DIVERGENCE-FREE WAVELET PROJECTION METHOD FOR
INCOMPRESSIBLE VISCOUS FLOW
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Abstract. We present a new wavelet numerical scheme for the discretization of Navier-Stokes
equations with physical boundary conditions. The temporal discretization of the method is inspired
from the projection method. Classical Helmholtz-Hodge decomposition using appropriate divergence-
free and curl-free wavelet bases allows to define the projection operator and to reduce the steps of
usual methods with more accuracy. Numerical experiments conducted on the simulation of lid
driven cavity flow with high Reynolds number show the validity and the precision of the method.
Divergence-free wavelet numerical adaptativity is proved.
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1. Introduction. The characterization of turbulent flows is a continuing chal-
lenge encountered in several scientific areas. Physically, turbulent flows are charac-
terized by the presence of many phenomena at different scales in interaction and with
rapid variations in time and space. The mathematical equations that model turbulent
flows are the Navier-Stokes equations, which are derived from newtonian laws in the
context of hydrodynamics [29]:

vi—VAV+ (v-V)V+Vp=0
(1.1)
V-v=0

on Q C R? where v € R? denotes the velocity vector field, p € R is the pressure
and v > 0 is the kinematic viscosity. We focus in this paper on the two-dimensional
equations (d = 2), the extension of our method to the dimension three being straight-
forward.

To take into account the physic of the problem, we suppose that the fluid is
confined in €2, so it does not cross the boundary I' = 9. In this case, the velocity
field v must be tangential to the boundary:

v.-n=0 on I (1.2)
The viscous friction of the fluid particles leads to no slip on the boundary I':
v=0 on I. (1.3)

One can also study a particular region of the fluid, so it is not confined in €2: the fluid
can pass through I'. In this case, we suppose known the velocity v on the boundary:

v=g on I, (1.4)
with fr g - nds = 0 to satisfy the incompressibility constraint.
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Then, the construction of performing numerical schemes is very important for
effective models of prediction.

The difficulty in the numerical resolution of Navier-Stokes equations comes from
the nature of equations which are nonlinear. The interest of the velocity-pressure
formulation is that physical boundary condition on v (1.2, 1.3 or 1.4) can be simply
imposed into the numerical approximation. The projection method has for advantage
to decouple the computation of the velocity v and the pressure p [7, 28].

To incorporate the incompressibility constraint and the previous boundary con-
ditions, let us introduce the divergence-free function space, with free-slip boundary
condition:

Haiv(Q) = {uec (L*(Q)?: V-u=0, u-n|pr =0}. (1.5)

By Stokes theorem, the space Hgi, (2) is orthogonal to any gradient in (L*(£2))? [18].
Then, projecting the Navier-Stokes equations (1.1) onto Ha;, () yields:

vi + P[-vAv + (v-V)v] =0, on {2
(1.6)
V.-v=0

where P denotes the orthogonal projector from (L?(€2))? to Hain(2). According to
the Helmholtz-Hodge decomposition, the pressure verifies the following equation:

Vp=-vAv+ (v -V)v —P[—vAv + (v-V)v]. (1.7)

Now the difficulty relies on the integration in time of (1.6). The conventional projec-
tion method consists in a splitting of this operator: v; — vVPAv.

In the simplest case of periodic boundary conditions, the first equation of (1.6)
becomes:

vy — VAV 4+ P[(v-V)v] =0, (1.8)
and the pressure p is recovered via:
Vp=v —P[(v-V)v] (1.9)

This formulation was used by [13, 14] to derive a divergence-free wavelet resolution
method . One can remark that this approach is very close to the projection method,
since the numerical resolution of (1.8) reduces to a heat kernels integration with
source term as the projection onto divergence-free function space of the nonlinear
term P[(v - V)v]. Using (for example) a backward Euler schemes in time, the method
of [13, 14] is summarized as follows: starting with v, compute v"! by

vl v = Stv AV 4 StP[(v - V)V = 0, (1.10)
where the term (v™ - V)v™ is computed explicitly on the mesh grid points. Each
time step requires the computation of projector P, which is done using an iterative
algorithm of [12]. The method gives rise to sparse representation of the velocity and
coherent structures of the flow, and adaptive discretizations can be derived easily.
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Our objective in the next coming sections is to provide an effective numerical method
similar to (1.10), more flexible for desired boundary conditions and easy to implement.

