
An ongoing work on statistical structural testing via probabilistic concurrent
constraint programming

Matthieu Petit
�

Arnaud Gotlieb
IRISA / INRIA

Campus Beaulieu
35042 Rennes cedex, FRANCE�

Matthieu.Petit,Arnaud.Gotlieb � @irisa.fr
Abstract

The use of a model to describe and test the expected be-
havior of a program is a well-proved software testing tech-
nique. Statistical structural testing aims at building a model
from which an input probability distribution can be derived
that maximizes the coverage of some structural criteria by
a random test data generator. Our approach consists in
converting statistical structural testing into a Probabilis-
tic Concurrent Constraint Programming (PCCP) problem
in order 1) to exploit the high declarativity of the proba-
bilistic choice operators of this paradigm and 2) to benefit
from its automated constraint solving capacity. This paper
reports on an ongoing work to implement PCCP and exploit
it to solve instances of statistical structural testing prob-
lems. Application to testing Java Card applets is discussed.

1 Introduction

Random testing. Random testing is an approach of soft-
ware testing that is recognized to be of particular interest to
improve software reliability [5]. Random testing has the
great advantages 1) to introduce the randomness in the way
the test data are selected and 2) to provide powerful sta-
tistical tools to evaluate the quality of the generated test
set. The price to pay for these benefits concerns the ne-
cessity to have an automated oracle function, that is to say
the availability of a procedure that can decide the correct-
ness of the computed output. The most basic way of doing
random testing consists in using a uniform probability dis-
tribution over the input domain of the program under test
(every input point has the same probability to be chosen).
In certain cases, this approach has even been demonstrated�

This work is part of the GENETTA project granted by the Brittany
region

to be as competitive as other more sophisticated testing ap-
proaches [12, 6]. However, this is a somehow “blind” way
of testing programs. Roughly speaking, it is clear that cer-
tain elements of the program have a very low probability to
be activated and then they may not be exercised by using a
uniform random generator as the number of test data to be
generated has to remain reasonable.

int foo(int x, int y) �
1. if (���	��

��� && ���	��
����)�
2. if (�����������)
3. �����
4. if (�	������

���)
5. ������

Figure 1. Program foo

Motivating example. Consider the Java-like program
of Fig.1 where � �"! are restricted to take their values into# $ ��% $&$&$(')*# $ �+% $,$&$-' and suppose that we want to evaluate
the interest of uniform random testing by looking at the
coverage of the all paths criterion. It is not difficult to see
that path 1-2-3-4-5 of this program has a very low proba-
bility (near to one over ten thousands) to be exercised, as
only .,/ input points over % $,$ %10 satisfy all three conditions.

Statistical structural testing. To address this problem,
Thévenod-Fosse and Waeselynck introduced the statistical
structural testing technique [24] which aims at building a
non-uniform input probability distribution to maximize the
coverage of some structural criteria. In the above example,
the problem consists in building a non-uniform distribution
such as the theoretical probability to activate path 1-2-3-4-5
is equal to 20 percents as there are 5 execution paths.
Although not strictly viewed as model-based testing, this

process can be formulated as building a model and generat-
ing test data from it by solving constraint systems [9]. The
model is the control flow graph of the program under test
where the edges are labelled with their expected theoretical
probability to be activated. Algorithms to generate test data
consist then to explore this model and extract probabilistic
constraints over the input domain.

Using probabilistic concurrent constraint program-
ming. Our approach targets to realize statistical structural
testing by using Probabilistic Concurrent Constraint
Programming (PCCP) [19, 11]. This paradigm extends
Concurrent Constraint Programming [21] with probabilis-
tic choice operators in order to implement randomized
algorithms [19] or stochastic processes [10]. We want
1) to exploit the high declarativity of these probabilistic
choice operators and 2) to benefit from the automated
constraint solving capacity of this paradigm to address
the problem mentioned above. This paper reports on our
implementation of PCCP over finite domains constraints
and on a first proposition to interpret statistical structural
testing as a PCCP problem.

