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Particle image velocimetry experiments have been performed in a turbulent boundary-
layer wind tunnel in order to study the coherent structures taking part in the
generation and preservation of wall turbulence. The particular wind tunnel used
is suitable for high-resolution experiments (δ > 0.3 m) at high Reynolds numbers
(up to Rθ = 19 000 in the present results). Eddy structures were identified in ins-
tantaneous velocity maps in order to determine their mean characteristics and
possible relationships between these structures. In the logarithmic region, the results
show that the observed eddy structures appear to organize like elongated vortices,
tilted downstream, mainly at an angle of about 45◦ and having a cane shape.
The characteristics of these vortices appear here to be universal in wall units for
Rθ � 19 000. They seem to find their origin at a wall distance of about 25 wall units
as quasi-streamwise vortices and to migrate away from the wall while tilting to form
a head and a leg. Away from the wall, their radius increases and their vorticity
decreases very slowly so that their circulation is nearly constant. Near the wall, the
picture obtained is in fair agreement with existing models. The analysis of the results
indicates a universality of the buffer-layer mechanism, even at low Reynolds number,
and a sensitivity of the logarithmic region to low-Reynolds-number effects.

1. Introduction
Turbulence is often regarded as a superposition of interacting eddy structures with

a whole spectrum of sizes. If they may be considered as diffusive and dissipative,
some of these structures are also known to be productive of turbulent stresses, owing,
for example, to interaction with shear. This is the case for those which take part in
the generation and preservation of wall turbulence by interacting with the wall, or
with neighbouring coherent structures. In wall turbulence, such active eddy structures
have been mainly identified as ‘hairpin vortices’ and ‘streamwise vortices’, but other
proposals exist, such as ‘typical eddies’, for example.

Theodorsen (1952) was the first to suggest the existence of horseshoe vortices
(see figure 1) in wall turbulence by considering the transport equations of the
vorticity (ω = rotv). Their origin would be the instability of the instantaneous velocity
profile evolving into transverse vortices. They are supposed to be tilted at about 45◦

downstream, owing mainly to the mean velocity gradient which stretches them and
to the mechanism of self-induction which lifts them up. Townsend (1976) added
to this description the ‘attached-eddy hypothesis’ in which the legs of horseshoe
vortices would remain attached to the wall during their development. The mean
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Figure 1. (a) Horseshoe vortex by Theodorsen (1952); (b) counter-rotating pairs
of streamwise vortices by Blackwelder & Kaplan (1976).

spacing between these legs is about 100 wall units (which will be noted 100+ herein-
after for the sake of compactness), but the aspect ratio of the horseshoe vortices is
Reynolds-number dependent (see Head & Bandyopadhyay 1981). Indeed, these eddy
structures appear more elongated at higher Reynolds number and are then called
hairpin vortices. Robinson (1991) detected them using a pressure criteria in the direct
numerical simulation (DNS) of a flat-plate boundary layer by Spalart (1988). He
noticed that these hairpin vortices generally appear more asymmetric than sketched
in the literature, having more of a cane shape (with two legs of different lengths) than
the usual symmetric hairpin shape put forward by most previous authors.

Using hydrogen bubbles, Kim, Kline & Reynolds (1971) observed near the wall
a rotational motion which they interpreted as streamwise vortices. However, the
mechanisms of formation of these eddy structures are not yet well understood. A
popular theory is that streamwise vortices are the legs near the wall of the hairpin
vortices previously described. One other proposal is that streamwise vortices are
secondary vortices in the trailing legs near the wall of these hairpin vortices. Based on
the conditional analysis of hot-film signals, Blackwelder & Eckelmann (1979) inferred
that streamwise vortices evolve by counter-rotating pairs near the wall (see figure 1).
Their centres are located at about 25+ from the wall and are separated by 50+ to 100+

in the transverse direction; their radius is about 15+ and their length of the order
of 200+. Kim, Moin & Moser (1987) found nearly the same sizes by the analysis of the
vorticity fluctuation profiles in a DNS of a turbulent channel flow. However, Robinson
(1991) found very few streamwise vortices in the counter-rotating configuration.

In the concept of self-sustaining wall turbulence, these two kinds of eddy structure
interact with other types of inner-layer coherent structures among which ‘low and
high speed streaks’ and ‘sweeps and ejections’ are the most documented.

Low- and high-speed streaks were discovered by Kline et al. (1967) by showing
that hydrogen bubbles introduced close to the wall concentrate into wavy streamwise
stripes. Since this discovery, many authors have observed them and a consensus
about their characteristics has emerged (except for the streamwise extent, on which
opinions vary widely). Low-speed streaks appear under 10+ where they are relatively
quiet. They are between 500+ and 2000+ in length, between 20+ and 40+ in width
and between 5+ and 10+ in height. They are separated by a distance varying widely
between 50+ and 300+ in the transverse direction. These dimensions increase when
they become suddenly very active, lifting up toward the buffer layer. Blackwelder &
Eckelmann (1979) proposed that the low-speed streaks come from counter-rotating
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pairs of streamwise vortices, which lift up low-velocity fluid from the wall. Another
proposal is that the low-speed streaks are the trace of one or several stacked hairpin
vortices, flying over the wall, which lift up, between their legs and under their
heads, low-speed fluid from the wall. These eddy structures then extend along the
downstream part of a low-speed streak. The two proposals agree if it is considered
that counter-rotating pairs of streamwise vortices are legs near the wall of the hairpin
vortices. For both types of coherent structure, symmetry is not a necessary condition
to the formation of low-speed streaks.

From high-speed imaging of a flow seeded with solid particles in suspension,
Corino & Brodkey (1969) identified the two events which take part in the production
of turbulence close to the wall. The first event is ejection of low-velocity fluid called
simply ‘ejection’. The lift-up of the low-speed streaks is generally made responsible
for the formation of these ejections. This process is at the heart of wall turbulence
dynamics. The second event is high-velocity fluid sweeping down to the wall and
called simply ‘sweep’. The existence of the latter can be justified by the necessary
conservation of mass induced by the ejections.

The relation between all these coherent structures leading to an explanation of the
self-sustaining mechanism of near-wall turbulence has been the subject of detailed
investigation by many workers (see, for example, Panton 1997), but the picture that
has emerged is not altogether clear and this research subject is still very active. If the
main coherent structures of wall turbulence have now been described in detail, the
mechanisms responsible for their formation and their contribution to the generation
and the preservation of wall turbulence are not yet well established. In a classically
admitted scenario going back to Theodorsen (1952), the instability of the longitudinal
instantaneous velocity profile is supposed to be the source of creation of transverse
vortices. Under the action of the mean velocity gradient and the three-dimensional
character of the flow, these transverse vortices evolve rapidly into deformed vortex
tubes, looking like streamwise or hairpin vortices. Both vortical structures explain the
formation of the low-speed streaks close to the wall. These low-speed streaks seem
to be at the origin of the above-mentioned instability, through what is called the
ejection and bursting process in the buffer layer. The bursts, which look like hairpin
packets, grow to become turbulent bulges in the outer part of the turbulent boundary
layer. This bursting process generally consists of several ejections (and vortices),
responsible for the mass transfer away from the wall. This outward mass transfer is
necessarily compensated by sweep motions toward the wall. The result of these two
events occurring close to the wall is a strong production of turbulence in this region.
This wall-generated turbulence is then diffused away and dissipated slowly in the
turbulent bulges. In the concept of a regeneration cycle of turbulence, the production
of new vortical structures is at present attributed either to the instability of the
instantaneous velocity profile due to the streaks, or to an induction mechanism by the
already existing vortices. Some authors invoke both mechanisms. At low Reynolds
number, Jiménez & Pinelli (1999) have shown by DNS that the self-sustaining of wall
turbulence appears to be local to the near-wall region and does not depend strongly
on the outer part. Essentially, it involves vortical structures (which play a central
role), low-speed streaks and ejections. The question of whether this is also true at
high Reynolds number is still open.