In the case of physical boundary conditions (1.2), (1.3) and (1.4) the situation be-
comes more complicated. The projector P does not more commute with the Laplacian
operator:

P(Av) £ AP(v). (1.11)

Taking the divergence of (1.7), we see that p is linked to the non-linear term (v -V)v
by:

Ap=V_-[(v-V)v]. (1.12)

The resulting equations (1.6), (1.9), (1.7) and (1.12) can be solved by standard meth-
ods for heat and Poisson equation, for which a large number of works exist [18, 29].

From another point of view, the construction of divergence-free wavelet bases on
square /cubic domains satisfying physical boundary conditions [24, 26, 27], allows to
explicitly compute the Helmholtz-Hodge decomposition in wavelet domain [25]. Based
on this new numerical issue to compute the projector P, we present a new formulation
of the projection method for Navier-Stokes equations [1, 7, 20, 28]. The method we
develop in this article will not use a Poisson solver as in usual methods.

The layout of the paper is as follows. In Section 2 we recall the setting of
divergence-free wavelet bases on the square satisfying boundary conditions, and the
computation of the Leray-Hopf projector P. In Section 3 we present the classical
divergence-free wavelets schemes for the Stokes equations and we use the ingredients
of previous sections to derive a new projection method for Navier-Stokes equations
based on divergence-free wavelets. Section 4 presents numerical results that valid our
method.

2. Divergence-free and Curl-free Wavelets on [0,1]%. This section intro-
duces the principles of the construction and main properties of divergence-free and
curl-free wavelets bases. The construction will be provided on the square [0, 1]? and
for more details see [25].

2.1. Divergence-free and Curl-free Wavelets . Since the seminal works of
Lemarié-Rieusset and collaborators [19, 21], the construction of divergence-free and
curl-free wavelets is based on one-dimensional multiresolution analyses linked by dif-
ferentiation / integration. It follows two principle steps:

(i) Construct two biorthogonal multiresolution analyses of L?(0, 1) denoted (V}l, f/Jl)
and (Vjo, f/jo) satisfying:

d - ’ -~
ﬁvjlzvjo and V;’:{/O fydt = feVynH0,1). (2.1)

Each space is spanned by scaling functions

le = Span{go;’k ; 0<k<N;—1} and f/jl = Span{aﬁ}}k s 0<k<N; -1}, (2.2)
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and

Vj0 = span{cp(])-’k ; 0<k<N;—2} and ‘*/jo = span{@?,k ; 0<k<N; -2}, (23)
whose dimension N; ~ 27 depends on some free integer parameters (dg,d1). The
scaling functions 90}7]€ satisfy go}k = 21/2p1 (272 — k) inside the interval [0, 1], but this
is no more true near the boundaries 0 and 1 (idem for gbjl-’k). In practice, the scale
index j must be great than some index jm,, to avoid boundary effects [23]. The

biorthogonality between bases writes: < go;, o/ 95;',14 >= 0 /-

Biorthogonal wavelets are bases of the complement spaces of (le, f/jl)7 denoted
(W, le):

W= VL0 W=V () (2.4

These spaces are generated by finite dimensional biorthogonal wavelet bases on the
interval [23]:

W} =span{¢l, ; 0< k<2 —1} and W} =span{}, ; 0< k<2 —1} (2.5)
Biorthogonal wavelet bases of W) = span{4?,};>;,.,, and W]Q = Span{l/;;-)’ 3> dmin

are simply defined by respectively differentiating and integrating the wavelets bases
Of (Wj17 le)JZ]mzn [197 26].

,(/};),k: = Tj(%{k)/ and ~§‘J,k = —Qj/ 1/;]119 (2.6)
0

Homogeneous Dirichlet boundary conditions can be simply imposed on (V}', f/jl)
by removing scaling functions that reproduce constant at each boundary 0 and 1,
prior biorthogonalization [23]. Then, the spaces
de =V NH}(0,1) =span{p;, ; 1 <k < N; —2} (2.7)
and
VA=V NHj(0,1) =span{@} , ; 1 <k < N; -2} (2.8)
provide biorthogonal multiresolution analyses for Hg(0,1) [9, 10, 23].