Application to testing java card applets. Our appli-
cation domain is the smart card quality assurance field.
Research works on software testing in that field includes
the BZ-testing approach designed by Legeard and Peureux
[14, 1] to generate automatically test cases from a formal B
or Z specification of the Java Card transaction mechanism.
In [20, 18], Pretschner et al. make use of constraint
solving techniques to generate test cases for validating
the authentification protocol of an inhouse smart card. At
the same time, Clarke et al. [3] developed symbolic test
generation algorithms to generate on-the-fly test cases for
a feature of the CEPS1 e-purse application and Martin
and Du Bousquet [15] proposed to use UML-based tools
to generate test suites for testing Java Card applets. All
these approaches have in common to require first a formal
model (B specification, automata, input/output transition
system or statecharts) to be constructed in order to generate
test cases. Sometimes this effort is too costly and cheaper
approaches such as random testing and statistical structural
testing are preferable. For testing java card applets, our ap-
proach only asks for a probabilistic control flow graph to be
extracted from a code applet analysis. Hence, our approach
appears as being complementary with other approaches.
Note that generating test data from a formal model does
not guarantee the code structure to be completely covered,
which is the ideal goal of statistical structural testing.

Contents. The paper is organized as follows : Section 2

1The Common Electronic Purse Specification is a standard for creating
inter-operable multi-currency smart card e-purse systems.

describes statistical structural testing as model-based test-
ing ; Section 3 introduces our implementation of PCCP
over finite domains constraints whereas Section 4 contains a
first proposition to interpret statistical structural testing as a
PCCP problem. Section 5 introduces potential applications
to testing Java Card applets and finally Section 6 discusses
the remaining problems to fulfill the gap between theory
and practice.

2 Statistical Structural Testing as Model-
based Testing

2.1 Background

Given a structural criterion 2 , 354 is the set of elements
which must be covered during testing. By using a ran-
dom test data generator, the probability to exercise element687 394 is noted :<; . By a simple probabilistic reasoning, the
statistical testing efficiency is characterized with the num-
ber = of generated test data and :<>@?BA the lowest probability
of an 3C4 element to be activated. This efficiency parame-
ter is usually referred to as the test quality and is noted D1E
[24]. 2 is said to be covered with a probability D�E iff each
element of 3 4 has a probability at least D�E to be activated
during a = test data random generation.

The following relation holds [24] :%GFHD�EJILKM%GFN: >O?BAQP E
The relation can easily be justified since KM%RFS: >O?TAUP is

the probability of the event : “the less probable element is
not activated” then % FVD E is the probability of no less prob-
able element activation during = test data random gener-
ation. As an immediate corollary, we get an estimation of
the number of test data generation =W>@?BA to reach a selected
value of the test quality D E :

=�>O?TAXIZY\[B] KM%GFHD�E P[B] KM%�F8: >@?BA^P1_V` %
where ab�Qc denotes the integral part.

Statistical structural testing aims at finding an input dis-
tribution which maximizes :<>O?TA according to a given stru-
ctural criterion 2 and a test quality D�E .

2.2 Probabilistic control flow graph

Although not strictly viewed as model-based testing, sta-
tistical structural testing can be formulated as such by the
following two steps :

1. Building a model from a source code analysis and the
computation of theoretical probabilities;

1

2

3

begin

end

4

5

6

7

0

0

1

1

1

1

1

1

0

1

2

3

begin

end

4

5

6

7

2/3

1/3

1/3

1/3

1/3

1/3

1/3

2/3

1/3

1

2

3

begin

end

4

5

6

7

4/5

2/5

2/5

2/5

2/5

2/5

2/5

4/5

1/5

All-Nodes All-Edges All-Paths

Figure 2. Probabilistic CFG of the foo program for All-Nodes, All-Edges and All-Paths criteria

2. Deriving an input probabilistic distribution from model
runs and probabilistic constraint solving.

The model is based on an extended version of the control
flow graph that can be extracted from any imperative and
sequential program. However several restrictions must be
taken into account. The integer types are treated but the
strings and the float types are not. Aliasing, dynamic data
structures, methods calls, exceptions, ... are not considered
in the rest of the paper.

Definition 1. A control flow graph (CFG) is a connected
oriented graph de=\�gfX��h
i+jlknmo�pi+mCqsr where each node repre-
sents a statement block and each edge represents a control
transfer. = is the nodes set, f is the edges set, h
i+jlknm 7 =
is the input node and i�mCq 7 = is the output node2.

In this paper, only three classical CFG-based coverage
criteria are considered : All-Nodes, All-Edges and All-
Paths [25].