The existence of vortical structures in wall turbulence is not in any doubt.
However, the distinction between the various forms suggested is not observed
clearly by visualization or numerical methods, especially at high Reynolds numbers
(most of the studies mentioned above were performed at fairly low Reynolds
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Figure 2. Hairpin vortices and inclined planes by Head & Bandyopadhyay (1981).
(a) Downstream tilted plane, (b) upstream tilted plane.

number). Nevertheless, Head & Bandyopadhyay (1981) were the first to carry out
original visualization experiments of boundary layers over a large Reynolds number
range 500 <Rθ < 17 500. They provided images obtained with various light-sheet
configurations which appeared to cut, or not, the axis of the vortex tubes depending
on the orientation of the light sheet. The selected configurations were a longitudinal
plane normal to the wall and two transverse planes inclined, respectively, at an angle
of 45◦ upstream and 45◦ downstream (see figure 2). They concluded that hairpin
vortices are the major components of a turbulent boundary layer at all Reynolds
numbers. Unfortunately, details of the flow in the immediate vicinity of the wall
could not be distinguished readily with this visualization technique. Consequently, the
formation of hairpin vortices could not be connected directly with events occurring in
the buffer layer, and streamwise vortices could not be identified in the near-wall region.

Owing to technical progress, particle image velocimetry (PIV) has developed rapidly
in the last ten years and is now a widely used technique for investigations where the
spatial distribution of the velocity helps us to understand the physics of the flow,
see Adrian (1991). Although it is not yet well time-resolved, this technique, by
providing a large number of accurate velocity maps with a high spatial resolution,
is mature enough to assess coherent structures in turbulent flows. The aim of the
present contribution was thus to use PIV in the same light-sheet configurations as
in the study by Head & Bandyopadhyay (1981) in order to assess quantitatively the
coherent structures and, particularly, the eddy structures pointed out by them.

Adrian and colleagues at Urbana Champaign has also started to study wall
turbulence with PIV. Several experiments were carried out at Reynolds numbers Rθ

ranging between 930 and 6845 with different methods: classical 2D2C (two spatial
dimensions and two velocity components) by Meinhart & Adrian (1995), translation
2D3C (two spatial dimensions and three velocity components) by Liu et al. (1996) and
angular 2D3C by Kähler, Adrian & Willert (1998). Instantaneous velocity fields were
obtained in a streamwise plane normal to the wall. These allowed the profiles of the
mean velocity and Reynolds stress tensor components to be measured. Moreover, these
measurements allowed the computation of the double spatial correlation coefficients of
the velocity (see Liu, Adrian & Hanratty 2001). In addition to this statistical analysis,
a phenomenological analysis of instantaneous velocity maps was also conducted
in order to identify some coherent structures such as sweeps, ejections and eddy
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Figure 3. Conceptual model of the organization of turbulence close to the wall proposed
by Adrian et al. (2000b).

structures. Attention was focused particularly on the impact of eddy structures on
the spatial organization of the wall turbulence. DNS of the evolution of one hairpin
vortex in a turbulent channel flow was carried out at a Reynolds number Rθ of 280.
By visualizing the eddy structures from the fields of the complex part of one of the
eigenvalues of the gradient tensor (λ2 criterion), Zhou et al. (1999) showed that the
initial hairpin vortex persists in time. It induces, upstream and downstream, other
hairpin vortices associated with ejections. This system of hairpin vortices generates
progressively a low-speed streak. The envelope of this vortical system is tilted at an
angle to the wall of 10◦ to 15◦ on its upstream side and 7◦ to 15◦ on its downstream
side. Adrian, Meinhart & Tomkins (2000b) deduce from both experimental and
numerical studies, a conceptual model of the organization of turbulence near the
wall reproduced in figure 3. This model is based on the notion of ‘hairpin packets’
and synthesizes the knowledge at the time of writing, taking its roots in the pictures
proposed, among others, by Hinze (1975) and Acarlar & Smith (1987).

In addition to the analysis of Adrian in the longitudinal plane normal to the
wall, results are presented here from the authors’ PIV experiments in two transverse
planes inclined at an angle of 45◦ upstream and 45◦ downstream. Moreover, one
configuration was added, in which stereoscopic PIV was used in a plane normal to
the flow. The range of Reynolds number Rθ covered is from 7500 to 19 000. The
region of investigation covers the buffer layer and part of the logarithmic region.
Eddy structures are detected in the velocity maps using an identification method
based on pattern recognition. The characteristics of the eddy structures detected
are determined by fitting them with an Oseen vortex model. Possible relationships
between eddy structures and other coherent structures such as low-speed streaks or
ejections and sweeps are determined by cross-correlating indicative functions of the
regions which they occupy in the velocity maps.

2. Experimental facility description and characterization
In this section, the specific wind tunnel used and the hot-wire experiments carried

out to characterize the boundary layer (BL) are described. Then, the main results of
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Figure 4. Sketch of the top view of the wind tunnel: 1, plenum chamber; 2, guide vanes; 3,
honeycomb; 4, grids; 5, contraction; 6, turbulent boundary layer developing zone; 7, testing
zone of wind tunnel; 8, fan and motor; 9, return circuit; 10, heat exchanger (air–water).

this hot-wire study are presented and discussed. In the present paper, [· · ·]+ are wall
units based on the wall friction velocity uτ and the viscosity ν. [· · ·]× are based on
the external velocity Ue and the BL thickness δ.

2.1. Boundary-layer wind tunnel

This facility is suitable for high-resolution experiments at high Reynolds numbers.
In the case of a turbulent boundary layer along a flat plate, the Reynolds number
based on the momentum thickness Rθ can reach 20 600 (19 000 in the present PIV
experiments), with a boundary-layer thickness δ of about 0.3 m.

