u)).

From this theorem, one can observe that if

kb000k1 � jb00(u)j3=2 and k�000k1 � jb00(u)j3=2 (12)

then �max(1=
p
b00(u); u) � 1, so that the best chirp atom

at time u is close to g+(u). The locally optimal parameters



s; �; c can thus be obtained by estimating the index +(u).
Let us now study how much information the location of the
best Gabor atom gives about +(u).

B. Scale and frequency of the best Gabor atom

In the following we suppose that �max can be ne-
glected. As the best Gabor atom (5) is the abso-
lute maximum of

��
Rm�1x; g(s;u;�)
���, it is a local max-

imum along s and �. If we additionally suppose that
b00(u) � 1, then the right hand side in (7) becomes

a(u)ei�(u)
D
ei(�

0(u)(t�u)+�00(u)(t�u)2=2); g(s;u;�)
E
: As the dic-

tionary is Gaussian, the inner product that appears in
this approximant is the Fourier transform bg(s;0;0;�00(u))(� �
�0(u)) of a Gaussian chirp atom, which analytic expression
is known [24]. For a given u, its maximum (or ridge) along
s and � is located at � = �0(u) and s = 1=

pj�00(u)j.
Thus one has

�?m � �0(u?m) and s?m � 1=
p
j�00(u?m)j: (13)

Bounds on the error of these estimates can be found in [25].
It is well known that the ridges of the wavelet transform or
of the windowed Fourier transform give the instantaneous
frequency [26], [17] : this result shows that the ridges of
the Gabor dictionary additionally provide with the instan-
taneous chirp rate. Now, it is su�cient that

kb000k1 � j�00(u)j3=2 and k�000k1 � j�00(u)j3=2 (14)

to get �max(1=
p
�00(u); u)� 1 and control the location (13)

of the best Gabor atom, which gives information on the lo-
cally optimal chirp rate jcmj � j�00(u?m)j � (s?m)

�2.
Unfortunately the estimate ccm = �(s?m)�2 is far
from the ideal one. First, because one has to de-
termine its sign by computing the two inner products

Rm�1x; g(s?m;u?m;�?m;�(s?m)�2)

�
. But also mainly because it

is a very poor estimate when, as usual, the scale s = 2j

is coarsely quantized. Thus this estimate is not su�cient
to avoid the costly O(N2) \scanning" of the possible chirp
atoms g(s;u?m;�?m;c).

C. Fast local estimation of the best chirp atom

The local behavior of � 7! 

Rm�1x; g(s?m;u?m;�)

�
in the

neighborhood of �?m conveys much more information about
the locally optimal chirp atom g+(u) than the location

(s?m; u
?
m; �

?
m) of the best Gabor atom does. Indeed, if

�max(s
?
m; u

?
m)� 1, then from Theorem 1,


Rm�1x; g(s?m;u?m;�)

� � C


g+(u?m); g(s?m;u?m;�)

�
; where C 2

C is some constant independent on �. Using the analytic
expression of the inner product between two Gaussian chirp
atoms [24], one can get the following spectral estimation
[27], [28] of the parameters of g+(u), which is proved in
[25].
Proposition 1: If �max(s

?
m; u

?
m) � 1, then



Rm�1x; g(s?m;u?m;�)

� �
Aei� where � 7! logA(�) and � 7! �(�) are second order
polynomials in � with

�00(u?m) = � �00(�)
((logA)00(�))2 + (�00(�))2

(15)

and

b00(u?m) +
1

(s?m)
2
=

� logA00(�)
((logA00)(�))2 + (�00(�))2

: (16)

Moreover the following bounds hold

j�00(�)j � (s?m)
2

2
(17)

0 > logA00(�) � �(s?m)2: (18)
One can easily estimate (logA)00(�) and �00(�) (which are
independent of �) using only the local behavior of � 7!

Rm�1x; g(s?m;u?m;�)

�
around the best Gabor atom. Then

(17) and (18) are used to test the validity of the approxima-
tion �max � 1. Whenever the test is negative, the Ridge
Pursuit is conservative : it does not try to �nd a better
chirp atom than the best Gabor atom, but instead keeps
it as its \good chirp atom" and steps forward to the next
iteration. In the case of a positive test, we will assume that
the model is valid. Thanks to (15) and (16), the estimates
of (logA)00(�) and �00(�) provide with estimates of �00(u?m)
and b00(u?m), i.e. an estimate of +(u). This estimate is
now obtained without costly \scanning".
The de�nition of the Ridge Pursuit will be complete by

showing how to e�ciently estimate (logA)00(�) and �00(�).