Definition 2 (All-Nodes criterion). A set t of execution
paths satisfies the All-Nodes criterion iff for each nodem 7 = , there is at least one path : in t such that nodem is on the path : .

2It is assumed that programs have only a single return point.

Definition 3 (All-Edges criterion). A set t of execution
paths satisfies the All-Edges criterion iff for each edgei 7 f , there is at least one path : in t such that : con-
tains the edge i .
Definition 4 (All-Paths criterion). A set t of execution
paths satisfies the All-Paths criterion iff t contains all ex-
ecution paths from the hui�jsknm node to the i�mCq node in the
CFG.

The CFG is extended with edge labels to build a model
for statistical structural testing. A label represents the prob-
ability of an edge i to be activated, that is to say the theo-
retical probability of an input point which activates i to be
chosen.

Let us recall that when 2 is a structural criterion, 354
denotes the set of elements which must be covered during
the test and :<; denotes the probability to activate

6H7 354 .
A probabilistic control flow graph is a control flow graphdv=\�pfX�phui�jsknmo�gi�mCqsr extended by w 4 Iyxg:�Kvi PCz i 7 f|{
where : >O?TA I Min ;�},~&� K�: ;&P is maximized.

This probabilistic CFG can be considered as the test pur-
pose for statistical structural testing. The goal is to construct
an input probability distribution which attempts to reach
this purpose where launching the random test data gener-
ation.

Fig. 2 contains three probabilistic CFG associated to the
foo program. Note that :<>O?TA can easily be computed from
these probabilistic CFGs :

Criterion �C�@� � Less probable ele-
ments to activate

All-Nodes
 1, 2, 3, 4, 5, 6, 7

All-Edges �� 2-3, 2-4, 3-4, 4-5,
4-6, 5-6, 1-7

All-Paths �� 1-2-3-4-5-6-7,
1-2-3-4-6-7,
1-2-4-5-6-7,
1-2-4-6-7,
1-7

For all the three criteria, the same algorithm can be em-
ployed to compute the set of theoretical probabilities wO4 .
This algorithm does not present any difficulty and has been
extensively described in [17]. In the presence of loops and
non-feasible paths3, the theoretical probabilities are diffi-
cult to reach by a random test data generation. In fact, in
our current approach the theoretical probabilities are only
computed by using static informations (such as the CFG).
A probable improvement of our approach would be to con-
sider theoretical probabilities that take into account dy-
namic informations.

Based on the probabilistic CFG, the input probability
distribution must be constructed. In the following, we ex-
plain how this problem can be transformed into a PCCP
problem.

3 A new Probabilistic Concurrent Constraint
Programming implementation

3.1 Concurrent Constraint Programming

We start by recalling the main principles of the concur-
rent constraint programming paradigm [21, 22].

Processes are the main notion in concurrent program-
ming. Processes are programs that are executed concur-
rently and that can interact with each other. In concur-
rent constraint programming, concurrent processes commu-
nicate via a common constraint store. The constraint store is
a conjunction of constraints on the possible values of vari-
ables.

The processes are constructed with the three fol-
lowing operators : tell K�2 P � if 2 then ���1�-��i1�1� and���1�-��i1�1���
���-�-�ui-�1� . tell Ke2 P imposes the constraint 2
to the constraint store. if 2 then ���-�-�ui-��� imposes the
constraints of ���-�-�ui-��� if 2 is entailed by the constraint
store. � is the parallel composition operator.

Concrete implementations of this paradigm include
cc(FD) [13], Oz [23] or clp(FD) [2] just to name a few. We

3path of the CFG that cannot be executed by any test datum

have chosen to build our framework upon clp(FD). Hence,
in the following a ���-�-�ui-�1� will be viewed as a �R�-�l� , if
then as an ask operator, � as the conjunction of clp(FD).
Note that variables are constrained to take their values from
given finite sets (for example integer values) in clp(FD).

3.2 Probabilistic choice operators

Gupta et al. pioneered the inclusion of a probabilistic
choice operator in concurrent constraint programming [11].
The probabilistic choice is introduced as a local random
variable into a process [10]. Based on this operator, we
present its implementation in clp(FD).