(74) Divergence-free and Curl-free Wavelets Construction

Following (1.5), Hain(Q2) is the curl of H}(Q) stream functions and Heyri () is
the gradient of Hg(Q) potentials:

Hain(Q) = {u = curl(¥) : ¥ € H(Q)} (2.9)
and

Hewrt() ={u=Vq : g€ HY(Q)}. (2.10)
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Since the spaces (V'@ V}");>;,,., provide a MRA of Hj () (2.8), divergence-free and
curl-free scaling functions on 2 = [0, 1] are constructed by taking the curl of and the
gradient of scaling functions of de ® de respectively:

_ Pk @ (P55,
‘bghﬁ = curllpf, @i, ] = . L 1<ky,kg<N; =2 (211)
’ /
(k) @ g,
and
l ) ) (P9 5) @ @5,
(I);;Ui: = grad[gojykl ® Saj,kz] = p J s 1 < k‘l,kg S Nj -2 (212)
ik ® ((Pj,kz)/

The choice of spaces de ensures the orthogonality between scaling functions @‘?iﬁ and

s

@?”ﬁl. Moreover, boundary conditions are satisfied by construction.

s

Let {’(/J .+ be the wavelet basis of Wd v N (f/jd)J-. Accordingly, anisotropic

divergence- free and curl-free wavelets on [O 1]? are constructed by taking respectively
the curl and the gradient of the three types of scalar anisotropic wavelets associated
to de ® V}d:

div, 1 curl,
N ik T curl[ ok ® %2 ko and \I/J X . V[‘P?mm,k ® ;'12,’%]7
div, curl,
v k2 - C“rl[%l k1 ® @]mmﬂy } and \II.] k ’ = V[ ?17/61 ® @?mm,k]’
div curl
‘I’J kS — curl[ 4 L ® w;'izka} and \IJJ K - V[ i1k @ 7/132 kQ]

2.2. Leray-Hopf Projector Computation . In this section we introduce briefly
some settings and definitions to compute in practice the Leray-Hopf projector P, using
divergence-free wavelet bases.

The divergence-free wavelet basis constructed in Section 2 provides an alternative
wavelet basis for H g, (Q):

Haiv(2) =span{¥{'y},  Vik V- ¥y =0 and ¥y n=0. (2.13)

The Helmholtz-Hodge decomposition theorem states that for any vector field u €
L?(2)?, there exist unique ¢ € H'(Q) with [, ¢ = 0, such that:

u = ugiy + Vg and P(u) = uqiy- (2.14)

Searching ug;y, in terms of its divergence-free wavelet series
div div
Udiv = Zd Lape (2.15)
and by the orthogonality \Il.‘].“ﬁ 1 Vg in (LQ(Q))Q, we obtain:

(u \113“@ (ugiv, \11311@ (2.16)
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Accordingly the computation of coefficients (d;il‘;) is reduced to the resolution of a

)

linear systems:

Mo (df o) = ((u, U§50)) (2.17)
where My;, denotes the Gram matrix of the basis {\I/j“ﬁ} and the computation of its
elements and the right term ((u, l’}“ﬁ}) in (2.17) are done following [25]. Since in

dimension d = 2, the \Ilfliﬁ are “curl” functions, the matrix My;, is no more than the

matrix of the 2D Laplaci,an operator on the wavelet basis associated to the multireso-
lution analysis (V! ® V) of Hg(§2). Following [8], we showed in [25] that its diagonal
is an optimal preconditioner. The tensor structure of the basis allows to reduce the
complexity of matrix-vector product Mdiv(djﬁl\;)- If J is the maximal one dimension

space resolution i.e Ny —2 ~ 27 the theoretical complexity of the inversion of system
(2.17) with a preconditioned conjugate gradient method is about O(237), see [25] for
details.

3. A New Projection Method by Divergence-free Wavelets. The purpose
in this section is to introduce a new formulation of time discretization of the insta-
tionary Stokes and Navier-Stokes equations, for incompressible viscous flows. The
method can be seen as a variant of the projection method [1, 7, 20, 28], where we
have replaced the operator splitting by the exact Helmholtz-Hodge decomposition of
the intermediate velocity field. The method allows to compute the exact velocity field
from the intermediate one by using only boundary condition satisfied by this velocity
field. Then, we prevent some numerical difficulties and drawbacks related to the com-
putation of the pressure at each time step with artificial boundary conditions done in
the classical approaches [1, 20].

3.1. General Principles of Divergence-free Wavelet Schemes for the
Stokes Equations. The use of divergence-free wavelet bases in the numerical simu-
lation of turbulent flow began with the works of Urban [11, 30], for the resolution of
stationary Stokes problem:

—VvAv+Vp =T,

(3.1)
V-v=0,

in Q = [0,1]2, with periodic or homogeneous Dirichlet boundary conditions.