D. Numerical estimation by linear interpolation

In order to get as local an estimation as possible,
we estimate (logA)00(�) and �00(�) through a parabolic
interpolation. We use three Gaussian Gabor atoms
g" = g(s?m;u?m;�?m+"��=s?m), " 2 f�1; 0;+1g, of the
discrete Gabor dictionary D, and their inner products

Rm�1x; g"

�
= ~A"e

i~�" . These inner products were al-
ready computed for the selection of the best Gabor atom.
The numerical parabolic interpolation of log ~A" (resp.

~�"), taking into account the frequency bin size ��=s?m,
leads to estimates

�00(�) �
�
~��1 � 2~�0 + ~�1

�� s?m
��

�2

(19)

(logA)00(�) � log
~A�1 ~A1

~A2
0

�
s?m
��

�2

: (20)

As ~�" is de�ned modulo 2�, the estimate of �00(�) is only
de�ned modulo 2�(s?m=��)

2. However, thanks to condi-
tion (17), its only admissible value(s) lie within the interval
[�(s?m)2=2;+(s?m)2=2]. In order to eliminate the ambiguity,
it is necessary and su�cient to impose that the length of
this interval is strictly less than 2�(s?m=��)

2, i.e. to choose
�� <

p
2� in the de�nition of D and D+ (see (2)). Thus

sm and cm are estimated at a cost O(1) from the inner
products



Rm�1x; g"

�
.

V. Fast Ridge Pursuit

For the analysis of real-valued signal, we do not make
use of complex-valued atoms (1) but of real-valued ones.
They are de�ned [15], [14] as

g(s;u;�;c;�) = K(s;u;�;c;�)g

�
t� u

s

�
cos
�
�(t� u) +

c

2
(t� u)2 + �

�
(21)



with some normalizing constant K(s;u;�;c;�). Obviously
g(s;u;�;c;�) lies in the two-dimensional subspace V(s;u;�;c) =
Span

�
g(s;u;�;c); g(s;u;�;c)

	
, and

sup
�

��
Rm�1x; g(s;u;�;c;�)
��� = PV(s;u;�;c)Rm�1x

 ; (22)

where PV denotes the orthogonal projector onto the sub-
space V . We show in appendix B that the right hand
side of (22), as well as the corresponding optimal phase
�(s; u; �; c) = argmax�

��
Rm�1x; g(s;u;�;c;�)
���, can be com-

puted in O(1) from 

Rm�1x; g(s;u;�;c)

�
.

Let us now summarize the Ridge Pursuit algorithm with
real-valued Gaussian chirp atoms, and compute its numer-
ical complexity. Each iteration is decomposed into a few
steps.

A. Ridge Pursuit Algorithm

1. Compute


Rm�1x; g(s;u;�)

�
for each complex Gaussian

Gabor atom [O(N log2N)].
2. Compute

PV(s;u;�)Rm�1x
 and select the location

(s?m; u
?
m; �

?
m) of the best real-valued Gaussian Gabor atom

[O(N logN)].
3. Estimate the locally optimal parameters sm and cm with
a parabolic interpolation [O(1)].
4. Compute



Rm�1x; g(sm;u?m;�?m;cm)

�
, and determine

the best real-valued chirp atom g(sm;u?m;�?m;cm;�m) in
V(sm;u?m;�?m;cm) [O(N)] .
5. Update the residual [O(N)].
The overall complexity of one iteration of real-valued
Ridge Pursuit is O(N log2N), hence the total cost
O(MN log2N) of M iterations. An accelerating technique
was introduced by Bergeaud and Mallat [29], [30] for the
Matching Pursuit analysis of images. It can be used to get
a Fast Ridge Pursuit algorithm. The overall algorithm is
described in full details in [25], and we give here its main
features. We use local maxima of the Gabor dictionary D,
that is Gabor atoms g(s;u;�) where either u 7!

��
x; g(s;u;�)���
or � 7! ��
x; g(s;u;�)��� has a local maximum. A number P
is �xed arbitrarily, and the following steps are done itera-
tively.