Syntax.

choose(X,[V1,..,Vn],[W1,..,Wn],Goal)

where X is a local random variable of Goal,
[V1,..,Vn] represents a finite set of possible values
and [W1,..,Wn] represents a probability distribution.
V1,.., Vn, W1,.., Wn are finite domain variables.

choose(X,[V1,..,Vn],[W1,..,Wn],Goal) is
true iff X=Vi,Goal is true with the probability :<? where:U?5I Wi�W��e�s� Wj .

Let us give an example of the usage of this operator :

Example 1 (extracted from [10]).

?-choose(X,[0,1],[1,1],[X#=Z]),
choose(Y,[0,1],[1,1],

[ask(Z#=1,[Y#=1])]).

After the example running, Z is constrained to 0 with a prob-
ability �0 (event ��I $

), to 1 with a probability �� (event��I�%	�S ZI�%) and the goal fails with a probability ��
(event �¡IJ%¢�N £I $

).
Here is the result of prob_config_term/3 which

computes the probability to reach the different constraint
stores after 5000 goal executions.

R=[([Z=0],0.5084),
(([Z=1],0.2434),([no],0.2482)]

Each element of R represents the domain of ¤ after the
goal execution and the probability to reach this constraint
store. The domain [no] represents the Prolog’s standart
fail which corresponds to an inconsistent constraint store.

The originality of our implementation comes from the
fact that probabilistic choice operators are defined as global
constraints in clp(FD). Global constraints are a good way
for giving global semantics to complex constraints. Fur-
thermore, such operators appear to the user like single cons-
traints and so can be awaked and treated efficiently by the
constraint propagation algorithm.

Note that this probabilistic choice operator introduced by
Gupta et al. did not allow the domain and the distribution
to be unknown. Our work also consisted in extending this
view, as explained in section 3.4.

3.3 Constraint solving

In clp(FD), constraint solving is based on constraint
propagation and labelling.

The constraint propagation permits to prune the domain
of the variables. This reduction is usually done with inter-
val reasoning. When a constraint can not be used to prune
the current domains of its variables, it falls into an “asleep”
state. The constraint is said “awaken” when another con-
straint reduces the domain of one of its variables. Then, this
new information is used to reduce the variable domain of
the constraint.

After constraint propagation, an enumeration is used to
get a complete solution of the constraint system. This is
done by a labelling process which tries to give a value to
a variable one by one and propagates throughout the con-
straint system. This process is repeated until all the unin-
stantiated variables become instantiated. If this valuation
leads to an inconsistency then the process tries an other pos-
sible value.

3.4 Extensions of the probabilistic operators

In regards with the statistical structural testing problem,
the input probability distribution is the unknown parame-
ter of the problem. In this context, we decided to extend
the probability choice operators family based on the oper-
ator choose/4 with unbound domain and unbound dis-
tribution. When the domain variables ([V1,..Vn]) or
the probability distribution variables ([W1,..Wn]) are un-
bound, the probabilistic choice operators as global cons-
traints fall into the “asleep” state, because the probabilis-
tic choice is not feasible. Two new global constraints of the
same family have been introduced : choose_unif/4 and
choose_dec/5.

Syntax.

choose_unif(X,Xmin,Xmax,Goal)

where X is a random variable, Xmin and Xmax are finite
domain variables

choose_unif(X,Xmin,Xmax,Goal) is true iff
X=Val,Goal is true with the probability �A wherem¥I Xmax-Xmin ` % and Val in Xmin..Xmax.

The global constraint choose_unif/4 is fallen into
an “asleep” state when Xmin or Xmax are uninstantiated.
In this case, we exploit partial informations on the X do-
main by telling the constraints : Xmin#=<X, X#=<Xmax

and Xmin#=<Xmax. The algorithm used to compute
choose_unif/4 is based on a fix point computation that
tries iteratively to prune the domain of Xmin and Xmax.

Let us illustrate the use of unbound variables in
choose_unif/4 with the following example.

Example 2.

| ?- choose_unif(X,0,Xmax,[Xmax#=X-1]).

Xmax is unknown then the random generation of a value
for X is not feasible. The constraint falls into the “asleep”
state. However, the goal

Xmax in 0..1000

awakes the constraint and the domain reduction of Xmax
during the fix point computation leads to

iteration number Xmax domain
1 0..999
2 0..998
...

