
Coupling and Cohesion Measures for Evaluation of
Component Reusability

G. Gui
Department of Computer Science
University of Essex, Colchester,

CO4 3SQ, UK
Tel: +44 1206 873805

ggui@essex.ac.uk

P. D Scott
Department of Computer Science
University of Essex, Colchester,

CO4 3SQ, UK
Tel: +44 1206 872015

scotp@essex.ac.uk

ABSTRACT
This paper provides an account of new measures of coupling and
cohesion developed to assess the reusability of Java components
retrieved from the internet by a search engine. These measures
differ from the majority of established metrics in two respects:
they reflect the degree to which entities are coupled or resemble
each other, and they take account of indirect couplings or
similarities. An empirical comparison of the new measures with
eight established metrics shows the new measures are consistently
superior at ranking components according to their reusability.

Categories and Subject Descriptors
D.2.8.3 [Metrics]: Complexity measures.

General Terms
Measurement, Experimentation.

Keywords
Coupling, Cohesion, Reusability

1. INTRODUCTION
The work reported in this paper arose as part of a project that
retrieves Java components from the internet [1]. However,
components retrieved from the internet are notoriously variable in
quality. It seems highly desirable that the search engine should
also provide an indication of both how reliable the component is
and how readily it may be adapted in a larger software system.

A well designed component, in which the functionality has been
appropriately distributed to its various subcomponents, is more
likely to be fault free and easier to adapt. Appropriate distribution
of function underlies two key concepts: coupling and cohesion.
Coupling is the extent to which the various subcomponents
interact. If they are highly interdependent then changes to one are
likely to have significant effects on others. Hence loose coupling
is desirable. Cohesion is the extent to which the functions

performed by a subsystem are related. If a subcomponent is
responsible for a number of unrelated functions then the
functionality has been poorly distributed to subcomponents.
Hence high cohesion is a characteristic of a well designed
subcomponent.
We decided that the component search engine should provide the
quality rankings of retrieved components based on measures of
their coupling and cohesion. There is a substantial literature on
coupling and cohesion metrics which is surveyed in the next
section. We then describe in detail the metrics we have developed
which attempt to address some of the limitations of existing
metrics. In particular, we consider both the strength and
transitivity of dependencies. The following section describes an
empirical comparison of our proposed metrics and several popular
alternatives as predictors of reusability. Section 5 presents an
analysis of the results which demonstrate that our proposed
metrics consistently outperform the others. The paper concludes
with a discussion of the implications of the research.

2. COUPLING AND COHESION METRICS
Cohesion is a measure of the extent to which the various functions
performed by an entity are related to one another. Most metrics
assess this by considering whether the methods of a class access
similar sets of instance variables. Coupling is the degree of
interaction between classes. Many researches have been done on
software metrics [8], the most important ones are selected used in
our comparative study. Table 1 and Table 2 summarize the
characteristics of these cohesion and coupling metrics.

Table 1. Coupling metrics

Name Definition

CBO
[4][5][11]

Classes are coupled if methods or instance variables
in one class are used by the other. CBO for a class is
number of other classes coupled with it.

RFC
[4][5]

Count of all methods in the class plus all methods
called in other classes.

CF
[3][6]

Classes are coupled if methods or instance variables
in one class are used by the other. CF for a software
system is number of coupled class pairs divided by
total number of class pairs.

DAC[9] The number of attributes having other classes as
their types.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MSR’06, May 22-23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

18

Table 2. Cohesion metrics

Name Definition

LCOM [5] Number of non-similar method pairs in a class of
pairs.

LCOM3[7][
9]

Number of connected components in graph whose
vertices are methods and whose edges link similar
methods.

RLCOM
[10]

Ratio of number of non-similar method pairs to
total number of method pairs in the class.

TCC [2] Ratio of number of similar method pairs to total
number of method pairs in the class.

All of these measures have two important features in common.
First, they treat relationship between a pair of classes or methods
as a binary quantity; second, they treat coupling and cohesion as
an intransitive relation; that is no account is taken of the indirect
coupling and cohesion, although two of cohesion (LCOM3 [7][9]
and TCC [2]) have suggested extensions to incorporate indirect
relationships between methods. In cohesion metrics, it should be
noted that three of them (LCOM, LCOM3 and RLCOM) are in
fact measures of lack of cohesion. TCC [2], in contrast to the
other three metrics, measures cohesion rather than its absence. In
other respects it is similar to RLCOM, being the number of
similar method pairs divided by the total number of method pairs.