B. Fast Ridge Pursuit Algorithm

1. Build a sub-dictionary Dm of P local maxima of the
Gabor dictionary D.
2. For each atom in Dm, use the fast local estimation pro-
cedure to get a good chirp atom. The collection of these
chirp atoms is a sub-dictionary D+

m of the chirp dictionary
D+.
3. Run a \normal" pursuit in D+

m until it is empty.
By choosing log2N � P � N , the overall complexity
becomes O(MN) [25].

VI. Applications

The Ridge Pursuit and Fast Ridge Pursuit algorithms
were implemented using the Matching Pursuit Package of
the LastWave program [31]. We used them to analyze a
sound recording with sung voice and orchestra [32]. It

is well known that a characteristic of the sung voice is
its vibrato [33], which the Gabor Matching Pursuit was
not likely to decompose sparsely. The signal duration was
approximately 2:5 seconds, at a sampling rate of 11; 025
Hertz, so the signal length was about N � 30000 samples.
A Gabor Matching Pursuit and a Fast Ridge Pursuit were
computed with M = 5000 iterations.
One needs �rst to realize how high the complexity of

a \brute force" Matching Pursuit with the chirp dictio-
nary [14] would have been. With an (optimistic) aver-
age of 100 MFlops to 1 GFlops for todays computers, the
5000�(30000)2 log2 30000 � 6�1013 operations would have
required 6 � 104 to 6 � 105 seconds of computation, that
is to say between 16 and 160 hours of computation. This
estimate does not take into account the limitations of the
memory : at each step, the storage in the computer mem-
ory of O(N2) inner products as oating point numbers (4
bytes each) would require at least (30000)2�4 bytes, that is
to say about 3:6 Gbytes. Without a super-computer, this
implies using extensively the hard-drive for caching pur-
poses, and this makes the computations much slower. One
could indeed expect a couple of months of computations,
which should be compared to the 2:5 seconds duration of
the signal. On the other hand, the Fast Ridge Pursuit was
run on a consumer PC running at 300 Mhz and equipped
with 128 Mbytes of memory. It only took 200 seconds to
get the result.
Figure 2 displays the decrease, in decibels, of the energy

of the residual. It is faster with the Fast Ridge Pursuit
than with the standard Gabor Matching Pursuit. This is
not a trivial fact despite the chirp dictionary being more
redundant than the Gabor dictionary. Actually, it is obvi-
ous that for a given sparseness (a numberM of atoms), the
chirp dictionary should give a better approximation quality
if we have at hand an algorithm to �nd the best M-atom

approximation. However the Pursuit strategy that we are
following is sub-optimal, and there are examples [34] where
choosing \better" atoms in a more redundant dictionary at
each step yields worse approximations. It is thus important
to observe that both Bultan's algorithm [14] and our Fast
Ridge Pursuit with chirp atoms do provide a better approx-
imation quality for a given sparseness than the Matching
Pursuit with Gabor atoms. However the price to pay for
this is the increased number of bits needed to describe the
location (sm; um; �m; cm) of the atoms. This is analogous
to the situation where a codebook size of a vector quantizer
is increased to allow better approximation : a clever encod-
ing of the location of the vectors used in a given expansion
is needed before using it for signal compression.
One can compare on Figure 3 the time-frequency distri-

butions [15], [14] associated to the Gabor Matching Pursuit
and Fast Ridge Pursuit decompositions of the signal. The
display corresponds to a weighted linear combination

EM [x](t; !) =

MX
m=1

��
Rm�1x; gm
���2WV [gm](t; !) (23)

of the Wigner-Ville distribution of the atoms in the decom-
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Fig. 2. Decay (in decibels) of the relative energy kRmxk2 = kxk2

of the residual with the number m of iterations. Plain : Gabor
Matching Pursuit. Bold : Fast Ridge Pursuit with chirp dictio-
nary. One needs fewer chirp atoms than Gabor atoms to get the
same approximation quality.

position

x(t) =

MX
m=1



Rm�1x; gm

�
gm(t) +RM (t): (24)

It is focused on a time-frequency area wherein the vi-
brato occurs. The Gabor Matching Pursuit needs several
constant-frequency atoms, located on the \path" of the in-
stantaneous frequency, to decompose the vibrato. On the
contrary, the Fast Ridge Pursuit decomposes it into only a
few chirp atoms, whose instantaneous frequency is alterna-
tively increasing and decreasing. Actually, both algorithm
iterate 5000 times : at �rst, both algorithms select atoms
that �t signal structures, and the energy of the residual
decreases quite fast (see Figure 2); then, as the residual
starts behaving like a random noise [22] with no emerg-
ing structure, the chosen atoms do no longer reect signal
structures, but simply decrease the energy of the residual
as well as they can. What we observe is that the Ga-
bor Matching Pursuit needs more atoms to represent signal
structures than the Fast Ridge Pursuit.