...
999 0..1

1000 0..0
1001 no

The % $,$ % ith iteration of the fix point computation gives an
inconsistency of the constraint without any probabilistic
choice. So, the Xmax domain becomes empty.

Finally, the new global constraint choose_dec/5 is
introduced to simulate the conditional statement behavior
in clp(FD).

Syntax.

choose_dec(C,W1,W2,Goal1,Goal2)

where W1 and W2 are finite domain variables.

choose_dec(C,W1,W2,Goal1,Goal2) is true iff
C,Goal1 is true with the probability : or ¦ C,Goal2 is
true with the probability %GF8: where :8I §V�§V�"¨ § 0 .
The global constraint is “asleep” when W1 and W2 are not
valuated. For this operator, the probability distribution is
not necessarily bound.

4 Statistical structural testing as a PCCP
problem

To address the problem of deriving an input probability
distribution from model runs, we translate a program into a
clp(FD) goal. A random solution of this goal can be seen as
a random test datum generation for the statistical structural
testing. We follow the approach of [8] where the SSA form
is used.

if (©�ªV«) if (©�ªV«)¬�­�®"¯ ; ¬ � ­�®"¯ ;
else else¬�­¥° ; ¬,±²­N° ;¬ � ­8³^´T¬ �
µ ¬,±
¶ ;· ­�® ; · � ­�® ;

/* Heading - while */· � ­¥³^´ · ��µ · ±�¶ ;
while (

· � ¬�¸\®"¹) while (
· � � ¬ � ¸\®"¹)· ­ ·�º ® ;
· ±²­ · � º ® ;

Figure 3. SSA form of control statements

4.1 Static Single Assignment form

The SSA form is a version of a procedure on which every
variable has a unique definition and every use of a variable
is reached by this definition [4]. The SSA form of a basic
block is obtained by a simple renaming (kVI»k ` % leads
to k 0 I¼k � ` %). For the control structures, SSA form in-
troduces special assignments, called ½ -functions, to merge
several definitions of the same variable. For example, the
SSA form of the if then else is illustrated in the top of
Fig. 3. The ½ -function of the statement ¾9¿�IJ½�Kv¾ � �"¾ 0 P re-
turns one of its argument : if the flow comes from the then-
part then the ½ -function returns ¾ � , otherwise ¾ 0 .
For other structures such as loop, the ½ -functions are intro-
duced in a special heading, as exemplified in Fig. 3. If the
flow comes from the statement À � I ..., then the ½ -function
returns À � . On the contrary, if the flow comes from the body
of the loop (À 0 I ...) then, the ½ -function returns À 0 . The
SSA form allows the statements to be reinterpreted as cons-
traints with some restrictions for the while statement [8].

4.2 Translation

Assignment statement. The statement �¼Á�IÂi��&:Q� is
translated into X#=E where E is the syntactic translation ofi+�,:Q�

Compound statement. The statement 3²ÃÅÄNÃ �1Æ 3²ÃÅÄNÃ 0 is
translated into a conjunction (,) of two goals where Goal1
(resp. Goal2) is the translation of 3²ÃÅÄNÃ � (resp. 3²ÃÅÄNÃ 0).

Conditional statement. The statement ifh then 3²ÃÅÄNÃ � else 3oÃÅÄ8Ã 0 is translated into
choose_dec(C,W1,W2,Goal1,Goal2) where
C is the syntactic translation of h , Goal1 (resp. Goal2)
is the translation of 3²ÃÅÄNÃ � (resp. 3²ÃÅÄNÃ 0). W1 and W2
are computed from the theoretical probabilities of the
probabilistic CFG.

Loop statement The statement while h do 3²ÃÅÄNÃ is
treated as a conditional statement with a recursive call. In

our translation, the statement while h do 3²ÃÅÄ8Ã is considered
as the statement if h then (3oÃÅÄ8Ã ;while h do 3²ÃÅÄNÃ). A lazy
form of unfolding loop is used in our current framework but
we plan to use a global combinator to simulate the while
statement behavior .

4.3 Illustration of the translation

We illustrate the translation of the foo program. We sup-
pose that X and Y are constrained to 0..1000 (input domain
of foo program).

