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Overview

• The storm surge barrier and BOS

• Approach to Software Development

• Experiences with the use of formal methods:

Seven Myths of Formal Methods revisited

(Seven Myths of Formal Methods,

Anthony Hall, IEEE Software 6(9), 1990)
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AsAs reliable reliable as a  as a dykedyke

� Risk of failure dike: 1 in 10.000 years

� Extreme high water: 1 in 10 years

� Risk of failure barrier: 1 in 1.000 closures



WhyWhy a BOS? a BOS?

� Risk of failure in decision: 1 in 100.000

� Failure probability human: 1 in 1.000 -10.000

� Decision process must be done automatically

=> BOS



WhatWhat does BOS do? does BOS do?

� Decide when to close the barrier

� Decide when to open the barrier

� Control the barrier in the Nieuwe Waterweg

� Control the barrier in the Hartelkanaal

� Decide when maintenance is allowed

� Decide if a test closure is allowed and perform it



HowHow does does it work it work??

� Acquire data

� Predict water levels

� Decide and control

� Archive



HowHow was was it it built? built?

� Functional requirements drawn by RWS

� Required reliability 1 in 100.000

� Technical design and software by CMG (fixed-price)

� 25 person-years, 3 years from start to end

� 450.000 lines of code



HighHigh reliability reliability

� Hardware

� Fault-tolerant Stratus Continuum computer

� Multiple communication lines and a private satellite channel

� Software

� Reliability 1 in 100.000 cannot be shown by testing: it would

take 2000 year!

� Certification according to ISO 9001

� Standard for safety-critical systems: IEC 1508



ResultResult

� Delivered october 1997 within budget and on-time

� Since then it has rightly been in alert twice

� On October 3, 1998 the first test closure



Standard IEC 61508

• Recommendation for implementing
safety critical software

• No measure of reliability or safety for software

• Based on “Best Practices”

• Recommends and forbids particular development
techniques based on Safety Integrity Level SIL:

Pfail 10−2 10−3 10−4 10−5

SIL 1 2 3 4

⇑
BOS

• Highly Recommended for SIL 4:

◦ inspections

◦ independent testing

◦ .....

◦ formal methods

3



BOS Approach

• Risk based / failure analysis

• Well-defined project life-cycle,
strict configuration management

• Use of best, feasible practices

• No guarantee of correctness, but increase
of confidence by combination of validation
techniques: Validation & Verification Plan

• V & V plan:

◦ reviews and inspections

◦ coding standards and static checking

◦ coding assertions

◦ developer testing (white box)

◦ independent module/integration/system
testing with coverage measurement

◦ formal specifications

◦ model checking

◦ simulation
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Formal Methods in BOS

Starting Points

• Goal:

To increase the reliability and correctness

of the BOS software

• Cooperation CMG – University of Twente

• Integration in development trajectory

not a parallel, academic exercise

• Fixed time – fixed price project

• Non-formal (Dutch + Hatley & Pirbhai)

specification given
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Formal Methods in BOS

How to Start ?

• where to apply ?

• which formal techniques ?

• in which phases of development ?

• how to learn FM ?

• how to manage FM ?

• how to combine with other

(non-formal) SE techniques ?

• expected costs and benefits ?
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Where to apply FM

GUI model
prediction

interfaces

specification

formal specification/design

argumentation

formal derivation of code

level of formality

components

design

implementation

testing

phases of development

proof

7



Seven Myths of Formal Methods

Are the seven myths of formal methods

really myths for the BOS project ?

( From: Seven Myths of Formal Methods,
Anthony Hall, IEEE Software 6(9), 1990 )

1. FM guarantee correctness

2. FM are about program proving

3. FM are only for safety-critical systems

4. FM require highly trained mathematicians

5. FM increase development costs

6. FM are unacceptable to users

7. FM are not used on real software
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Myth 1

FM guarantee correctness

BOS: no guarantee of correctness

increased confidence in correctness
through increased precision and
early detection of defects

9



No guarantee of correctness:

• No single method can guarantee correctness

• FM not applied with all their rigour:

◦ System too large for manual proof

◦ No usable tools for automatic proof

◦ Don’t be too formal during
first time use of FM

• Not all aspects of behaviour in single formalism

• Not all system components formally specified

• Difference formal model ↔ reality

• Specification not formal

• Implementation and testing
based on formal specifications
but no formal derivation or proof