Figure 4 presents a sketch of the top view of the wind tunnel. The longitudinal
axis x is parallel to the wall and to the flow, the normal axis y is normal to the
wall and the transverse axis z is such that the reference frame is direct. A large
plenum chamber with guide vanes followed by a honeycomb, grids and a contraction
decrease the turbulence level to about 0.3 % of the external velocity Ue at the entrance
of the wind tunnel. This wind tunnel is 1 × 2 m2 in cross-section and 21.6 m in length.
Transparent walls are used along the last 5 m of the working section on all sides to
allow the use of optical methods. A return circuit is used to ensure a good control of
the flow parameters. The temperature is kept within ±0.2 K by using an air–water heat
exchanger located in the plenum chamber. The external velocity in the testing zone of
the wind tunnel can be chosen continuously from 3 to 10 m s−1 with a stability better
than 0.5 % by varying the fan rotation speed. Both parameters are fully computer
controlled during the hot-wire measurements.

The boundary layer under study develops over the lower flat wall of the wind
tunnel. It is tripped by a grid fixed on the floor at the entrance of the developing
zone. This grid fixes the BL transition and increases slightly the BL thickness in the
test section. Its dimensions are a length of 2 m, a thickness of 5 mm and a grid spacing
of 10 cm.

The turbulent statistics are not affected by the tripping grid (except for the BL
thickness δ which increases by about 12 % in the test section). This was checked
carefully by comparing results from hot-wire anemometry (HWA) experiments
achieved with and without the grid.

Corner effects due to the rectangular cross-section of the wind tunnel do not affect
the homogeneity of the flow in the transverse direction up to ±35 cm from the vertical
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plane of symmetry of the tunnel. This point was checked by comparing results from
HWA experiments achieved at three transverse positions (z = 0, + and − 35 cm).

The walls of the wind tunnel are parallel. This establishes a streamwise pressure
gradient in the wind tunnel (see § 2.3). This pressure gradient, scaled in wall units
[(1/ρ)P,x]

+, varies between 0.14 and 0.51 10−3. This can be considered as low in the
Navier–Stokes equations for the present case (see Mellor 1966). In external scaling
K = [(ν/Ue

2)Ue,x], the pressure gradient varies between 6 × 10−9 and 2.5 × 10−8. This
again is considered as negligeable (see DeGraaff & Eaton 2000).

2.2. Hot-wire anemometry

The turbulent characteristics of the boundary layer have been investigated in detail
with HWA, using single and X-wires. The hot-wire probes used were specially
manufactured by AUSPEX. They are of boundary-layer type to approach the wall at
best. The wires are made of platinium plated tungsten. They are 2.5 µm in diameter.
The wire is 0.5 mm long for single wires and 0.7 mm for X-wires. The spacing of
X-wire prongs is 0.5 mm (which vary between 4+ and 12+ depending on the Reynolds
number).

The anemometers used are of constant-temperature type : AN1003 manufactured
by AALab Systems. Each bridge is equipped with an amplifier and a home-made
analogue filter (with a slope of −160 db/dec) in order to optimize the input to the
A/D converter. This conversion was performed with a PCI-MIO-16-XE-10 board
from National Instruments plugged in a PC. This board has a 16-bit resolution and
a maximum data rate of 100 kHz. It is equipped with a sample-and-hold to ensure
the simultaneity of the measurements with the X-wires. The data are stored on the
PC hard disk and processed afterwards with our software.

The probes are mounted on DANTEC probe supports fixed on a wing-type profiled
tube coming down from the ceiling of the tunnel. This tube is motorized in vertical
translation and rotation in the horizontal plane. The accuracy is ± 0.01 mm and
± 0.01◦, respectively. This allows us to perform both the calibration of the probes at
mid-height of the wind tunnel and the measurements in the BL without disconnection.
No temperature correction is applied as the free-stream temperature differs by less
than ± 0.2 K between calibration and measurements throughout the measurements.
The free-stream velocity is regulated within ± 0.5 %. The distance from the probe to
the wall is measured with a telescope with an accuracy of 0.05 mm.

The single-wire probes were calibrated using the usual King’s law. The two
coefficients and the exponent were obtained by a least-squares fitting on ten points
distributed between 0.5 and 10 m s−1. The X-wire probes were calibrated both in
velocity and angle. Seven velocity values were used in the range 0.8–10 m s−1 and
seven angles in the range ±12. A least-squares fit was performed on this data set
with a generalized form of King’s law. The calibration laws are used to convert the
instantaneous voltages into instantaneous velocity components. The statistics are then
computed on these discrete velocity signals.

The number of samples Nacq is related to the number of wires n, the sampling
frequency Facq and the record length Tacq by the relation: Nacq = nTacqFacq. The
sampling frequency and the cutting frequency Fc of the filter were selected on
the basis of an estimation of the Kolmogorov scales. The record length was selected
by preliminary tests on the fourth-order moments. The convergence was considered
completed when this moment was at less than 5 % of its fully converged value. This
led to values of TacqUe/δ around 3000 in the viscous and buffer layer, 6000 in the log
layer and 12 000 in the wake region (with a safety coefficient of 1.5). Table 1 gives
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Ue Fk Fc Facq Tacq Nacq

(m s−1) (Hz) (Hz) (Hz) (s) –

3 350 1000 2200 300 1 320 000
5 1000 2000 4200 180 1 512 000
7 2000 5000 11 000 120 2 640 000

10 4000 5000 11 000 90 2 090 000

Table 1. Acquisition parameters for n = 2 et TacqUe/δ = 3000: Ue , free-stream velocity; Fk ,
Kolmogorov frequency; Fc , filter cutting frequency; Facq, sampling frequency; Tacq, sample
length; Nacq, number of samples.

Ue (m s−1) εrms (u1) (%) εrms (u2) (%) εrms (u4) (%)

3 1.20 4.71 9.40
5 0.71 3.45 6.57
7 0.68 3.51 6.48

10 0.74 2.77 5.50

Table 2. Root mean square error εrms at 95 % confidence for the four first moments of the
longitudinal velocity fluctuation.

the value of the parameters used. Tacq and Nacq are given as example for the viscous
and buffer layers.

As far as the accuracy is concerned, repeatability tests have been performed with
the single-wire probe at y+ = 200 and for the four free-stream velocities tested. From
50 successive measurements, the r.m.s. part of the error εrms(un) on the moment of
order n can be estimated. The results are summarized in table 2 for a confidence level
of 95 %.

These results are in fair agreement with those of Gilliot-Ottavy (1997) who used
the same probes and calibration procedure for both single and X-wires. For X-wire
probes, she came, after a detailed study, to an uncertainty estimation of, respectively,
1.3, 2.8 and 3.9 % for the first-, second- and fourth-order moments. The slightly higher
values found here at 3 m s−1 are attributed to the fact that the wind-tunnel regulation
is more sensitive at the lowest velocity and to the fact that the calibration is more
difficult at very low velocities.

Bias should be negligible away from the wall if the calibration is properly done.
When the probe is approaching the wall, there is a bias due to the aerodynamic
interaction, the spurious heat transfer to the wall and, for X-wire probes, to the
velocity gradient which becomes not negligible at the scale of the probe. No correction
was applied for bias, the measurements were removed as soon as the mean velocity
was visibly departing from the standard law.