The main advantage of using divergence-free wavelet basis in the resolution of
Stokes equations is the direct representation of the incompressibility constraint of the
flow. To solve (3.1), as in the Urban’s works [30, 31] variational approach with a
Galerkin type approximation can be used. In this case, the velocity field v is searched
in terms of its divergence-free wavelet coefficients:

v(z) =) dj}kklljfﬁ(x). (3.2)
jk

Replacing (3.2) in (3.1), the computation of coefficients dj K is done by solving a linear
system with the stiffness matrix of divergence-free wavelet basis:

DA VIR V) = (E 0, VLK (3.3)
jk
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The matrix of terms <1/V\I/j”ﬁ, V\I'jl,i”k,> is symmetric and the associated bilinear form

is coercive [30]. The problem is thus reduced to an elliptic problem on the divergence-
free function space and standard estimations on the truncature error and on the
regularity of the solution can be derived. In addition, the formulation (3.3) has the
advantage to eliminate directly the pressure p which is computed by a post processing
procedure [30].

In comparison with classical approaches based on finite differences, finite elements
or wavelet method [5, 18], equation (3.3) has the advantage of reducing the number
of degree of freedom: only coefficients {dj,k} are computed instead of one type of
coeflicients per components of the velocity v. Moreover, adaptive methods can be
applied and optimal preconditioning for the stiffness matrix can be provided explicitly.
However, for homogeneous Dirichlet boundary condition, the method was less effective
in the approximation at the edges and preconditioning becomes a problem in three
dimension for example. Since the homogeneous divergence-free wavelets construction
of [30] uses only trial functions that have their support strictly inside of €, the loss of
precision at boundaries creates numerical instabilities.

For the instationary problem, recently Stevenson [27] has proposed a new theo-

retical variational formulation of the Stokes equations. The method of Stevenson is
an extension of Urban’s method to the instationary problem and use divergence-free
wavelets satisfying a free-slip boundary condition. However, unhomogeneous bound-
ary conditions can not be considered easily in these methods.
Contrarily to Urban and Stevenson works, our objective in next coming sections con-
sists on developing a method that uses Galerkin variational formulation with standard
wavelet basis and the Leray-Hopf projector P. Especially to construct a new projec-
tion method using divergence-free wavelets satisfying the free-slip boundary condition.
The advantage is that classical wavelet method can be used to solve the diffusion
problem and the incompressibility constraint is incorporated via the projector IP. The
approach includes one phase devoted to the temporal discretization and a second one
of spacial discretization.

3.1.1. A New Projection Method for the unstationary Stokes equa-
tions. We consider in this section the unstationary Stokes problem, with no-sleep
boundary conditions:

Oyv —VvAv+ Vp =1,
v =0 on 91, (3.4)
V-v=0.

For the temporal discretization of equations (3.4) we use finite difference method.
Given a time step dt and considering the approximation v"(x) &~ v(z,ndt), using a
backward Euler scheme we get:

n+1 n

— vAV"TL 4 vpt Tt = £ Vvt =o. (3.5)

Vv —V

ot

However, scheme (3.5) is inefficient since it requires, at each time step, the evaluation
of coupled equations for (v*+1 pntl).
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Now, let us introduce a new variable v by setting v = v*»*! + V®"+!l one can
prove that v verifies the following system:
v —v" 1

T VAV + V"t — &@”“ +rvAP"T =" v =P(¥).  (3.6)

If the pressure p"*! is defined as:
1
pntt — &@”ﬂ + AP =0, (3.7)

the system of equations (3.6) reduces to

v—v"

ot

—vAV=f",  v'"T =P%). (3.8)

This equation requires the resolution of a heat equation and the projection (Section
2.2). For the spacial approximation, a variational Galerkin method is used on a
suitable ensorial wavelet basis.

3.1.2. Spatial discretization of Stokes equations. For the spatial discretiza-
tion, we use the multiresolution analysis of (L?(£2))¢ that contains the divergence-free
wavelets.In two space dimension, this multiresolution analysis is constituted by the
spaces V; = (V' @ V) x (V) @ V}'). Then, at a given resolution j, the components
of v* = (v}, v}) are searched under the form of a finite dimensional wavelet series:

=y d}_’kw;l,h@w%’h and vf = Y dikw?hh@w}%kw (3.9)
Jl<ik jl<ik

and similarly for v with coefficients [dj ) and [dj i) The computation of the invert

of the matrix of operator (1 — dtvA) at each time step and this is as follows: we use
the method of [6], consisting on the factorization of heat operator kernel, remaining
in the context of alternated direction implicit methods. Precisely, for small «;, in two
dimension we have:

0? 02

(1—aA)=~(1- aﬁ)(l - aa—yz).

