
Poster Presentation : Probabilistic Choice

Operators as Global Constraints : Application to

Statistical Software Testing

Matthieu Petit and Arnaud Gotlieb

IRISA-INRIA, Campus de Beaulieu, 35042 Rennes cedex, France
{Matthieu.Petit, Arnaud.Gotlieb}@irisa.fr

Probabilistic Concurrent Constraint Programming (PCCP) [3] is an exten-
sion of Concurrent Constraint Programming (CCP) [5] where probabilistic choice
operators are introduced to represent the randomness or uncertain behaviour of
processes. A probabilistic choice between two processes can be though of as flip-
ping a coin : head the first process is triggered, tail it is the second. Based on
this theoretical framework, it seems possible to extend the classical CCP over
finite domains framework [4] with probabilistic choice operators.

Our aim is to define probabilistic choice operators as global constraints of the
CCP over finite domains paradigm [4] and to apply this framework to deal with a
specific Software Testing problem [1]. Global constraints are a good way for giv-
ing global semantics to complex constraints. Furthermore, such operators appear
to the user like single constraints and so can be awaked and treated efficiently
by the constraint propagation algorithm. A part of our work is to establish the
relationships between probabilistic choice operators, global constraints and the
PCCP semantic framework.

Gupta et al. pioneered the inclusion of probabilistic choice operators in CCP
to address several applications areas, such as stochastic processes [3].

Example 1 (extracted from [3])
choose X from {0, 1} with distribution { 1

2
, 1

2
} in [tell (X = Z)]

‖ choose Y from {0, 1} with distribution { 1

2
, 1

2
}

in [if Z = 1 then tell (Y = 1)].

After the example running, Z is constrained to 0 with a probability 1

2
(event

X = 0), to 1 with a probability 1

4
(event X = 1 ∧ Y = 1) and the process fails

with a probability 1

4
(event X = 1 ∧ Y = 0).

Our current implementation includes new global constraints of SICStus Pro-
log’s library clp(FD) like the choose_unif global constraint.

Example 2 (Example 1 running)

?-choose_unif(X,0..1,[X#=Z]),choose_unif(Y,0..1,[ask(Z#=1,Y#=1)]).

Here is an output sequence of several launches (we get the distribution p(Z =
0) = 1

2
, p(Z = 1) = 1

4
and p(fail) = 1

4
, as expected).

X=1, X=0, no X=1, X=0, no X=0, X=0,

Y=1, Y=0, Y=1, Y=1, Y=1, Y=0, . . .

Z=1 Z=0 Z=1 Z=0 Z=0 Z=0



In [2], we proposed to transform the problem of the automatic test data
generation into a Constraint Logic Programming over finite domains problem.
Our work aims at extending this framework to address a new problem : the
statistical structural testing application [6]. In this testing method, we use a
probabilistic test data selection, i.e. the use of a random test data generator
to cover a selected testing criterion (such as the all-paths criterion). It requires
constructing a non-uniform generator over the input domain of the program,
which aims at giving the highest probability to activate each criterion element,
including the most difficult to reach. This allows a good coverage of test criteria
and reduces the cost of the test oracle construction.

Example 3 Test criterion : covering all-paths.

if X = 0 then C1 else C2 ; if Y = 0 then C3 else C4

Statistical structural testing aims at constructing a random test data generator
where the events (X = 0 ∧ Y = 0), (X = 0 ∧ Y 6= 0), (X 6= 0 ∧ Y = 0) and
(X 6= 0 ∧ Y 6= 0) have the same probability ( 1

4
). Here is a first model of this

problem in PCCP :

choose U from {0, 1} with distribution { 1

2
, 1

2
}

in [if U = 0 then [tell (X = 0) ‖ C1] ‖ if U = 1 then [tell (X 6= 0) ‖ C2]]
‖ choose V from {0, 1} with distribution { 1

2
, 1

2
}

in [if V = 0 then [tell (Y = 0) ‖ C3] ‖ if V = 1 then [tell (Y 6= 0) ‖ C4]] .

To conclude, we believe that implementing probabilistic choice operators as
global constraints is interesting. In the one hand, this gives the possibility of
using a powerful probabilistic choice operator in the CCP over finite domains
framework. In the other hand, it seems to be adequate to address the problem of
random test data generator for statistical structural testing. The implementation
as an extension of the clp(FD) library of SICStus Prolog is in progress.

References

1. Richard A. DeMillo and A. Jefferson Offutt. Constraint-based automatic test data
generation. IEEE Trans. Softw. Eng., 17(9):900–910, 1991.

2. A. Gotlieb, B. Botella, and M. Rueher. A clp framework for computing structural
test data. In Computational Logic (CL), pages 399–413, LNAI 1891, 2000.

3. V. Gupta, R. Jagadeesan, and P. Panangaden. Stochastic processes as concurrent
constraint programs. In Symposium on POPL, pages 189–202, 1999.

4. P. Van Hentenryck, V. A. Saraswat, and Y. Deville. Design, implementation, and
evaluation of the constraint langage cc(FD). Journal of Logic Programming, 1998.

5. V. A. Saraswat, M. Rinard, and P. Panangaden. Semantic foundations of concurrent
constraint programming. In Symposium on POPL, pages 333–352, 1991.

6. P. Thévenod-Fosse and H. Waeselynck. An Investigation of Statistical Software
Testing. Journal of Software Testing, Verification and Reliability, 1991.