2.3. Boundary-layer statistical characteristics

The main characteristics of the boundary layer are summarized in table 3. These
were obtained from HWA experiments carried out at x = 19.6 m, that is about 2 m
downstream of the location of the PIV experiments. The wall shear stress was
determined from the velocity profiles using the Clauser plot in the log region. The
thickness parameters vary slowly with the external velocity. The pressure gradient
remains very small while the friction velocity shows a nearly linear increase.
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Ue P,x uτ ν/uτ δ δ+ θ Rθ Rλ

(m s−1) (Pa m−1) (m s−1) (µm) (m) – (m) – –

3 −0.057 0.110 136 0.345 2500 0.041 8100 300
5 −0.134 0.185 81 0.323 4000 0.035 11 500 400
7 −0.240 0.254 59 0.304 5100 0.032 14 800 460

10 −0.502 0.350 43 0.302 7000 0.031 20 600 570

Table 3. Turbulent boundary-layer characteristics: Ue , free stream velocity; P,x , streamwise
pressure gradient; uτ , wall friction velocity; δ, BL thickness; θ , BL momentum thickness;
Rθ , Reynolds number based on momentum thickness; Rλ, Reynolds number based on Taylor
microscale.
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Figure 5. Profiles of longitudinal mean velocity U obtained with HWA: �, Rθ = 8100;
�, Rθ = 11 500; �, Rθ = 14 800; �, Rθ =20 600; ———, Van Driest profile.

The mean velocity profiles at the four Reynolds numbers are presented in figure 5, in
the classical semi-logarithmic representation. These profiles show a good universality
near the wall. They follow the classical Van Driest equation, (2.1), with the standard
value of the von Kármán constant κ = 0.41. Thanks to the Reynolds-number range,
they evidence a wide logarithmic region (one decade at least). The wake region is
also clearly detectable and shows a classical shape and behaviour as a function of
the Reynolds number. Although the Reynolds-number range covered is not so wide
(about 3 times), even the lower value investigated does evidence a clear logarithmic
region. This places the present data above the domain where low-Reynolds-number
effects can be expected.

U+(y+) =

∫ y+

0

2 dy+

b +
√

b2 + 4a (y+)
with




a(y+) = [κy+(1 − exp(y+/c+))]2,
b = 1,

c+ = 26.

(2.1)

Figure 6 shows the profiles of turbulence intensities for the four Reynolds numbers,
scaled in wall units and as a function of both y/δ away from the wall and y+ near the
wall. A good universality is observed in both representations. In particular, the peak
amplitude of all three fluctuations appear Reynolds-number independent in wall units.
The slight departure of the X-wire measurements in the near-wall region at the largest
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Figure 6. Profiles of turbulence intensities obtained with HWA: �, Rθ = 8100;
�, Rθ =11 500; �, Rθ = 14 800; �, Rθ = 20 600.

Reynolds number should be attributed to a probe-size effect. This point of the scaling
of the peak amplitude of the streamwise velocity fluctuations has been addressed
by several authors (DeGraaff & Eaton 2000; Marusic & Kungel 2003). The present
measurements use hot wires of 2.5 µm in diameter by 500 µm in length. From table 3,
the spatial resolution ranges from 0.02 to 0.06 in y+ and 3.7 to 11.7 in z+, which
is comparable to DeGraaff & Eaton (2000). Besides, our acceleration parameter K

is about 10 times smaller than theirs. A plot of the streamwise normal stress u′2+

(not shown here), shows that the value of the peak is in very good agreement with
these authors at comparable Reynolds numbers. Moreover, the trend as a function
of the Reynolds number is the same, but not as pronounced. DeGraaff & Eaton
observe a variation of u′2+ between 7.7 and 9 for a variation of Rθ between 1430 and
13 000. Here, the variation is between 8.6 and 9.2 for Rθ between 8100 and 20 600.
The Reynolds-number range covered in the present experiment is not enough, taking
into account the measurement uncertainties, to decide between the wall scaling of the
peak or the scaling proposed by DeGraaff & Eaton (2000) based on the skin friction
coefficient Cf . A mean value of 0.32 of the peak in this representation is nevertheless
in very good agreement in both experiments.

Figure 7 shows, in the same representation, the comparison of these turbulence
intensities at Rθ = 8100 with the measurements performed by Klebanoff (1955) at
Rθ = 7500 and Erm & Joubert (1991) at Rθ = 2788, together with the DNS by Spalart
(1988) at Rθ = 1410. Although the peak of the longitudinal component is slightly
higher than in the other studies, the overall agreement is fairly good. The y/δ

representation clearly shows the Reynolds-number effect near the wall.
Figure 8 shows the profiles of the turbulent shear stress as a function of the

Reynolds number. This quantity being much more sensitive, the universality in y/δ

representation is less evident. A slight Reynolds-number effect is visible in this
representation. Universality is better near the wall in wall units. The peak value is of
the order of 0.8, which is attributed to a near-wall interaction effect.

To complete this characterization, figure 9 shows power spectra of u′ at Rθ = 8100
and for different wall distances and scaled with the wall distance. The inertial subrange
clearly exist, at this Reynolds number, the results show that it extends when this
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Figure 8. Profiles of turbulent shearing stress obtained with HWA: �, Rθ =8100;
�, Rθ = 11 500; �, Rθ = 14 800; �, Rθ = 20 600.

parameter increases. The horizontal part of the spectrum at high wavenumber gives
an idea of the noise level. A region of −1 slope is also clearly visible from y+ =25
to 400, indicative of production of turbulence energy (Hinze 1975). This production
range does not appear on the spectrum of the two other normal stresses (not shown
here), in agreement with the Reynolds stress transport equations in a simple shear
flow.

Much more results have been obtained from this hot-wire test campaign on the
turbulence statistics. They will not be detailed here, as the results presented are
enough to justify the standard characteristics of the boundary layer under study and
as the main aim of the present contribution is to study turbulence organization. They
will be discussed in further detail in a following paper.
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1, (ex, ez); 2, (ex, ey); 3, (ez, eu); 4, (ez, ey); 5, (ez, ed ).

3. PIV approach
As mentioned in § 1, the objective of this study is to use PIV to obtain quantitative

information on the vortical structures encountered in the near-wall region of the
boundary layer. To do so, the PIV experiments performed will be first described.
Then, the PIV results will be validated statistically by comparison with the available
HWA data. Finally, before presenting and discussing the results, the method used to
extract the vortices from the PIV velocity maps will be detailed.

3.1. PIV experiments performed

We use two series of PIV measurements: 2D2C PIV by Carlier (2001) and 2D3C PIV
by Kähler & Stanislas (2000) taken in the same facility. These measurements give
access to two or three components of the instantaneous velocity maps in various
planes. Figure 10 illustrates the orientations of the various planes used in the two
series of PIV measurements. One unit vector has been defined to characterize each
coordinate (ex, ey, ez). Two additional vectors (eu, ed) are used to define simply the
two tilted planes (upstream and downstream). The main characteristics of these
measurements are summarized in table 4.

