
26/02/99 Rajagopal Nagarajan, Imperial College 1

Semantics of InteractionSemantics of Interaction

Rajagopal NagarajanRajagopal Nagarajan

Imperial College, LondonImperial College, London

26/02/99 Rajagopal Nagarajan, Imperial College 2

Computation asComputation as interactioninteraction

•• Traditional mathematical models of computationTraditional mathematical models of computation
view programs as computing functions or relationsview programs as computing functions or relations
from inputs to outputs.from inputs to outputs.

26/02/99 Rajagopal Nagarajan, Imperial College 3

•• This view is too restrictive and simplistic in currentThis view is too restrictive and simplistic in current
context of distributed, mobile, global computing.context of distributed, mobile, global computing.

•• Processes or agents interacting with each otherProcesses or agents interacting with each other
and information flows around the system.and information flows around the system.

•• The aim is to describe such complex systems andThe aim is to describe such complex systems and
their behaviour in a mathematical framework.their behaviour in a mathematical framework.

26/02/99 Rajagopal Nagarajan, Imperial College 4

Structure of the talkStructure of the talk

•• Processes, interaction, types, semanticsProcesses, interaction, types, semantics

•• Game SemanticsGame Semantics

•• Games for Program AnalysisGames for Program Analysis

•• Modelling Modelling DataflowDataflow using Interaction Categories using Interaction Categories

26/02/99 Rajagopal Nagarajan, Imperial College 5

•• Processes or agents basic entitiesProcesses or agents basic entities

. . .

26/02/99 Rajagopal Nagarajan, Imperial College 6

•• The main operation is interaction which is achievedThe main operation is interaction which is achieved
by connecting processes togetherby connecting processes together

B
.

26/02/99 Rajagopal Nagarajan, Imperial College 7

•• Types are a valuable aid to the construction ofTypes are a valuable aid to the construction of
correct programs.correct programs.

•• Compile-time type-checking or type-inference ofCompile-time type-checking or type-inference of
particular importance.particular importance.

•• In sequential programming, type systems are usedIn sequential programming, type systems are used
to express constraints on to express constraints on combinability combinability ofof
program modules.program modules.

26/02/99 Rajagopal Nagarajan, Imperial College 8

•• In distributed systems, ensuring compatibleIn distributed systems, ensuring compatible
combinations of subsystems is more complex.combinations of subsystems is more complex.

•• Interaction is in the form of prolonged pattern ofInteraction is in the form of prolonged pattern of
communication rather than a procedure call.communication rather than a procedure call.

•• Types are harder to construct, but then benefitsTypes are harder to construct, but then benefits
of the type system are much greater.of the type system are much greater.
Sophisticated properties of processes---forSophisticated properties of processes---for
example, deadlock-freedom---can be addressed.example, deadlock-freedom---can be addressed.

26/02/99 Rajagopal Nagarajan, Imperial College 9

p

A A

. . .

1 n

Types

Types are used to describe the interface to a processTypes are used to describe the interface to a process

26/02/99 Rajagopal Nagarajan, Imperial College 10

We use linear connectives to structure the interfaceWe use linear connectives to structure the interface
of a process.of a process.

Tensor to combine ports of processesTensor to combine ports of processes

p

B
. . .

q

A B

. . .

BA �

26/02/99 Rajagopal Nagarajan, Imperial College 11

We use linear negation to differentiate between inputWe use linear negation to differentiate between input
and output.and output.

p

B
. . .

q

. . .
A A

T

26/02/99 Rajagopal Nagarajan, Imperial College 12

A wire or a process that acts as a buffer is as followsA wire or a process that acts as a buffer is as follows

A A
T

26/02/99 Rajagopal Nagarajan, Imperial College 13

•• Semantics offers a sound mathematical basis forSemantics offers a sound mathematical basis for
programming languages and software systems.programming languages and software systems.

•• A semantic framework with associated proofA semantic framework with associated proof
methods is vital for guaranteeing correctness ofmethods is vital for guaranteeing correctness of
programs.programs.

•• Simulation or testing is not exhaustive.Simulation or testing is not exhaustive.

•• Using formal verification in addition to simulationUsing formal verification in addition to simulation
increases the degree of confidence inincreases the degree of confidence in
software/hardware systems.software/hardware systems.

26/02/99 Rajagopal Nagarajan, Imperial College 14

•• Denotational Denotational semanticssemantics

–– “mathematical” semantics“mathematical” semantics

–– models input/output behaviourmodels input/output behaviour

–– compositionalcompositional

–– very successful in capturing functionalvery successful in capturing functional
programmingprogramming

26/02/99 Rajagopal Nagarajan, Imperial College 15

•• Operational semantics.Operational semantics.