(3.10)
Thus, in (3.8) we have only to invert the matrix of one-dimensional heat operator
(1- 5151/8‘9—;), and this is done once before to start the time integration procedure.
Ultimately, the computation of coefficients [dj ) and [dj ) from those of v"(x) is

reduced to solving a matrices linear system:

A}, [Jj:ﬁ]Agt = Ml[dj%:ﬁwo + StMET MO (3.11)
and
Agt[JJ?;ﬁ]Agt = MO[dJ?:l’;]Ml + StMOEI M, (3.12)

where A%, and M’ correspond to stiffness matrix of operator (1 — 5151/88722) and mass
matrix on the one-dimensional wavelet bases of {V/}i—01. The elements of these
matrices are computed analytically by solving en eigenvalue problem [2].
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In summary, the algorithm of resolution is the following. Starting with an ini-
tial value vo(z) = vo(x) = v(0,z), compute its coefficients [djlo{] and [ij{] on

V= (V}@V)x (V@V} by an interpolation procedure [24]. For 1 <n < N, repeat

Step 1: Find [Jjﬁ] and [d?ﬂ] solution of

1r73lmy 40 _ 1r41,m 0 1en p 40
ARy 1A, = MY R IMO + StMI M

AR AG = MO IM? + StMOER M

Step 2: Find [djlili’""'l] solution of

7l.n 2,n div,n+1 div,n+1

Ml[dj’k]Ag - (AS)T[dj)k]Ml = Ml[dik " }Rl + Rl[dj,k " ]M1
where R! is the stiffness matrix of wavelet basis {1/1;{,6}, its terms correspond to
< (W) (¥ 1) > and the terms of Aj correspond to < 99, (¥F 1) >.

Step 3: Compute [dj’ﬁ“] and [d;’lzﬂ] from [d}iiﬁ’"ﬂ] using the change of basis

between {(¢] )’} and {’¢?,k}~

As the matrices A}, and AY, are inverted once before starting the algorithm, Step
1 is thus only a matrix multiplication. If J denotes the maximal space resolution,
the theoretical complexity of this step is O(237). Step 2 correspond to v+ = P(¥)
and it is solved with a preconditioned conjugate gradient method, then its theoretical
complexity is O(237). The last step is a change of basis, which complexity is linear.
We deduce that the theoretical complexity of the method is about O(237).

3.1.3. Stability and consistency analysis. The main concerns in this sec-
tion is to analyze the stability and consistency of the introduced modified projection
method for the Stokes problem. For sake of simplicity we take f" = 0 in (3.8) and
suppose that is reqular and v € L?(Q)<.

To prove the stability of our schemes, standard energy estimate will be used with
v as test function, thanks to the boundary conditions on v. Taking the inner product
of equation (3.8) with 2v, we have

19]122 4 |V — v™[|22 — [|[v™]|22 + 2vdt]|V¥|[22 = 0. (3.13)

Since v = v"*! 4+ V¢"*!, which is an orthogonal decomposition in L?(2)¢, equation
(3.13) is simplified as

V" T + IV = v + 2 VO s — V12 + 206t VV|[7. = 0.(3.14)

Then the modified projection method (3.7) and (3.8) is unconditionally stable for the
Stokes equations.

The consistency of the method is a consequence of the following theorem
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THEOREM 3.1. Let v be a smooth function solution of Stokes equations with
smooth initial data vo(z) and let vs; be the numerical solution of the semi-discrete
modified projection method (3.7) and (3.8), then:

[V = Vstll Lo (0,1);22) < C1t, (3.15)

Vv — VV6t||LoC([O7T];L2) < 025t1/2. (3.16)

Proof. Let v"*! be the solution of (3.7) and (3.8) computed from v" = v(z, nét).
Let €1 = v(z,ndt + 6t) — v**1 be the consistency error. Thus, the error e"! is
linked to v by:

V = v(z,ndt + 5t) + VOt — L (3.17)
Replacing (3.17) in (3.7) and with (3.8), we get:
—e" T L UStA™ T 4 5tV T 4 (2, ndt + 0t) — v — vStAv(z,ndt + 6t) = 0. (3.18)
Using the Taylor serie approximation:
v(x,ndt + 6t) = v + 6tdyv(x, ndt) + O(6t?), (3.19)
the terms v(x,ndt + §t) — v — vitAv(z, ndt + 6t) of (3.18) are simplified as:
v(x,ndt + 6t) — v" — vStAvV(z, ndt + 6t) = 6t[0,v(x, ndt) — vAV(z,ndt)] + O(5t?).
Since 9yv(x,ndt) — vAv(xz,ndt) = —Vp(xz,ndt), equation (3.18) rewritten as:
—e"T L UStAETY = 5tV [p(x, ndt — p" T 4+ O(5t2). (3.20)

