SUBROUTINE DGEMV ( TRANS, M, N, ALPHA, A, LDA, X, INCX, $ BETA, Y, INCY ) * .. Scalar Arguments .. DOUBLE PRECISION ALPHA, BETA,AL INTEGER INCX, INCY, LDA, M, N CHARACTER*1 TRANS * .. Array Arguments .. DOUBLE PRECISION A( LDA, * ), X( * ), Y( * ) * .. * * Purpose * ======= * * DGEMV performs one of the matrix-vector operations * * y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, * * where alpha and beta are scalars, x and y are vectors and A is an * m by n matrix. * * Parameters * ========== * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' y := alpha*A*x + beta*y. * * TRANS = 'T' or 't' y := alpha*A'*x + beta*y. * * TRANS = 'C' or 'c' y := alpha*A'*x + beta*y. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of the matrix A. * M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - DOUBLE PRECISION. * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). * Before entry, the leading m by n part of the array A must * contain the matrix of coefficients. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, m ). * Unchanged on exit. * * X - DOUBLE PRECISION array of DIMENSION at least * ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' * and at least * ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. * Before entry, the incremented array X must contain the * vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * BETA - DOUBLE PRECISION. * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then Y need not be set on input. * Unchanged on exit. * * Y - DOUBLE PRECISION array of DIMENSION at least * ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' * and at least * ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. * Before entry with BETA non-zero, the incremented array Y * must contain the vector y. On exit, Y is overwritten by the * updated vector y. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * if((alpha.eq.1.).and.(beta.eq.0.)) then * if((trans.eq.'N').or.(trans.eq.'n')) then do 1 i=1,m al=0.d0 do 2 j=1,n 2 al=al+a(i,j)*x(1+incx*(j-1)) 1 y(1+incy*(i-1))=al RETURN endif * if((trans.eq.'T').or.(trans.eq.'t')) then do 10 i=1,n al=0.d0 do 20 j=1,m 20 al=al+a(j,i)*x(1+incx*(j-1)) 10 y(1+incy*(i-1))=al RETURN endif else if((trans.eq.'N').or.(trans.eq.'n')) then do 30 i=1,m al=0.d0 do 40 j=1,n 40 al=al+a(i,j)*x(1+incx*(j-1)) 30 y(1+incy*(i-1))=alpha*al+beta*y(1+incy*(i-1)) RETURN endif * if((trans.eq.'T').or.(trans.eq.'t')) then do 100 i=1,n al=0.d0 do 200 j=1,m 200 al=al+a(j,i)*x(1+incx*(j-1)) 100 y(1+incy*(i-1))=alpha*al+beta*y(1+incy*(i-1)) RETURN endif endif print *,'error in calling dgemv!' stop * End of DGEMV . * END