–– “behavioural” semantics“behavioural” semantics

–– describes computation stepsdescribes computation steps

–– non-compositional in generalnon-compositional in general

–– successful in capturing both functional andsuccessful in capturing both functional and
concurrent computationconcurrent computation

26/02/99 Rajagopal Nagarajan, Imperial College 16

Towards compositional operational semanticsTowards compositional operational semantics

•• Game SemanticsGame Semantics

Fully abstract models and analyses of programmingFully abstract models and analyses of programming
languageslanguages

•• Interaction CategoriesInteraction Categories

Compositional type systems for concurrencyCompositional type systems for concurrency

26/02/99 Rajagopal Nagarajan, Imperial College 17

Game Semantics for Programming LanguagesGame Semantics for Programming Languages

 AbramskyAbramsky, , JagadeesanJagadeesan, , MalacariaMalacaria, , McCuskerMcCusker

 Hyland Hyland, , OngOng, , NickauNickau, Honda, , Honda, LairdLaird, , HarmerHarmer

Games for Program AnalysisGames for Program Analysis

 HankinHankin, , MalacariaMalacaria, , SampathSampath

Interaction CategoriesInteraction Categories

 AbramskyAbramsky, Gay, Nagarajan, Gay, Nagarajan

26/02/99 Rajagopal Nagarajan, Imperial College 18

•• Game semantics models computation as playing aGame semantics models computation as playing a
game.game.

•• Two persons: Player (P) and Opponent (O).Two persons: Player (P) and Opponent (O).

•• Player can be thought of as the system andPlayer can be thought of as the system and
opponent as the environment.opponent as the environment.

•• In programming languages, system can be thoughtIn programming languages, system can be thought
of as a term and environment as the context.of as a term and environment as the context.

26/02/99 Rajagopal Nagarajan, Imperial College 19

•• Player and opponent make alternate moves.Player and opponent make alternate moves.

•• A type represents the kind of computation, henceA type represents the kind of computation, hence
types are represented by games.types are represented by games.

•• A program of type A determines how a systemA program of type A determines how a system
behaves, hence is represented by strategies forbehaves, hence is represented by strategies for
player.player.

26/02/99 Rajagopal Nagarajan, Imperial College 20

A natural number gameA natural number game

P

O

N

75

q

26/02/99 Rajagopal Nagarajan, Imperial College 21

Function type gameFunction type game

P

O

P

O

NN �

5

q

6

q

26/02/99 Rajagopal Nagarajan, Imperial College 22

Composing strategiesComposing strategies

NN �

5

q

6

BN �

q
q

q

6

ff

;

26/02/99 Rajagopal Nagarajan, Imperial College 23

Copycat strategyCopycat strategy

P

O

P

O

NN �

n

q

n

q

26/02/99 Rajagopal Nagarajan, Imperial College 24

•• Program analysis involves compile-time analysis ofProgram analysis involves compile-time analysis of
run-time behaviourrun-time behaviour

•• Control flow analysis for a functional languageControl flow analysis for a functional language
abstracts the substitutions of terms for variablesabstracts the substitutions of terms for variables
that take place during the execution of a program.that take place during the execution of a program.

•• Games for control flow analysisGames for control flow analysis

–– substitution is interactionsubstitution is interaction

–– derived from semanticsderived from semantics

–– analysis correct by constructionanalysis correct by construction

26/02/99 Rajagopal Nagarajan, Imperial College 25

ExampleExample

Ε Φ Ε Φ∼∼∼∼↔↔ ���:.. xfxf

∼∼↔ �:.yy

Ε Φxfxf ..↔↔ Ε Φyy .↔

26/02/99 Rajagopal Nagarajan, Imperial College 26

Opponent moves termsOpponent moves terms

Player moves Player moves vars vars of terms of terms

Opponent move above Opponent move above arguments of a arguments of a

a player move variablea player move variable

Player move above all s of termPlayer move above all s of term

an opponent movean opponent move

↔

↔

↔

26/02/99 Rajagopal Nagarajan, Imperial College 27

yy .↔

∼

∼

∼

∼

∼

∼

x y↔

f↔

xfxf ..↔↔ Ε Φfxfxf ..↔↔

Ε Φxf

x↔

26/02/99 Rajagopal Nagarajan, Imperial College 28

•• DataflowDataflow is a simple model of concurrency. is a simple model of concurrency.

•• A number of nodes connected together in aA number of nodes connected together in a
network.network.

•• There are functions at each node performingThere are functions at each node performing
computation.computation.

•• Operations are instantaneous and so areOperations are instantaneous and so are
communications.communications.

•• There is an elegant semantic model, due to Kahn,There is an elegant semantic model, due to Kahn,
using least using least fixpointsfixpoints..

26/02/99 Rajagopal Nagarajan, Imperial College 29

•• DataflowDataflow has been used as the underlying model of has been used as the underlying model of
computation in areas such as signal processing andcomputation in areas such as signal processing and
hardware specification.hardware specification.

•• Synchronous Synchronous dataflow dataflow is used widely in languages is used widely in languages
used for signal processing.used for signal processing.

•• Synchronous real-time languages such as SIGNALSynchronous real-time languages such as SIGNAL
and LUSTRE use and LUSTRE use dataflow dataflow models.models.

•• The The Ptolemy Ptolemy system developed at the Universitysystem developed at the University
of California, Berkeley uses a synchronous model.of California, Berkeley uses a synchronous model.