By definition, e"*! is divergence-free: V - "t = 0. Taking —e"*! as a test function
in (3.21) yields:

1
§||6"+1||%2 +ust| Ve T2, < O6t2. (3.21)

This end the proof. ]

The spacial approximation error depends on the regularity of the solution v and
the approximation order of the scaling function basis. If the dual wavelet basis has r
vanishing moments:

/ a*ip(z)dx = 0, 0<k<r-1, (3.22)
R
for all 0 < s < r — 1, the following Jackson type estimation holds:

|lv—P;(v)||z2 < C’27js||v||Hs(Q). (3.23)

For edge scaling functions, the constant C' in (3.23) is very important compared to
internal scaling functions, this increases the numerical approximation error at the
edges, which goes to zeros as j goes to infinity, see [24].
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To investigate the convergence rates of the method, two numerical tests are con-
ducted. The first one to evaluate the time discretization error and the second one to
evaluate the spatial discretization error. As exact solution, we used:

vi(z,y) = cos(2mx) sin(2my) — sin(27y),
va(z,y) = —sin(27z) cos(2my) + sin(2wz), (3.24)
p(x,y) = cos(2mx) — cos(2my).

The right-hand side term f is computed appropriately to ensure that (3.24) is the
exact solution of (3.1) with v = 1/872. The final time of the simulation is t = 102,
the maximal space resolution is fixed at j = 8 and the wavelet generators of (le, f/jl)
correspond to biorthogonal spline with r =7 = 3.

-3

dt

FIGURE 3.1. Time discretization £2-error on v according to the time step dt, log-log scale, j = 8
and slope = 1.

REMARK 3.1.
We notify that to achieve these experiences, all techniques on interpolation and ex-
trapolation with biorthogonal multiresolution analyses on the interval [0,1] must be
well understood. We refer to [23, 24] for more details.

Since the theoretical rate of convergence is obtained on Fig. 3.1, we investigate
also the order of operator approximation (3.10) according to vt on a backward Euler
scheme and on a Crank-Nicholson scheme. Fig. 3.2 shows this rate where the time
step corresponds to §t = t/10 in each case. For the spatial discretization error, the
final time of the simulation is ¢ = 10~ and §t = ¢/10. Fig. (3.3) shows this error.
Despite of the edge scaling functions approximation error effect, in the two cases, the
expected rates of convergence are obtained.

3.2. Divergence-free Wavelet Schemes for Navier-Stokes Equations .
Divergence-free wavelet schemes in the numerical resolution of Navier-Stokes equa-
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02-errors vt %-errors vt
Backward Euler 1.0446E~% | 1.26.E~* || 1.4620E~% | 1.26E~°
Crank-Nicholson || 2.8147E~° - 4.9471E~8 -

FIGURE 3.2. Time discretization £2-errors on v according to vt.

Backward-Euler
j 6 7 8 9
Lo-error | 1.9057E~% [ 1.6758E~" | 1.46208E~° | 7.1220E~"
H'-error | 3.0627E~% | 4.1319E~° | 1.14088E~° | 7.2127E~©
Crank-Nicholson
Fi 6 7 8 9
Lo-error | 7.3498E~°% | 6.3924E~7 | 4.9471E~8 | 3.3322E~8
H'-error | 1.0475E~* | 9.5745E~6 | 1.410E—® | 8.8480E~"

FIGURE 3.3. Spatial discretization £2-errors according to the resolution j, for t = 104,

tions were introduced firstly by Deriaz and Perrier [13, 14]. As mentioned in the
introcduction, the work of Deriaz and Perrier was limited to periodic boundary con-
ditions. In this section, based on the projection method algorithms [7, 28], we are
going to extend the works of [13, 14] to physical boundary conditions. This section
gives also more details and precision on the step of projection of the method applied
to Stokes equations in Section 3.1.