For All-Nodes criteria, the translation of the foo program
is :

choose_dec(X#=<100#Y#=<100,1,0,
[choose_dec(Y#>X+50,1,0,[],[]),
choose_dec(Y*X#<100,1,0,[],[])],[])

We obtain as result of prob_config_term/3

R=[([X in 0..1,Y in 51..100],1.0)]

For All-Edges criteria, the translation of the foo program
is :

choose_dec(X#=<100#/\Y#=<100,2,1,
[choose_dec(Y#>X+50,1,1,[],[]),
choose_dec(Y*X#<100,1,1,[],[])],[])

We obtain as result of prob_config_term/3

R=[([X in 0..1, Y in 51..100],0.1610),
([X in 1..49, Y in 52..100],0.1768),
([X in 0..100, Y in 0..100], 0.1640),
([X in 1..100, Y in 1..100], 0.1664),
([X in 0..1000,Y in 0..1000],0.3318)]

For All-Paths criteria, the translation of the foo program
is :

choose_dec(X#=<100#/\Y#=<100,4,1,
[choose_dec(Y#>X+50,1,1,[],[]),
choose_dec(Y*X#<100,1,1,[],[])],[])

We obtain as result of prob_config_term/3

R=[([X in 0..1, Y in 51..100],0.2126),
([X in 1..49, Y in 52..100],0.1956),
([X in 0..100, Y in 0..100], 0.2004),
([X in 1..100, Y in 1..100], 0.1954),
([X in 0..1000,Y in 0..1000],0.1960)]

These results show that our translation respects the theo-
retical probabilities of the probabilistic CFG.

4.4 Random data test generation

We turn now to the design of the random test data gener-
ator itself.

After the translation of the imperative program into a
PCCP(FD) goal, solving the resulting constraint system
with a random labelling is equivalent to the random test
data generation. A random labelling is a process that se-
lects a tuple of values for input variables at random (predi-
cate random_lab\1). Note that we are just interested by
the first found solution of the constraint sytem.

The following example illustrates a possible random da-
tum test generation for the foo program under the All-Edges
criterion.

?-choose_dec(X#=<100#/\Y#=<100,4,1,
[choose_dec(Y#>X+50,1,1,[],[]),
choose_dec(Y*X#<100,1,1,[],[])],[]),

random_lab((X,Y)).

X=36,
Y=1 ?
yes

5 Application to statistical structural testing
of Java Card applets

In this section, we discuss the interest of testing Java
Card applets with statistical structural testing via probabilis-
tic concurrent constraint programming. As previously said,
a lot of work has been carried out to automatically derive
test cases from applet’s formal specifications. Our approach
distinguishes itself by making use of (non-uniform) random
testing to address the code coverage problem without re-
quiring a formal model to be constructed. This can be il-
lustrated by the following method extracted from the well-
known SUN Java Card applet Wallet.java.

private void credit(APDU apdu) {

// access authentication
if(! pin.isValidated())

ISOException.throwIt(
SW_PIN_VERIFICATION_REQUIRED);

byte[] buffer = apdu.getBuffer();

// Lc byte denotes the number of bytes in the
// data field of the command APDU
byte numBytes = buffer[ISO7816.OFFSET_LC];

// indicate that this APDU has incoming data
// and receive data starting from the offset
// ISO7816.OFFSET_CDATA following the 5 bytes.
byte byteRead =

(byte)(apdu.setIncomingAndReceive());

// it is an error if the number of data bytes

// read does not match the number in Lc byte
if((numBytes != 1) || (byteRead != 1))
ISOException.throwIt(ISO7816.SW_WRONG_LENGTH);

// get the credit amount
byte creditAmount =
buffer[ISO7816.OFFSET_CDATA];

// check the credit amount
if((creditAmount > MAX_TRANSACTION_AMOUNT)

|| (creditAmount < 0))
ISOException.

throwIt(SW_INVALID_TRANSACTION_AMOUNT);

// check the new balance
if((short)(balance+creditAmount)>MAX_BALANCE)
ISOException.throwIt(SW_EXCEED_MAXIMUM_BALANCE);

// credit the amount
balance = (short)(balance + creditAmount);

}

In Java Card programming, an input test datum is in-
stantiated by giving values to the APDU4 buffer. APDU
is an ISO-normalized communication format between the
card and the off-card applications. In its most general form,
an APDU has the structure shown in Fig.4.