10



Development Trajectory

specification

Technical 

TD
Design

Testing

functional

FS

Implementation
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Myth 2

FM are about program proving

BOS: no program proved, but

◦ formal description of design

◦ model checking of some protocols

Result:

• process of formally specifying
leads to early detection of errors

• precise, unambiguous, complete

• understanding, argumentation and simulation

• precise basis for implementation and testing

Early phases most critical;
implementation / testing no big problem
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Myth 3

FM are only for safety-critical systems

BOS: safety-critical and FM used

Other systems:

• almost all systems critical –

safety, economic, company image

• BOS experience:

better quality with (almost) same costs

• lot of costs in learning
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Myth 4

FM require highly trained mathematicians

BOS: software engineers can learn FM

• FM based on relatively simple mathematics

• No need to learn all mathematical background
for using FM

• No complete proofs
Model checking by few persons

• No mathematicians, please:

◦ If they have a model they can calculate
Problem: to get the valid model

◦ they aim at “elegant” solutions
not at practical ones

• Not mathematics of FM is difficult
but learning effective usage in SE
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Learning FM

• learning formal languages not difficult

• learning formal method difficult

• difficulties:

◦ how to make models / level of abstraction

◦ what to formalize and what not

◦ how to manage FM

◦ how to use the tools effectively

◦ attitude and mentality change

◦ developing specification styles / standards

◦ developing coding techniques

◦ developing reviewing techniques for FM

◦ embedding in SE process

integration with existing methods

19



Learning FM

• courses only to learn the formal language

• university knowledge restricted to formal

language knowledge

• learning usage on the job

• potential conflict: learning ↔ project progress

• guru (hero) necessary

• potential conflict: guru task ↔ guru’s task

• breaking point in thinking about FM:

before break: FM are a burden

after break: real benefits

how did we ever manage without FM?

• not everybody likes FM
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Myth 5

FM increase development costs

BOS: probably yes, a little bit

But:

• No real comparison: no non-formal BOS

• Much of costs in learning – first time costs

• More important:

shift in costs

from implementation and testing

towards specification and design
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Shift in Efforts

• Design phase more important and much longer

• Gain in implementation and testing

• Design more detailed

• Earlier detection of problems / defects

“first think and then build”

In principle, independent from FM

but without FM easier to escape from it

• Difficult to measure / manage progress

during design

• Planning of implementation and testing

very precise
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Myth 6

FM are unacceptable to users

BOS: user ( RWS ) was satisfied

• informal explanations of formal specifications

are necessary

• simulation of formal models was very useful

to show defects ( SPIN with MSC )
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Myth 7

FM are not used on real software

BOS: used successfully

And with a next, BOS-like system,

CMG will use FM —

and try to increase the level of formality

Dad, when you were young, were there

really people who developed their software

without formal methods ?

How did they manage ?
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Benefits & Costs

+ better software quality

+ more preciseness

+ problems and defects earlier detected

+ better basis for testing

+ no major problems found during testing

+ better planning of implementation

and testing phase

+ efficient reviewing of code based on

formal design with uniform style

+ estimated better maintainability

(if FM specs kept up to date)
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Benefits & Costs

◦ design phase longer;

implementation and testing phase shorter

◦ increase in professionalization:

good projects get better; bad projects get worse

◦ likely longer overall development,

mainly due to learning

– learning to make effective use of FM not easy

– integration with current SE practice is weak

– tool support is insufficient for large systems
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Comparison with “Seven Myths”

Observations of Anthony Hall and BOS mostly agree

Minor differences of BOS w.r.t. Hall:

• distinction specification ↔ design

• distinction specification ↔ model

• FM not ideal for conceptual modelling
and high-level structuring

• importance of tools:

◦ learning

◦ stimulating

◦ check of specifications

◦ model checking

◦ but insufficient:
- functionality
- size which can be handled
- integration with SE tools
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Conclusion FM Usage

• FM do increase quality

• FM are usable in industrial context

• FM require some learning and adaptation,

not completely off-the-shelf

28



Conclusion FM Research

• Not so much need for new FM theories

but making existing FM theories

better applicable

• Integration of data and process formalisms

• Better tools needed w.r.t. to size of models

• Integration within SE practice

• Bottle-neck in early development phases

• Proving code correct w.r.t. formal specification

is not important

• Getting the formal specification is important

29



More about the Storm Surge Barrier:

http://www.minvenw.nl/rws/dzh/svk/engels/
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