3. PROPOSED NEW METRICS
The study suggested that none of these measures was very
effective in ranking the reusability of Java components. We
therefore decided to develop alternative coupling and cohesion
metrics in the hope of achieving superior performance. One
obvious step was to develop measures that reflected the extent to
which a pair of classes was coupled or a pair of methods
resembled each other. Because none of the measures treated
coupling or similarity as transitive relations, we decided that such
indirect dependencies should be incorporated into our metrics.

3.1 Cohesion
We develop a cohesion metric that takes account of both the
degree of cohesion and transitive (i.e indirect) cohesion between
methods. Methods are said to be similar if the sets of instance
variables that they access overlap. We adopt a graph theoretical
approach. The methods of the class are the vertices. Suppose a
class has a set of method members M ≡ { M1, M2,…Mm} and let.
Vj ≡ {Vj,1, Vj,2, …. Vj,n} be the instance variables accessed by
method Mj. Then the edge from Mj to Mi exists if and only if Vj ∩
Vi is not null. Thus an edge of the graph reflects the similarity of
the methods in that they have at least one instance variable in
common. The similarity graph is undirected because intersection
is a symmetric relation. The next step is to associate a number
with each edge that reflects the extent to which the two methods
have instance variables in common. We therefore define
SimD(i,j), our measure of direct similarity of two methods, Mi and
Mj, as

()
ji

ji

VV

VV
jiSimD

∪

∩
=,

where i ≠ j (SimD(j,j) is defined to be zero). Note that 1 ≥
SimD(i,j) ≥ 0.
The extension of the measure to include indirect similarity
proceeds along the same lines as we employed for indirect
coupling. The strength of similarity provided by a path between
two methods is the product of the SimD values of the edges that
make up the path. Thus we define SimT(i,j,π), the transitive
similarity between methods Mi and Mj due to a specific path π, as

() ∏∏
∈∈ ∪

∩
==

ππ
π

tsts e ts

ts

e VV
VV

tsSimDjiSimT
,,

,),,(

where es,t denotes the edge between vertices s and t. As in the
case of coupling, the path with the highest SimT value is selected
to define the similarity of the two methods, Sim(i,j).

),,(),(maxπjiSimTjiSim =

where and Π is
the set of all paths from Mi to Mj. This measure is used to provide
a measure of the cohesion of the class, ClassCoh, by summing the
similarities of all method pairs and dividing by the total number
of such pairs:

),,(maxarg),(max ππ π jiSimTji Π∈=

mm

jiSim
ClassCoh

m

ji

−
=
∑

=
2

1,

),(

where m is the number of methods in the class. Finally, the
weighted transitive cohesion of the complete software system,
WTCoh, is defined as the mean cohesion of all the classes of
which it is comprised:

n

ClassCoh
WTCoh

n

j
j∑

== 1

where n is the number of classes in the system.

3.2 Coupling
As with cohesion measure, we regard software system as a
directed graph, in which the vertices are the classes comprising
the system. Suppose such a system comprises a set of classes C ≡
{C1, C2,…Cm}. Let Mj ≡ {Mj,1, Mj,2, …. Mj,n} be the methods of
the class Cj, and Rj,i the set of methods and instance variables in
class Ci invoked by class Cj for j ≠ i (Rj,j is defined to be null).
Then the edge from Cj to Ci exists if and only if Rj,j is not null.
Thus an edge of the graph reflects the direct coupling of one class
to another. The graph is directed since Rj,i is not necessarily equal
to Ri,j.

The next step is to associate a number with each edge that reflects
the extent of direct coupling from one class to another. We define
CoupD(i,j), as the ratio of the number of methods in class j
invoked by class I to the total number of methods in class I, which
indicates the impact of class j to class i.

()
ii

ji

MR
R

jiCoupD
+

= ,,

Then the indirect coupling between classes is included. Suppose
that CoupD(i,j) and CoupD(j,k) have finite values but that
CoupD(i,k) is zero. Thus although there is no direct coupling
between classes Ci and Ck, there is a dependency because Ci
invokes methods in Cj which in turn invokes methods in Ck. The
strength of this dependency depends on the two direct couplings
of which it is composed, a reasonable measure is defined as:

19

CoupD(i,j) × CoupD(j,k). This notion is readily generalised. A
coupling between two classes exists if there is a path from one to
the other made up edges whose CoupD values are all non-zero.
Thus we define CoupT(i,j,π), the transitive coupling between
classes Ci and Cj due to a specific path π, as