CLA INS P2 LcP1 LeInputData

Mandatory

Optional

Mandatory

Command class

Command instruction code

Parameters

Length of the InputData

Expected length of the data

returned by the card

Figure 4. APDU command

Note that the code of the credit’s method does not
make too much assumptions on the form of the APDU
command as it starts by checking several constraints on
it. For example, it checks the expected size of theÇ m�:U¾UÃMÈÉ�,ÃM� set by looking at the value of byte num-
Bytes = buffer[ISO7816.OFFSET LC];. If a
uniform random generator is used, the event x numBytes
!= 1 { will have a greater probability (0gÊ�Ë �0 Ê) than
the opposite event x numBytes == 1 { resulting in
a very frequent execution of statement ISOExcep-

tion.throwIt(ISO7816.SW WRONG LENGTH);. Statisti-
cal structural testing based on the translation shown in Sec.4
will handle this case by giving the same probability to both
events.

We argue that PCCP over finite domain constraints
is well adapted to the treatment of Java Card testing
problems as most computations within an applet are
done over integer types as strings or floats do not belong
to the language. On the one hand, conditions such as

4Application Protocol Data Unit

if(balance+creditAmount>MAX BALANCE) are
efficiently handled by probabilistic concurrent constraint
programming over finite domains as constraint propagation
is well suited to solve arithmetic constraints. But on the
other hand, it could be argued that statistical testing always
requires an automatic way of checking the correctness of
the computed results. For example, in the credit’s applet
example, how could we check if the returned balance is
correct (when the flow reaches the last statement) without
any formal specification ? This problem, known as the
oracle problem, can be handled in at least two ways in
java card programming. Firstly, some properties of the
applet under test can serve as partial oracles. Examples
of such properties include symmetry relations [7] or JML
assertions [16], that are less demanding than full formal
specifications. Secondly, older versions or prototype
versions of the applet under test can serve as test oracles
when they are available. This approach is usually referred
to as regression testing.

6 Further work

This paper has introduced statistical structural testing via
Probabilistic Concurrent Constraint Programming. This lat-
ter paradigm has been implemented and experienced over
several examples although several extensions remain to be
implemented. A first version of an automated translation
of imperative programs to PCCP programs over finite do-
mains has also been introduced and application to testing
Java Card applets is foreseen. Nevertheless, the remaining
difficulties reside in 1) the treatment of loops because the
general iteration cannot be directly modelized as a global
constraint due to the non termination problem ; 2) the treat-
ment of polymorphic method calls as our translation is cur-
rently solely based on static informations and dynamic typ-
ing information is required ; 3) dealing with aliasing of ref-
erences is mandatory but requires dynamic flow informa-
tions to be handled without approximation.

References

[1] F. Ambert, F. Bouquet, S. Chemin, S. Guenaud, B. Legeard,
F. Peureux, M. Utting, and N. Vacelet. Bz-testing-tools: A
tool-set for test generation from z and b using constraint logic
programming. In In Proc. of FATES’02, Formal Approaches
to Testing of Software, Brn, Czech Republic, Aug. 2002.

[2] M. Carlsson, G. Ottosson, and B. Carlson. An Open–Ended
Finite Domain Constraint Solver. In Prog. Languages, Im-
plementation, Logics, and Programs (PLILP), Southampton,
UK, Sep. 1997.

[3] D. Clarke, T. Jéron, V. Rusu, and E. Zinovieva. Auto-
mated test and oracle generation for smart-card applications.

In In Int. Conf. on Research in Smart Cards (e-Smart’01),
Springer Verlag, LNCS 2140, pages 58–70, 2001.

[4] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and
F. K. Zadeck. Efficently Computing Static Single Assign-
ment Form and the Control Dependence Graph. ACM Trans.
on Prog. Lang. and Sys., 13(4):451–490, 1991.

[5] Joe Duran and Simeon Ntafos. An evaluation of random test-
ing. IEEE Trans. on Soft. Eng., 10(4):438–444, Jul. 1984.

[6] P.G. Frankl, R.G. Hamlet, B. Littlewood, and L. Strigini.
Evaluating testing methods by delivered reliability. IEEE
Trans. on Soft. Eng., 24(8):586–601, August 1998.

[7] A. Gotlieb. Exploiting symmetries to test programs. In
IEEE International Symposium on Software Reliability and
Enginering (ISSRE), Denver, CO, USA, Nov. 2003.