2D2C PIV measurements were carried out with a 2 × 330 mJ BMI ND-YAG laser
and a Pulnix TM 9701 camera (484×768 pixels) in the planes (ez, eu) and (ez, ed) and
with a Kodak DCS 460 camera (2048 × 3096 pixels) in the planes (ex, ey) and (ex, ez).
The PIV records were analysed by a multigrid process with cross-correlation based
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Plane configuration (ex, ey) (ez, ey) (ez, eu) (ez, ed )
PIV method 2D2C 2D3C 2D2C 2D2C
Field of view 0.42× × 0.28× 750+ × 500+ 375+ × 250+ 375+ × 250+

Spatial resolution 0.0017× × 0.0017× 5.5+ × 5.5+ 4.1+ × 4.8+ 4.1+ × 4.8+

Number of Rθ 4 1 4 4
Number of maps per Rθ 200 1565 800 800
Number of vectors per map 252 × 162 141 × 90 94 × 54 94 × 54

Table 4. PIV experiments characteristics.

on fast Fourier transform (FFT) and zero-padding. Two multigrid iterations were
performed, respectively, with interrogation window sizes of 32 × 32 pixels and 16 × 16
pixels for the Pulnix camera and 64 × 64 pixels and 24 × 24 pixels for the Kodak
camera. The correlation peaks were interpolated using three-point one-dimensional
Gaussian peak fitting in two directions. In the planes (ez, eu) and (ez, ed), samples
of 800 velocity maps were recorded for each of the four Reynolds numbers with
a constant field size of 375+ × 250+ in wall units. In the (ex, ey) plane, samples of
200 velocity maps were recorded at the same Reynolds numbers with a constant
field size of 0.42× × 0.28× in external units. The general flow structure observed in
the (ex, ez)-plane is not discussed in this paper. This has been studied extensively by
Meinhart (1994), Meinhart & Adrian (1995), Zhou et al. (1999), Adrian et al. (2000b).
After analysis by Carlier (2001) (and except for one point which will be discussed
later), the results obtained here are in fair agreement with those of these authors
as far as the flow structure is concerned. For this reason, only the statistics on the
vortices will be presented in this plane. We will focus more on the other planes which
have not yet been studied extensively with PIV.

2D3C PIV measurements were carried out with the same laser, but with two
synchronized PCO cameras with a large CCD array (1024 × 1280 pixels). The opening
angle between the two cameras in a stereo-imaging configuration with Scheimpflug
correction was close to 86◦. A second-order dewarping technique was applied for the
evaluation of the stereoscopic images. The interrogation of the data was performed
with the FFT-based free shape cross-correlation. The interrogation window size
was 32 × 32 pixels. A two-dimensional Gaussian fit using the Levenberg–Marquardt
method was applied to find the correlation peak position. A total of 1565 velocity
maps at Rθ =7500 were obtained in the (ez, ey)-plane with a field size of 750+ × 500+.
In both experiments, the time interval was chosen to have displacements around 10 px.

3.2. PIV validation

Particle image velocimetry is a fairly recent measurement technique, especially in its
digital form. The theory has been thoroughly developed (see Keane & Adrian 1992;
Westerweel 1997) and is still an active subject of research, but the application to
turbulence with large data sets has been limited up to now. It is thus of interest,
having here fairly large numbers of realizations, to compare the statistics from PIV
to those of HWA. To enhance the convergence, the averaging has been performed
when possible along x and z, supposing the homogeneity of the flow along x at the
scale of the PIV field of view.

Figure 11 presents the mean velocity profiles measured in the (ex, ey)-plane at
Rθ =7500 and 19 000 and in the (ez, ey) at Rθ = 7500 and 13 500. Here again, the
wall shear stress was deduced from the Clauser plot of the data in the log layer. The
accuracy on the wall shear stress with this method is of the order of 5 %. As good
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(ex, ey)-plane.
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universality was shown from the hot-wire data, these profiles are compared to HWA at
Rθ = 8100 only. At the lowest Reynolds number, the agreement is very good in the log
layer for both planes, while a bias appears in the buffer layer for the (ex, ey)-plane. This
is a well-known phenomenon and is due to the velocity gradient being not negligible
at the scale of the PIV interrogation window in the (ex, ey)-plane (see Meinhart 1994).
This is confirmed by the fact that this bias does not appear in the (ex, ez)-plane where
the main gradient is through the plane. Such a bias can now be reduced by using a
PIV algorithm with interrogation window deformation (see Scarano 2002) which was
not available at the time of the experiments. At Rθ = 19 000, the gradient bias affects
slightly the data in the (ex, ey)-plane under y+ =100. In fact, this bias on the mean
velocity will not affect the results presented here as they are based on the fluctuating
part of the velocity vector. Away from the wall, the profile shape shows that the wake
region is not covered by the PIV data, owing to the limited field of view.

The turbulence intensities measured in the same two planes are compared to HWA
data in figure 12 for Rθ =7500 and 13 500 where all three components are available.
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Figure 13. Profiles of r.m.s. spanwise vorticity ω′
z scaled in wall units: �, PIV at Rθ = 7500;

�, PIV at Rθ = 13 500; �, Adrian et al. (2000b) Rθ = 930; �, Adrian et al. (2000b) Rθ = 2370;
�, Adrian (2000b) Rθ = 6845; �, Klewicki & Falco (1990) Rθ =1010; �, Klewicki & Falco
(1990) Rθ = 2870; �, Klewicki & Falco (1990) Rθ = 4850; ——–, Spalart (1988) Rθ = 6 70; - - -,
Del Alamo & Jimenez (2003) Reτ = 550.

Apart for the v′ component in the (ez, ey)-plane which is slightly underestimated at
Rθ =7500, the agreement is fairly good between the two planes and with the hot-wire
data, indicating that the bias on the mean velocity observed in figure 11 does not
affect the fluctuating components so much.

As the characteristics of vortical structures will be looked at in detail in the present
contribution, it is of interest to look at the statistical properties of the vorticity in the
region of interest. For that purpose, the instantaneous vorticity was computed from
the PIV velocity maps, using a second-order centred difference scheme. This vorticity
was averaged over the ensemble of the maps and the directions of homogeneity
(x or z, depending on the recording plane) to compute the mean profile along
y. Then the r.m.s. profile of the corresponding vorticity component was computed
by subtracting this mean profile. Figure 13 shows the comparison of the profile
obtained for the spanwise component ω′

z at Rθ = 7500 and 13 500 with the data of
Adrian et al. (2000b), Klewicki & Falco (1990), Spalart (1988) and Del Alamo &
Jimenez (2003) for y+ < 400. The representation is in wall units. Very near the wall
(y+ < 30), the PIV noise is expected to enhance artificially the r.m.s. of the vorticity
(as a derivative quantity). The global agreement with the existing data is fairly good.
Even the effect of the Reynolds number, that is a decreasing level with increasing
Reynolds number, is coherent with the findings of others (Adrian et al. 2000;
Klewicki & Falco 1990), although the levels are different between the different studies.
This is probably due to the difficulty of measuring this quantity very accurately with
any technique.