() ∏∏
∈∈ +

==
ππ

π
tsts e ss

ts

e MR
R

tsCoupDjiCoupT
,,

,,),,(

es,t denotes the edge between vertices s and t. Note first that
CoupT includes the direct coupling, which corresponds to path of
length one, and second that, because the CoupD values are
necessarily less than one, transitive couplings due to longer paths
will typically have lower values.
In general there may be more than one path having a non-zero
CoupT value between any two classes. We simply select the path
with largest CoupT value and hence define Coup(i,j), the strength
of coupling between the two classes, Ci and Cj to be:

),,(),(maxπjiCoupTjiCoup =

where),,(maxarg),(max ππ π jiCPTji Π∈= and Π is the
set of all paths from Ci to Cj. The final step is to use measure
between each pair of classes as a basis for a measure of the total
coupling of a software system. The weighted transitive coupling
(WTCoup) of a system is thus defined

mm

jiCoup
WTCoup

m

ji

−
=
∑

=
2

1,

),(

where m is the number of classes in the system.

4. AN EXPERIMENTAL COMPARISON
In our study, the metrics are used for a specific purpose:
predicting how much effort would be required to reuse a
component within a larger system. We therefore chose to measure
reusability as simply the number of lines of code that were added,
modified or deleted (NLOC) in order to extend its functionality in
a prescribed way. The more lines required, the lower the
reusability. This appears to us to be a crude but reasonable
measure of the effort that would be required to adapt a component
for use within a larger system. Three case studies were carried
out: Case 1 HTML Parser: The original components analysed
HTML documents, eliminated tags and comments and output the
text. The required extension was to count and output the number
of tags found during parsing.
Case 2 Lexical Tokenizer: The original components tokenized a
text document using user supplied token rules and output the
tokens on a web interface. The required extension was to count
and output the number of tokens retrieved.
Case 3 Barcode: The original components accepted a sequence of
alphanumeric characters and generated the corresponding
barcode. The required extension was to count the number of
letters.

For each case, 20 Java components were retrieved from a
repository of about 10,000 Java components retrieved form the
internet. The requisite extensions were then implemented by a
very experienced Java programmer and NLOC counted. Despite
the relative simplicity of the extensions, there was considerable
variation in the quantity of extra code required. We then
proceeded to investigate how successful the various measures of

coupling and cohesion are in predicting this quantity. Our
proposed metrics are compared with all the metrics reviewed in
section 2. In order to present the results on the same graph, those
measures that do not produce values in the range (0,1) (i.e. CBO,
RFC, DAC, LCOM and LCOM3) were divided by 100.

5. RESULTS
Two approaches were used to evaluate the performance of the
various measures in predicting reusability: linear regression and
rank correlation.

5.1 Linear Regression
The regression lines obtained for the five cohesion measures
when applied to the HTML parser components are shown in
Figure 1. The results for the other two sets of components were
similar. It is clear that some measures provide much more
consistent predictors than others. There are no obvious systematic
departures from linearity so the use of simple regression appears
reasonable. The regression lines obtained for coupling measures
demonstrate the same situation.

The coefficient of determination, R2, provides a measure of how
much of the variation in NLOC is accounted for by the measures.
Table 3 and Table 4 display the values of R2 obtained for each of
the coupling and cohesion measures on all three sets of
components. In each case, our proposed new measure, WTCoup
and WTCoh gave the largest value of R2, indicating that it was the
best linear predictor of reusability. The remaining measures
produced at least one R2 value so low as to indicate that that the
correlation was not significantly above chance at the 5% level.

Figure 1. Regression of cohesion measures against reusability

Table 3. R2 values for coupling measure regression lines.

Cases WTCoup CF CBO RFC DAC

HTML Parser .846 .621 .259 .793 .254

Lexical Token. .836 .098 .004 .729 .738

Barcode Gen. .958 .693 .121 534 .507

20

Table 4. R2 values for cohesion measure regression lines.
Cases WTCoh RLCOM LCOM3 LCOM TCC

H. Parser .847 .319 .259 .564 .178

L. Token. .838 .783 .002 .709 .646

B. Gen. .892 .702 .177 .101 .785

5.2 Spearman Rank Correlation
Although these results provide a strong indication that the
proposed new measures are better predictors of reusability than
the alternatives, our primary purpose is simply to rank a set of
components retrieved from the repository. We therefore also
computed the Spearman rank correlation coefficients between the
rankings determined by NLOC and those produced by the various
coupling and cohesion measures (Tables 5 and 6).

Table 5. Rank correlations values for coupling measures.
Cases WTCoup CF CBO RFC DAC

HTML Parser .975 .882 .465 .896 .507

Lexical Token. .952 .291 .117 .822 .817

Barcode Gen. .974 .758 .485 .656 .800

Table 6. Rank correlations values for cohesion measures.
Cases WTCoh RLCOM LCOM3 LCOM TCC

H. Parser -.993 .522 .218 .564 -.343

L. Token. .838 .783 .002 .709 .646

Bar. Gen. .892 .702 .177 .101 .785

The relative performance of the various measures is consistent
with the regression studies. In all cases, the two proposed
measures, WTCoup and WTCoh, produced the highest rank
correlations. They are in fact extremely high; no value was lower
than 0.95.