[8] A. Gotlieb, B. Botella, and M. Rueher. Automatic Test Data
Generation Using Constraint Solving Techniques. In ACM
Int. Symp. on Soft. Testing and Analysis (ISSTA). Soft. Eng.
Notes,23(2):53-62, 1998.

[9] S-D. Gouraud, A. Denise, M-C. Gaudel, and B. Marre. A
new way of automating statistical testing. In 16th IEEE Int.
Conf. on Automated Software Engineering (ASE’01), San
Diego, CA, Nov. 2001.

[10] Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden.
Stochastic processes as concurrent constraint programs. In
ACM Princ. of Prog. Lang. (POPL), pages 189–202, New
York, 1999. ACM.

[11] Vineet Gupta, Radha Jagadeesan, and Vijay A. Saraswat.
Probabilistic concurrent constraint programming. In Interna-
tional Conference on Concurrency Theory, pages 243–257,
1997.

[12] Dick Hamlet and Ross Taylor. Partition testing does not in-
spire confidence. IEEE Trans. on Soft. Eng., 16(12):1402–
1411, December 1990.

[13] Pascal Van Hentenryck, Vijav Saraswat, and Yves Deville.
Design, implementation, and evaluation of the constraint lan-
guage cc(fd). Technical Report CS-93-02, Brown University,
1993.

[14] B. Legeard and F. Peureux. Generation of functional test se-
quences from b formal specification : presentation and indus-
trial case study. In Int. Conference on Automated Software
Engineering (ASE’01), San Diego, USA, Nov. 2001.

[15] H. Martin and L.d. Bousquet. Automatic test generation for
java-card applets. In Isabelle Attali and Thomas P. Jensen,
editors, Java on Smart Cards: Programming and Security,
Works. JavaCard 2000, Cannes, France, 2000, volume 2041
of LNCS, pages 121–136. Springer, 2001.

[16] H. Meijer and E. Poll. Towards a full formal specification of
the java card api. In Isabelle Attali and Thomas P. Jensen,
editors, Smart Card Programming and Security, Int. Conf.
on Research in Smart Cards, volume 2140 of LNCS, pages
165–178. Springer, 2001.

[17] Matthieu Petit. Utilisation de la Programmation Concurrente
par Contraintes Probabilistes pour le Test Statistique Struc-
turel. Rapport de DEA d’Informatique, Université de Rennes
1, 2004.

[18] J. Philipps, A. Pretschner, O. Slotosch, E. Aiglstorfer,
S. Kriebel, and K. Sholl. Model-based test case generation
for smart cards. In In Formal Methods for Industrial Crit-
ical Systems, Elec. Notes in Theoretical Computer Science
80, pages 168–182, Trondheim, Jun. 2003.

[19] Alessandra Di Pierro and Herbert Wiklicky. An operational
semantics for probabilistic concurrent constraint program-
ming. In International Conference on Computer Languages,
pages 174–183, 1998.

[20] A. Pretschner, O. Slotosch, H. Ltzbeyer, E. Aiglstorfer, and
S. Kriebel. Model based testing for real: The inhouse card
case study. In Int. Works. on Formal Methods for Industrial
Critical Systems (FMICS’01), pages 79–94, Paris, FR, Jul.
2001.

[21] Vijay A. Saraswat. Concurrent Constraint Programming.
The MIT Press, 1993.

[22] Vijay A. Saraswat, Martin Rinard, and Prakash Panan-
gaden. Semantic foundations of concurrent constraint pro-
gramming. In ACM Princ. of Prog. Lang. (POPL), pages
333–352, Orlando, 1990. ACM.

[23] Gert Smolka. The Oz programming model. In Jan van
Leeuwen, editor, Computer Science Today, Lecture Notes
in Computer Science, vol. 1000, pages 324–343. Springer-
Verlag, Berlin, 1995.

[24] P. Thevenod-Fosse and H. Waeselynck. An investigation of
statistical software testing. Journal of Software Testing, Ver-
ification and Reliability, 1(2):5–25, Jul. 1991.

[25] Hong Zhu, Patrick A. V. Hall, and John H. R. May. Soft-
ware unit test coverage and adequacy. ACM Comput. Surv.,
29(4):366–427, 1997.