Figure 14 gives the spanwise and streamwise r.m.s. components of ω′ for y+ < 100
compared to the data of Spalart (1988), Ong & Wallace (1998) and Del Alamo &
Jimenez (2003). For Ong & Wallace (1998), the data scaled with both uτ (deduced
from the Clauser plot) and u∗ (estimated) are given. The present results compare
favourably with both the DNS and the experimental data. For ω′

z, the stronger
increase very near the wall of the present data should be attributed to the noise
increase on derivatives in this region. The ω′

x shows here a peak around y+ = 25. Such
a peak is detectable on both DNS data too, but it is smoother and nearer to the wall
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- - - , Del Alamo & Jimenez (2003) Reτ = 550.

(y+ = 15). The difference in amplitude of this peak is questionable. It is clear that,
in this very near wall region, it may be emphasized by PIV errors. Nevertheless, as
will be seen later, this y+ =25 location is important as far as the vortex generation
process is concerned.

Figure 15 shows the probability density function of u′ computed from the PIV
experiments at y+ = 100 and Rθ = 7500 in the planes (ex, ey) and (ez, ey). The same
quantity from HWA experiments is also shown at y+ = 100 and Rθ = 8100. In the
(ex, ey)-plane, a regular oscillation appears around the HWA result. The oscillation
period corresponds to a length of 1 pixel in the image plane. It is due to the ‘peak-
locking effect’, which skews the evaluated displacement of particle images towards
integer values of pixels. This is true also in the two tilted planes. This peak-locking
does not appear in the (ez, ey)-plane, owing to the use of a more sophisticated
peak-fitting algorithm, but also to the stereoscopic reconstruction algorithm which
smoothes this random bias. Sub-pixel local shift, as proposed by Lecordier (1997),
decreases this peak-locking effect. However, this technique was not available at the
time of the analysis and it has been demonstrated since then that this peak-locking
behaves as a high-frequency random noise (see Foucaut & Stanislas 2002). This will
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be confirmed later in this paper by the coherence of the results in the different planes.
It is also supported by the fact that the number of oscillations inside the PDF is large
enough not to affect the covariance tensor estimation (see Carlier 2001).

Using the same data, figure 16 shows the power spectra of u′ obtained with PIV
and HWA (thanks to the ‘Taylor hypothesis’). kx is the spatial wavenumber. The
common part covers about one decade. This range contains the Taylor microscales λ
and integral scales Λ, but not the Kolmogorov scales η. Improvement towards the
small scales depends on the reduction of PIV noise which has been characterized by
Foucaut, Carlier & Stanislas (2000). Extension towards the large scales depends solely
on the field of view. Note that the range of available scales is essentially linked to the
number of pixels on the CCD sensor on the low-wavenumber side and to the noise
level toward the high wavenumbers. This is due to the specificity of the turbulence
signal: the energy decreases with increasing wavenumber. It should also be noted
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that the range of structures of interest in the present study, which is above the Taylor
microscale, is not affected by the PIV noise.

3.3. Eddy structure detection method

It is difficult to define an eddy structure. Robinson (1991) proposed the following
definition: ‘a vortex exists when instantaneous streamlines mapped onto a plane
normal to the vortex core exhibit a roughly circular or spiral pattern, when viewed
from a reference frame moving with the centre of the vortex core’. One difficulty, which
has been addressed by several authors (Jeong & Hussain 1995; Adrian et al. 2000a), is
to find a reliable quantitative criterion corresponding to this definition. The vorticity
alone is not reliable enough, as there is a significant amount of vorticity in a shear
layer. The problem is thus to distinguish between a ‘vortex’ and a local shear layer.
In practice, it is impossible to detect all the vortices, especially from experimental
data. In fact, it is not necessary to do so. It is necessary only to make sure that
the detected population is large enough to obtain converged statistics and that it is
fully representative of the population under study (that is, no bias is introduced by a
criterion missing a specific part of the population).

Jeong & Hussain (1995) concluded that ‘instantaneous vorticity fields are inadequate
to reveal coherent structures in turbulent boundary layers’. They reviewed several
mathematical criteria to detect vortices in numerical simulations: maximum value of
vorticity magnitude ‖ω‖; maximum value of the second invariant Q of the velocity
gradient tensor; maximum value of the discriminant ∆; maximum of the complex
eigenvalue λ2 of the velocity gradient tensor. They came to the conclusion that this last
criterion is the most efficient one. As an example, Christensen & Adrian (2002) have
detected the eddy structures in PIV velocity maps using the swirling strength (which
corresponds in two dimensions to this λ2 criterion). However, the spatial coherence
concept is not considered in these formalisms. Wavelet transforms can overcome
this problem (see Bonnet et al. 1998; Schram & Riethmuller 2000). Indeed, this
mathematical tool is connected, like pattern recognition, to the convolution product
between a signal and a model, called a mother wavelet, but as a function of the scale.
It can be applied, for example, to the enstrophy field or more generally to scalar fields
from the various criteria reviewed by Jeong & Hussain (1995).

Nevertheless, because of their derivative nature, it is difficult to estimate these
criteria with a low noise level from PIV experiments, especially based on autocor-
relation images (see Foucaut et al. 2000) without applying some kind of low-pass
filtering. This is why a simple pattern recognition analysis based on the convolution
product was preferred for identifying parts of the velocity maps similar to a model
which defines a reference eddy structure (see Scarano, Benocci & Riethmuller 1999).
This procedure is applied in order to obtain the main characteristics of the eddy
structures by building the indicative functions of their location within the velocity
maps.

The selected eddy structure model is, in polar coordinates, a tangential velocity
component with Gaussian damping:

u (r, θ) = exp −
( r

σ

)2

· eθ , (3.1)

where eθ is the tangential unit vector in polar coordinates. The Gaussian damping
limits the influence of the surrounding flow far from the core by using a damping
radius σ . Such a model allows us to filter local shear layers which contain vorticity,
but does not fit the definition of Robinson. The model and the velocity map are
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Figure 17. Sample of instantaneous velocity map in the (ex, ey)-plane at Rθ = 7500. The mean
velocity profile has been substracted. Contours of the detection function Pr∗ are shown in the
background to highlight eddy structure locations.

projected onto eα . Both resulting scalar maps are convolved together to give Rα

which depends on α:

Rα = (umodel · eα) ⊗ (umap · eα). (3.2)

The mean value R and the variance R′ are defined by the following equations:

R = 〈R〉α, (3.3)

R′ =

√
〈Rα − R〉2

α, (3.4)

where 〈· · ·〉α is the statistical averaging operator along α. A location of high R

indicates a high similarity level between the model and the velocity map. A location
of low R′ indicates an isotropic shape of the velocity map. The combination of both
parameters allow us to build a detection function which will favour the detection
of effective eddy structures (having a ‘relatively’ isotropic shape) rather than simple
shear layers (which generally have a strong anisotropic shape, but a strong vorticity).
This detection function is defined as:

Pr∗ =
R

1 + (R′/R)
2
. (3.5)

Peaks appearing in the detection function indicate probable positions of eddy
structures in the velocity map. Figure 17 gives an example of an instantaneous
velocity map in the (ex, ey)-plane with the corresponding contours of the detection
function. At this stage, the function used can be compared to the derivative-based
criteria by Jeong & Hussain (1995) mentioned above. Such a comparison is done
further downstream.