26/02/99 Rajagopal Nagarajan, Imperial College 30

 We now describe how to construct We now describe how to construct dataflowdataflow
networks in a typed framework. Suppose we arenetworks in a typed framework. Suppose we are
working with networks in which working with networks in which datatypes datatypes comecome
from some type A. A nodefrom some type A. A node

 is modelled by a process (is modelled by a process (morphismmorphism))

P
A

A
A

AAAP �:

26/02/99 Rajagopal Nagarajan, Imperial College 31

 Now suppose we have another node Q and connectNow suppose we have another node Q and connect
the two together to form a simple networkthe two together to form a simple network

The node Q is modelled by a processThe node Q is modelled by a process

and to model the entire network we formand to model the entire network we form

P
Q

A

A
A

A

AAAAQ ��:

Ε Φ AAAAAQidP
A

���� :;

A

26/02/99 Rajagopal Nagarajan, Imperial College 32

In our basic model, the types are In our basic model, the types are tuplestuples consisting of consisting of
an alphabet of actions (labels) and a safetyan alphabet of actions (labels) and a safety
specification.specification.

Combining ports produces Combining ports produces tuples tuples of actions. A processof actions. A process
P of typeP of type

has actions of the formhas actions of the form

Ε Φ
n

aa ,,
1
�

n
AA �� �

1

26/02/99 Rajagopal Nagarajan, Imperial College 33

•• The type structure is very rudimentary, allowing usThe type structure is very rudimentary, allowing us
only to specify interconnection structure andonly to specify interconnection structure and
safety properties.safety properties.

•• But it can be refined, for example, to includeBut it can be refined, for example, to include
information about deadlock-freedom.information about deadlock-freedom.

26/02/99 Rajagopal Nagarajan, Imperial College 34

Processes can be represented by Processes can be represented by synchronizationsynchronization
trees. For example, two processes P: A -> B and Q:trees. For example, two processes P: A -> B and Q:
B -> C can be as followsB -> C can be as follows

Ε Φ
22

,ba

Ε Φ
33

,ba Ε Φ
33
',' ba

Ε Φ
11
',' baΕ Φ

11
,ba

Ε Φ
22
',' ba Ε Φ

22
"," ba Ε Φ

22
',' cbΕ Φ

22
,cb

Ε Φ
33

,' cb Ε Φ
33
',' cb

Ε Φ
11

,cb

26/02/99 Rajagopal Nagarajan, Imperial College 35

Ε Φ
33

,' ca Ε Φ
33
',' ca

Ε Φ
22

,ca

Ε Φ
11

,ca

CAQP :;•• Their composition isTheir composition is

26/02/99 Rajagopal Nagarajan, Imperial College 36

•• SIGNAL and LUSTRE are synchronous, real-time,SIGNAL and LUSTRE are synchronous, real-time,
dataflowdataflow languages used for signal processing and languages used for signal processing and
control applications.control applications.

•• SIGNAL/LUSTRE operators are modelled as nodesSIGNAL/LUSTRE operators are modelled as nodes
of the of the dataflow dataflow network.network.

•• Each operator given a type in the translation.Each operator given a type in the translation.

•• Streams of data are translated intoStreams of data are translated into
synchronization synchronization trees.trees.

26/02/99 Rajagopal Nagarajan, Imperial College 37

ConclusionsConclusions

•• Game semantics for modelling and analysingGame semantics for modelling and analysing
programming languages.programming languages.

•• As an example, we discussed using games toAs an example, we discussed using games to
perform control flow analysis.perform control flow analysis.

•• Interaction Categories for providing a typedInteraction Categories for providing a typed
framework for concurrent computation.framework for concurrent computation.

•• As an example, we discussed using interactionAs an example, we discussed using interaction
categories to model categories to model dataflowdataflow..

26/02/99 Rajagopal Nagarajan, Imperial College 38

•• Techniques from game semantics used to solve anTechniques from game semantics used to solve an
important open problem in theoretical computerimportant open problem in theoretical computer
science---the full abstraction of PCF.science---the full abstraction of PCF.

•• Other fully abstract models include features suchOther fully abstract models include features such
as imperative constructs, control, generalas imperative constructs, control, general
references, and finite non-determinism.references, and finite non-determinism.

•• Games have been used to perform control flowGames have been used to perform control flow
analysis, analysis, dataflow dataflow analysis, and to discuss secureanalysis, and to discuss secure
information flows.information flows.

26/02/99 Rajagopal Nagarajan, Imperial College 39

•• Interaction Categories have been used to developInteraction Categories have been used to develop
type systems for concurrency.type systems for concurrency.

•• Benefits of this approach include type checking,Benefits of this approach include type checking,
verification and semantic proof methods.verification and semantic proof methods.

•• Our framework is not restricted toOur framework is not restricted to dataflow dataflow. We. We
have already developed typed processhave already developed typed process calculi calculi based based
on the semantics.on the semantics.

•• We have compositional methods for theWe have compositional methods for the
verification of deadlock-freedom.verification of deadlock-freedom.

26/02/99 Rajagopal Nagarajan, Imperial College 40

For further informationFor further information

 http://theory. http://theory.docdoc..icic.ac..ac.ukuk/~raja//~raja/tcooltcool.html.html