6. DISCUSSION
These results clearly demonstrate that our proposed metrics for
coupling and cohesion are very good predictors of the number of
lines of code required to make simple modifications to Java
components retrieved from the internet and are superior to other
measures. The majority of coupling and cohesion metrics treat
coupling and similarity as simple binary quantities and ignore the
transitive relationship. Both our proposed measures concern these
issues: First, they are weighted; that is, they use a numeric
measure of the degree of coupling or similarity between entities
rather than a binary quantity. Second they are transitive; that is,
they include indirect coupling or similarity mediated by
intervening entities. It is reasonable to enquire whether both these
characteristics are necessary to achieve good prediction
performance. In fact our investigations suggest that both
contribute to the performance.
Although both WTCoup and WTCoh are good predictors, it is
worth considering whether a linear combination might not
produce even better results. Multiple regression for the Lexical
Tokenizer components produced an R2 of 0.981; the ranking
produced using the regression coefficients to weight the terms had
a Spearman correlation of 0.986. These are superior to the results

produced by each metric alone but not by a great margin simply
because there original results leave only modest scope for
improvement. Developing such a composite quality measure
would entail assuming the relative weighting of the two metrics
should be the same for all types of component.

This work arose from, and is intended primarily as a contribution
to, search engine technology. Nevertheless, we believe it may be
of interest to a wider body of researchers: in particular, those
involved in developing and evaluating software metrics.

7. ACKNOWLEDGMENTS
We are grateful to the four UK higher education funding bodies (for
England, Scotland, Wales and Northern Ireland) for an Overseas Research
Studentship (ORS/2002015010) awarded to G. Gui.

8. REFERENCES
[1] Gui, G. and Scott, P. D. Vector Space Based on Hierarchical

Weighting: A Component Ranking Approach to Component
Retrieval. In Proceedings of the 6th International Workshop
on Advanced Parallel Processing Technologies (APPT’05)

[2] Bieman, J. M. and Kang, B-Y. Cohesion and Reuse in an
Object-Oriented System. In Proc. ACM Symposium on
Software Reusability (SSR’95). (April 1995) 259-262.

[3] Briand, L., Devanbu, P. and Melo, W. An investigation into
coupling measures for C++. Proceedings of ICSE 1997.

[4] Brito e Abreu, F. and Melo, W. Evaluating the impact of OO
Design on Software Quality. Proc. Third International
Software Metrics Symposium. (Berin 1996).

[5] Chidamber, S. R. and Kemerer, C. K. A Metrics Suite for
Object Oriented Design. IEEE Transactions on Software
Engineering, Vol. 20 (June 1994), 476-493.

[6] Harrison, R., S.J.Counsell, & R.V.Nith. An Evaluation of the
MOOD Set of Object-Oriented Software Metrics. IEEE
Transactions on Software Engineering, Vol. 24 (June 1998),
491-496.

[7] Hitz, M. and Montazeri, B. Measuring coupling and cohesion
in object-oriented systems. Proceedings of International
Symposium on Applied Corporate Computing. (Monterrey,
Mexico, 1995).

[8] Kanmani, S., Uthariraj, R., Sankaranarayanan, V. and
Thambidurai, P. Investigation into the Exploitation of
Object-Oriented Features. ACM Sigsoft, Software
Engineering Notes, Vol. 29 (March 2004).

[9] Li, W. & Henry, S. Object-Oriented metrics that predict
maintainability. Journal of Systems and Software. 23(2) 1993
111-122.

[10] Li, X., Liu, Z. Pan, B. & Xing, B. A Measurement Tool for
Object Oriented Software and Measurement Experiments
with It. In Proc. IWSM 2000, 44-54.

[11] Subramanyam, R. & Krishnan, M. S. Empirical Analysis of
CK Metrics for Object-Oriented Design Complexity:
Implications for Software Defects. IEEE Transactions on
Software Engineering, Vol. 29 (April 2003), 297-310.

21

	INTRODUCTION
	COUPLING AND COHESION METRICS
	PROPOSED NEW METRICS
	Cohesion
	Coupling

	AN EXPERIMENTAL COMPARISON
	RESULTS
	Linear Regression
	Spearman Rank Correlation

	DISCUSSION
	ACKNOWLEDGMENTS
	REFERENCES