As illustrated by figure 17, the detection function shows clear peaks at the locations
of vortices but, of course, also some more or less strong peaks at other flow features.
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Figure 18. (a) Sub-region of the fluctuating velocity field containing an eddy structure,
(b) eddy structure model, (c) detection function and (d) nearest Oseen vortex.

In order to avoid defining directly a threshold on the detection function, with the risk
either of filtering out a number of vortices or of accepting objects which are not
vortices, it was decided to add a second step to the detection procedure. In this
second step, all the regions around peaks of the detection function above a fairly low
threshold are fitted with an Oseen vortex model (see equation (3.6)) by a least-squares
procedure (Levenberg–Marquardt method).

u (r, θ) − uo (xo) =
Γo

2π

1

r

[
1 − exp −

(
r

ro

)2
]

· eθ (3.6)

with r = x − xo.
The vortex parameters fitted are the coordinates of the centre xo, the convection

velocity uo, the circulation Γo and the radius ro. The vorticity at the centre is
ωo = Γo/(πr2

o ) (with ω = �rot u). The same Gaussian damping as for the detection was
used in the least-squares fit for the same reason. If the regression coefficient (similarity
level) is larger than a selected threshold T , the corresponding eddy structure candidate
is retained and the parameters obtained characterize it. The first interest of this
approach is to select, among all the detected objects, those which look like a vortex,
depending, of course, on the value given to the two adjustable parameters of the
model: the threshold T and the radius σ . The second interest is to provide both a
length scale ro and a vorticity scale ωo characteristic of the vortex.

Figure 18 presents different steps of the eddy structure identification method. It
clearly shows in this case that the real vortex is not circular, but more elliptic. The
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Threshold T 0.925 0.925 0.925 0.900 0.950
Damping radius σ+ 39 31 23 23 23
Mean radius 〈ro〉+ 27 25 22 22 23
Mean vorticity 〈ωo〉+ −0.164 −0.172 −0.180 −0.176 −0.200
Number of eddy structures 2363 2787 2672 3309 1394

Table 5. Sensitivity of the eddy structure identification method (checked in the (ex, ey)-plane
at Rθ = 7500).
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Figure 19. Probability density function of ro in the (ex , ey) plane at Rθ = 7500: . . . , T = 0.925,
σ+ = 39; ···, T = 0.925, σ+ =31; – . – , T = 0.925, σ+ = 23; - - -, T =0.900, σ+ = 23; – – –,
T = 0.950, σ+ = 23.

parameters determined with the least-squares fitting of the Oseen model are the
‘nearest isotropic estimation’. For more detail, one should at least introduce two
length scales and one angle for the two main axes of the ellipse, instead of a simple
radius for a circle. More details on the present method are given by Carlier (2001).

Before applying the described detection method, the sensitivity of the results to T

and σ has to be characterized and suitable values of both parameters have to be
chosen. Table 5 gives the mean radius 〈ro〉 (〈· · ·〉 is the ensemble averaging operator),
the mean vorticity 〈ωo〉 and the number of eddy structures detected in the (ex, ey)-
plane at Rθ = 7500 for different values of T and σ . Increasing T decreases strongly
the number of eddy structures detected and increases slightly the mean vorticity 〈ωo〉.
The mean radius 〈ro〉 is not sensitive to this parameter. Generally, opposite to the
particular case shown in table 5, increasing σ decreases slightly the number of
eddy structures detected because the smallest eddies are filtered out. Here, the mean
radius 〈ro〉 increases, but much more slowly than σ . The mean vorticity 〈ωo〉 decreases,
but only slightly.

Figures 19 and 20 present, respectively, the normalized probability density function
of ro and ωo in the (ex, ey)-plane at Rθ = 7500 using the same detection parameters
as in table 5. The effect of σ is more visible. The trends can be explained by the
fact that the detection method behaves like a band-pass filter which moves toward
large radius when σ increases. The minimum damping radius σ of 23+ (equivalent to
6 grid spacings at Rθ = 7500) seemed to allow the detection of eddy structures from
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Figure 20. Probability density function of ωo in the (ex, ey)-plane at Rθ = 7500: ..., T = 0.925,
σ+ =39; ···, T = 0.925, σ+ = 31; – . – , T =0.925, σ+ = 23; - - -, T = 0.900, σ+ =23; – – –,
T =0.950, σ+ = 23.

the smallest one resolved by the velocity maps (around 15+ in the present case) up
to vortices of about half the PIV field size. Besides, figures 19 and 20 give a good
indication of the non-Gaussian distribution of the characteristics of the structure
around the mean values which will be described and discussed in § 4. The individual
analysis of the detection results shows that the use of a threshold T of 0.925 is the
best compromise for selecting a maximum number of real eddy structures with a
minimum number of mistakes.

In order to compare the present indicative function to other now standard methods,
one sample was selected in the (ez, ey)-plane. Figure 21(a) gives the instantaneous
velocity map of this sample. The interest of this plane is two-fold: (i) the images are
of cross-correlation type (that is less noisy); (ii) the mean velocity is through the plane
so that no mean convection velocity has to be substracted. Figures 21(b), 21(c) and
21(d) show, respectively, the streamwise vorticity ωx , the reduced discriminant Dr
(which is equivalent in two dimensions to the swirling strength) and the present
indicative function named Pr. The two indicative functions based on derivatives had
to be smoothed with a 5 × 5 sliding average. The absolute value of ωx and Pr were
used, as the sign of the vortex is not relevant for the present comparison. Each
function has been scaled to its maximum value in the map. The circles indicate the
location of the vortices which have been obtained by applying the Oseen fit to each
of these three indicative functions. The parameters for the Oseen fit were the same
for the three functions and the same as that used to obtain the following results. First
of all, the comparison of figure 21(b) with the others clearly illustrates the arguments
on vorticity as an indicative function discussed above. A second point which appears
clearly is that the present indicative function Pr gives smoother and broader peaks
than the reduced discriminant. Looking at the retained vortices, 24 are obtained
with ωx , 24 with Dr and 27 with Pr. Among those, three are wrong with ωx (the two
on the upper right-hand border and one at y+ = 300, z+ = 100). None are wrong with
the two other criteria, which means that Dr is missing 6 vortices while Pr is missing
3 of them in a total population of 30 vortices in this map. For the common vortices,
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Figure 21. Comparison between different detection functions computed from one sample of
intantaneous PIV velocity map. (a) Sample of instantaneous velocity field in the (ez, ey)-plane,
(b) vorticity component normal to the plane |ωx |, (c) reduced discriminant Dr; (d) present
indicative function |Pr |. The circles indicate the local extrema of each function where the
Oseen vortex-fitting algorithm indicates the presence of a vortex.

the agreement on the size and vorticity given by the Oseen fit is very good between
the three indicative functions.