3.3. Temporal discretization of Navier-Stokes equations. In velocity pres-
sure formulation, with physical boundary conditions, the most famous method in the
numerical resolution of Navier-Stokes equations is the projection method [7, 28]. There
is many kinds of projection method according to the chosen pressure boundary con-
dition [1]. Without loss of generality, we focus here on the second order boundary
approximation in time one, called projection method with accurate pressure boundary
condition [15]. The principle steps of this method can be summarized as follows [15]:

e Prediction step: compute an intermediate velocity field v* such as

v (s—tv (VY2 gy tl/2 = AV ;V

(3.25)
v =0, on 99

e Correction step: project v* onto the divergence-free functions space to get
vn+1

Ve = vt 4 §tvpn /2,
vyt =, (3.26)
Vanrl/z .n=—-n- [V X (v X V*)]7 on Of)

In the classical approaches [1, 7, 20, 28], to compute the velocity v**1, one needs first
to solve a Poisson equation:

StAp"YE =V . v, (3.27)
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and the specification of boundary for (3.27) defines the kind of projection operator.
Otherwise, taking the inner product of the Navier-Stokes system (1.1) with the unit
normal n and unit tangent t vectors at 0€) leads respectively to

Vp-n=vAv-n and Vp-t=vAv-t. (3.28)

Since the velocity v *! is unknown in (3.26), boundary condition like (3.28) can not be
incorporate directly to (3.27). To deal with this problem, several boundary conditions
have been investigated in the literature [15, 20] and the most common one is:

Vp /2 n=0. (3.29)

Equation (3.29) defines an artificial Helmholtz decomposition of v*. This lack of
appropriate boundary conditions for (3.26) is partly the reason of boundary’s os-
cillation problem plaguing the projection method [15]. Particularly, the condition
Vp"tl/2.n = —n- [V x (V x v*)] is introduced to have O(5t?) approximation order
on v" ! at boundaries [15].

Since one knows to construct divergence-free wavelets basis satisfying boundary
conditions, we are going to use this basis to compute the exact Helmholtz-Hodge
decomposition of v* without using a Poisson equations solver. To this end, let us
give some theoretical setting on the Helmholtz-Hodge decomposition in (H{(£2))%.
Helmholtz-Hodge decomposition in (H(£2))? is written slightly different, depending
on the scalar product considered. Let us define the following divergence-free function
space:

Haivo(2) ={ue (H&(Q))d : V-u=0} (3.30)
The space Haiv,0(2) is a proper closed subspace of (H}(£2))¢, so we have:
(H ()" = Hain,o(Q) @ Haio,o ()"

If we consider the standard scalar product of (H{(€2))¢ defined by: (W, V) (1) =
(Vu, Vv)(Lz(Q))d, it is easy to prove:

Haivo(Q)F = {(-A)"'Vq: g€ L*(Q)}, (3.31)

where (—A)~! denotes the Green’s operator related to Dirichlet’s homogeneous prob-
lem for —A operator, see [18]. Otherwise, with the (L?(Q2))? scalar product and using
a coarse version of De Rhams’s theorem [18], it is known that if f € (H~1(Q))9 satisfies

<f,u>2()a=0, vV u € Haiv,0(£2),
then there exists p € L?(£2) such that:
f=Vp.
Then every function u € (H}(2))? can be decomposed as:
u = Ugiv,0 + Vp, (3.32)

with p € HY(Q) and uaiv.0 € Haiv.0(Q). We state that the curl-free component Vp
is unique. Indeed, for u € (H{ ()%, there exists a unique Udiv,0 € Hdiv,0(2) and a
unique ¢ € L%(2) such that:

u = Ugjv,0 + (—A)_1Vq.
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Let ¢1 € HZ(Q) and ¢o € (HE(Q))? be respectively the solutions of
—A¢p1 =¢q and — A¢y = Vq.

By the uniqueness of these solutions, we get : ¢o = V¢ = (—A)"'Vq. Then,
”;'-Ldiv’o(Q)L is a curl-free function space, derived from scalar potentials.

Decomposition (3.32) can not be computed with classical algorithm based on
Poisson solver. Taking the inner product of (3.32) with the unit normal n and unit
tangent t vectors respectively yields:

Vp-n=0 and Vp-t=0, (3.33)

and satisfying both these boundary conditions on p is very difficult in practice. Thus,
system (3.26) is not a Helmholtz-Hodge decomposition, as far as that goes for (3.26)
with only boundary condition (3.29). Further, setting v* = v**! + §tVp"t1/2 with
both v* and v"*! in (H}(92))? leads necessarily to boundary conditions (3.26) on the
pressure p"t1/2. Moreover, up to an integration constant, each boundary condition
in (3.33) defines a unique solution p"*/2 to (3.27), what makes more difficult the
numerical resolution.