VII. Comments

We checked numerically that the fast estimate given by
Proposition 1 fails for non-Gaussian windows (even for B-
spline windows, which in some sense are close to Gaussian
windows). Even if an analogous of Theorem 1 can be de-
rived for such windows, the lack of analytic tools makes it
di�cult to derive an analogous of the fast and simple esti-
mation procedure. It may be possible however to get fast
estimates using regression [35] instead of linear interpola-
tion to �t the local behavior of the spectrum around the
best Gabor atom.
We do not cover in this article the theoretical question

of the convergence of the Ridge Pursuit. One should notice
that the convergence is in general not guaranteed by the
fact that it is stepwise more greedy (the chosen chirp atom
grabs more energy than the best Gabor atom) than the
Gabor Matching Pursuit.

VIII. Conclusion

The Fast Ridge Pursuit algorithm iteratively decomposes
an N -sample acoustic signal into M Gaussian chirp atoms
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Fig. 3. Time-frequency distributions of a sound recording of size
N � 30000 (total duration 2:5 seconds, sampling rate 11025
Hertz). Top : with M = 5000 iterations of Gabor Matching
Pursuit. Bottom : with M = 5000 iterations of Fast Ridge Pur-
suit. The energy density is grey-coded relatively to its largest
value, from �45dB (white) to 0dB (black). The display is fo-
cused on a time-frequency region wherein the vibrato occurs vis-
ibly, while the whole time-frequency distribution would be for
0 � t � 2:5 second and 0 � !

2�
� 5500 Hertz. Vertical lines (e.g.

at time t = 2:1) correspond to short scale atoms that represent
transients. Horizontal lines, associated to large scale constant
frequency atoms, represent the resonance of the notes of the in-
struments of the orchestra. The vibrato is decomposed into sev-
eral constant frequency atoms by the Gabor Matching Pursuit.
On the contrary the Fast Ridge Pursuit decomposes it into only
a few chirp atoms (see text).

with a computational cost O(MN). Thanks to its low com-
putational complexity, the sparse structured representation
of signals that it provides can become the basis for the im-
plementation of a large variety of new processing tools.
Besides its potential use for signal compression, one of its

most interesting features is its ability to decompose a sig-
nal into superimposed structures with di�erent scale, fre-
quency and chirp characteristics. Thanks to this decompo-
sition property, it is possible to process separately the dif-
ferent parts (e.g. transients and steady parts) of a signal.
Source separation can be achieved for sounds that have very
di�erent \chirp behavior", such as a singer (with a strong
vibrato) and an orchestra. Additionally, considering time-
stretching or pitch-shifting applications, it is possible to
keep the �ne structure of transients while processing the
harmonic part of a sound. Because they respect the struc-
ture of the transients, and as the chirp parameter enables
them to �t more �nely the phase of the signal, such pitch
shifting schemes will generate less \pipe noise" than stan-
dard windowed Fourier transform based techniques. More-
over their implementation using the chirplet decomposition
is straightforward.

Acknowledgments

The author would like to thank E. Bacry and S. Mallat,
from Ecole Polytechnique, for their encouragement and all



the interesting discussions they fed. The sound recording
was kindly provided by Xavier Rodet, from IRCAM, whom
I also wish to thank. All the numerical computations and
�gures were obtained using LastWave [31], a freely available
software under the GPL license.

Appendix

I. Proof of the ridge theorem

In this appendix, we give a proof of Theorem 1. Build-
ing Taylor expansions of b(t) and �(t) near t = u, one
can �nd �1(t); �2(t) 2 [u; u + t] such that a(u + t) =

a(u)e�b
0(u)t� b00(u)

2 t2� b000(�1(t))
6 t3 and �(u + t) = �(u) +

�0(u)t + �00(u)
2 t2 + �000(�2(t))

6 t3. By changing variables,
and using the de�nition of the Gaussian window g(t) =

��1=4e�t
2=2, we express



x; g(s;u;�;c)

�
as

aei�

(b00=�)1=4
e
(b0)2
2b00

Z +1

�1
g� 1p

b00 ;�
b0
b00 ;0;0

�(t) g(s;0;���0;c��00)(t)

e
t3

6 (�b000(�1)+i�000(�2))dt:

Note that in all this proof we do not express the dependency
of a; �; �0; : : : on u, not that of �1; �2 on t. The integral can
be rewritten asD

g(1=
p
b00;�b0=b00;0;0); g(s;0;���0;c��00)

E
+ �(s; u; �; c) (25)

where the error term �(s; u; �; c) isZ +1

�1
g� 1p

b00 ;�
b0
b00 ;0;0

�(t) g(s;0;���0;c��00)(t)�
e
t3

6 (�b000(�1)+i�000(�2)) � 1
�
dt:

Let us now bound the error term, using again the expres-
sion of the Gaussian window, and splitting the integral with
a parameter � :

j�(s; u; �; c)j � (b00)
1
4

�
1
2 s

1
2

Z +1

�1
e
� t2

2s2
� b00

2

�
t+ b0

b00
�2

���e t36 (�b000(�1)+i�000(�2)) � 1
��� dt

� (b00)
1
4

�
1
2 s

1
2

 Z
jtj>�s

+

Z
jtj��s

!
:

The �rst part of the split integral is bounded byZ
jtj>�s

e�
t2

2s2

����e� (b0)2
2b00 e�b

0t� b00
2 t2� t3

6 b
000(�1)ei

t3

6 �
000(�2)

�e� b00
2

�
t+ b0

b00
�2 ���� dt

=

Z
jtj>�s

e�
t2

2s2

����a(u+t)a(u) e�
(b0)2
2b00 ei

t3

6 �
000(�2) � e

� b00
2

�
t+ b0

b00
�2���� dt

�
Z
jtj>�s

e�
t2

2s2

�kak1
ja(u)j + 1

�
dt � 2kak1

ja(u)j

Z
jtj>�s

e�
t2

2s2 dt

� s
2kak1
ja(u)j

2
� e
��2=2 � s

kak1
ja(u)j

4
� e
��2=2:

Knowing that 8z 2 C , jez � 1j � ejzj � 1 � jzj ejzj we can
bound the second part withZ
jtj��s

e�
t2

2s2
jtj3
6

(jb000(�1)j+ j�000(�2)j) e
jtj3
6 (jb000(�1)j+j�000(�2)j)dt

� s
kb000k1+k�000k1

6 e
�3s3

6 (kb000k1+k�000k1)s3�33
We denote by K = kb000k1 + k�000k1 and get from these
two bounds that for all � > 0

j�(s; u; �; c)j � (b00)
1
4 s

1
2

�
1
2

 
kak1
a(u)

4e�
�2

2

�
+
Ks3�33

6
e
Ks3

6 �3

!
:

(26)
Choosing �3 = K�1s�3 gives (11). To conclude the proof,
we rewrite the �rst term of (25) as

e
�i�0 b0

b00+i
�00
2

�
b0
b00
�2 �

g� 1p
b00 ;u�

b0
b00 ;�

0��00 b0
b00 ;�

00
�; g(s;u;�;c)

�
:

II. Real-valued atoms

Let ~g = (g � hg ; gi g) =
�
1� jhg ; gij2

�
and V =

Span (g ; g). One can check that
�
~g ; ~g

	
is the dual basis

of fg ; gg. Thus for all x 2 H
PVx = hx; ~gi g +



x; ~g

�
g

PVx2 =
2
�
jhx; gij2 �<(hg ; gi hx; gi2)

�
1� jhg ; gij2

where <(z) denotes the real part of z 2 C . For x
real-valued and  = (s; u; �; c), the �rst equality can
be rewritten PV(s;u;�;c)x =



x; g(s;u;�;c;�)

�
g(s;u;�;c;�) with


x; g(s;u;�;c;�)
�
=
PVx and ei� =

hx; ~gi
jhx; ~gij . The value


g(s;u;�;c); g(s;u;�;c)
�
can be computed up to an arbitrary

precision with a cost O(1), thanks to an analytic expres-
sion [14] [24]. Once hx; gi is known, so is its complex
conjugate hx; gi, thus �(s; u; �; c) and



x; g(s;u;�;c;�)

�
can

be computed in O(1).
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