Analysing differently the problem and trusting the Poisson equations solver, one
can take advantage of the boundary conditions like (3.33) and the Helmholtz-Hodge
decomposition to derive new correction step for (3.25). Indeed, let ¢"+1/2 be a scalar
potential in L?(£2) satisfying

v =v"t L5tV tl2 ) with v e (H(Q)% (3.34)

Substituting this change of variable in (3.25), it comes that the vector function v
verifies the system

Vgtvﬂ + (Vn+1/2 . V)Vn+1/2 — VAVBVTL

(3.35)
v=0, on 900
and the new correction step is defined by:
vl = P(¥), (3.36)

where P denotes the orthogonal projector from (Hg(22))4 onto Hgiv0(92), according
to the (L?(Q))¢ scalar product. As the same, the pressure p"+1/2 is uniquely defined
up to a constant from ¢"*+/2 by:

vt
P2 = gnt1/2 7A¢”+1/2. (3.37)

In the same way, according to (3.31), if we replace V¢"*+1/2 by (=A)~'V¢ /2 in
(3.34), we can define p"*+1/2 by:

N T B (3.39)

In each two cases, Navier-Stokes formulation (3.35) is a change of variables and this is
a great difference from the classical projection methods which are operator’s splitting.

REMARK 3.2.

Equation (3.38) is a classical Helmholtz equation with Dirichlet homogeneous boundary
condition, for the unknown (—A)~'Vent1/2,
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3.4. Spacial discretization. The spatial discretization we use is the same as
for the Stokes equations in Section 3.1. Then, at a given resolution j, the components
of v™ are searched in the form of a finite dimensional wavelet basis series:

n 1,n n 2 ,1
Vi= dJ k JllJﬂ ®¢JQQJ€2 and vy = dJ k 5)17/61 ® ¢Jl'2,k27 (3.39)

jl<sk ljl<sk

and similarly for v with coefficients [Jj k) and [Jj k)- Following [1, 20], the nonlinear
term (v**+1/2.V)v"t1/2 is approximated by:

1
(VL2 v)yntl/2 = g(v” V)V — 5(VTH -V)vL (3.40)
and (3.40) is computed explicitly with finite differences method on the mesh grid
points. Next, each component of (v ntl/2. V) n+1/2 ig projected respectively onto
the wavelets basis {1} , ®%9 .} and {49 , @] ; }. This choice impose a CFL

condition on the time step [13]: 6t < Coa?/3.

The computation of coefficients [azj i and [di? i/ from those of v and (vrtl/2.

V)v*t1/2 s reduced to solving a matrices linear system:

Al J A, =R (4IRS, — StMI (v /2 0w M, (3.41)

A(% [ ~j ].Aat = [d;’ﬁ]R% - 5tMO[(Vn+1/2 . V)VnJrl/Q}ng, (342)

s

where M€, A5 5 and RS 5 correspond to mass matrices and stiffness matrices of op-

erators (1 — §6t1/A) and (1 + 36trA) on the one-dimensional bases of {Vf}c—o.1
respectively.

4. Lid driven cavity flow. To validate the divergence-free wavelet modified
projection method, in the case of Navier-Stokes equations, we focus on the classical
problem of lid-driven cavity flow. This problem has been investigate by many authors
since the pioneer work of [3, 17]. Recently, Bruneau and Saad [4] have revised this
problem and obtained good results using multigrid solver with various and special
numerical discretization technique. The particularity of the work of [4] resides in
the special discretization of the convection term and high space resolution are used:
j=10or j =11.

The objective in this section is to compare the results obtains with method (3.35)
and (3.36) to those of [3, 4, 17]. Thus, one can evaluate the accuracy and performance
of this new method. The wavelet basis generators of (le, f/Jl) are the biorthogonal
spline with three vanishing moments: r = 7 = 3. Since the horizontal velocity vi does
not satisfy homogeneous Dirichlet boundary condition, homogenization technique is
used for this component [24]. The advection term (v™ - V)v™ is computed with a
tow-order finite difference method on the mesh grid points. On Fig. 4.1 and Fig. 4.2,
we plot the middle horizontal and vertical profiles of the velocity obtained for j = 7
and Re = 1000, compared to the results of [4] obtained with j = 10. Fig. 4.3 and Fig.
4.4, show the values of these profiles for j = 7 and j = 8, compared to the results of
the work of literature.
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FIGURE 4.1. Horizontal velocity profile vi in the middle of the cavity at the steady state. Solid
line (present work) and circle (Bruneau et Saad [4]): Re = 1000 and j = 7.
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FIGURE 4.7. Divergence-free scaling function coefficients contour at t = 80, Re = 10000 and
j=28.
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FIGURE 4.8. Divergence-free scaling function coefficients contour at t = 80, Re = 10000 and
j=8.