Figure 22 gives some representative examples of accepted eddy structures in the
(ez, eu)-plane at Rθ =7500, while figure 23 shows examples of rejected eddy structures.
The detected (or rejected) vortices are centred at the crossing of the horizontal and
vertical lines in each map. As can be seen, all the detected objects are clearly vortical
structures which sometimes are far from being isotropic, but are in good coherence
with their direct environment. As shown by figure 23, some vortices are also rejected.
It appears that they are generally weaker vortices in an active environment and
with a lower coherence with this environment (apart for the upper right-hand one).
Consequently, the detector appears to segregate more or less between ‘active’ and
‘inactive’ vortices. We can thus expect the selected population to be statistically
representative of ‘active’ vortices as defined by Robinson. A few of these structures go
through the detector, but they do not show a specific character. Thus, only the results
on the number of vortices must be looked at with some care, as they are based on
the hypothesis that the same proportion of the ‘active’ vortices population is detected
in all planes and at all Reynolds numbers.

4. PIV results
The results presented in this section come from PIV experiments carried out in the

planes (ez, eu), (ez, ey) and (ez, ed). As turbulence is homogeneous in the transverse
direction, the averaged results from eddy structures having opposite vorticity are the
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Figure 22. Examples of accepted eddy structures in the (ez, eu)-plane at Rθ = 7500.

(ex, ey) (ez, eu) (ez, ey) (ez, ed )

Rθ V− V+ V− V+ V− V+ V− V+

7500 3613 1726 2386 2393 10 979 10 871 800 822
10 500 – – 2096 2123 – – 586 639
13 500 – – 2423 2408 – – 852 832
19 000 – – 2303 2342 – – 756 769

Table 6. Number of eddy structures detected.

same for each of these three planes. This was checked first and results of both types
could then be averaged together in order to improve the convergence. These results
are, for the different orientations of the plane and at different Reynolds numbers :
the averaged eddy structure velocity map; the number of eddy structures detected;
the mean radius; the mean vorticity at the centre; and the spatial relationships with
other coherent structures. Table 6 summarizes the number of eddy structures used
for the assessment of these results. For convergence reasons, the standard deviations
were not computed as a function of the wall distance. However, figures 19 and 20
give a good idea of the distributions.

In figure 17, the grey levels represent the detection function of the eddy structures in
the (ex, ey)-plane. As mentioned earlier, as this plane has been studied extensively by
Adrian and colleagues, the present results in this plane will not be further discussed
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Figure 23. Examples of rejected eddy structures in the (ez, eu)-plane at Rθ =7500.

here. They can be found in Carlier (2001). It will just be mentioned that, concerning
the flow structure, these results are in fair agreement with those of these authors (see
final discussion) except for one point. In the present study, a large number of eddy
structures with positive vorticity (opposite to that of the mean flow) were detected
(see table 6). This was first pointed out by Falco (1974) in his visualization studies
which led to his model of typical eddies (Falco 1983). In fact, these counter-rotating
eddies are here half as numerous as the negative ones, but with nearly the same mean
characteristics (size and intensity). This leads to the conclusion that both could belong
to the same distorted vortex tube, or at least have the same origin. However, this
observation was done previously at high Reynolds number and in the logarithmic
region. It should be expected that fewer of these positive eddy structures exist very
near to the wall. This will be confirmed by the present results.

4.1. Averaged eddy structure

All the eddy structures detected were extracted from the velocity maps. In each
extracted sample, one eddy structure is centred. The instantaneous convection velocity
(determined by the least-squares fitting) of the eddy structure was subtracted from
the sample. The eddy structures which have their centre located in the same layer
of thickness �y+ = 24 were averaged together. Figures 24, 25 and 26 present the
in-plane components of the velocity corresponding to these averaged eddy structures
at different wall distances, respectively, in the planes (ez, eu), (ez, ey) and (ez, ed)
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Figure 24. Averaged eddy structures in the (ez, eu) upstream tilted plane at Rθ = 7500:
yo

+ =50, 75, 100 and 125 (clockwise from the top left-hand side).

at Rθ = 7500. Note should be taken of the fact that the averaging procedure of a
large number of more or less isotropic structures such as those of figure 22 tends
to make the ‘averaged’ structure more isotropic. This has the advantage, in a first
step, of providing a single length and velocity scale to characterize the vortices under
study.

In figure 24, note that the (ez, eu)-plane is inclined at 45◦ upstream. Thus, subtracting
the convection velocity at the centre of the eddy structure, owing to the projection of
the strong mean velocity gradient along y, leads to an apparent converging motion
toward the horizontal axis. Nevertheless, the eddy structures are strong enough to
appear clearly. The averaged eddy structure located around yo

+ =50 does not have an
isotropic shape because of the viscous interaction with the wall. This effect disappears
away from the wall and the shape evolves toward an apparent isotropic spiral pattern
which converges toward the centre.

In figure 25, the out-of-plane component of the velocity is available because
2D3C PIV was used. The grey levels give the streamwise component of the velocity
minus the mean value of the vortices convection velocity. The averaged eddy structures
are very similar to those in the (ez, eu)-plane. The one located at yo

+ = 50 develops a
lift-up motion in a region of low longitudinal velocity on the lower left-hand side and
a sweeping motion in a region of high longitudinal velocity on the upper right-hand
side. Note the transverse motion of ‘sweep’ type, occurring along the wall just under
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Figure 25. Averaged eddy structures in the (ez, ey) normal to the wall plane at Rθ = 7500:
yo

+ =50, 75, 100 and 125 (clockwise from the top left-hand side). The grey scale gives the
out-of-plane component.

this averaged eddy structure. Such motions are also clearly visible in the (ex, ez)-plane
parallel to the wall (not shown here).

In figure 26, the same phenomenon (due to the projection of the mean velocity
gradient) as in figure 24 appears, but this time with a diverging motion away from the
centre of the eddy (owing to the downstream tilt angle of the plane of observation).
The averaged eddy structures obtained do not differ from the previous ones as far as
the size and intensity are concerned. Table 6 shows nevertheless that they are much
less numerous (this will be discussed in the next section).

4.2. Number of eddy structures

To give an order of magnitude, the mean number of eddy structures detected in each
velocity map is about 6 in the (ez, eu)-plane, about 14 in the (ez, ey)-plane (the field
of view is four times larger) and about 1 in the (ez, ed)-plane. To study the behaviour
of the number of eddy structures detected as a function of the wall distance, and to
compare these data for various light sheet orientations, the wall distance was stratified
in layers, each with a thickness of 24+. The number of eddy structures having their
centre in each layer is divided by the layer surface. The value obtained is called the
density of eddy structures in the layer.
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Figure 27. Density profiles of eddy structures in various planes at Rθ = 7500: �, (ex, ey)-plane
and ωo < 0; �, (ex, ey)-plane and ωo > 0; �, (ez, ey)-plane; �, (ez, eu)-plane; 	, (ez, ed )-plane.

Figure 27 presents this density for various plane orientations at Rθ = 7500 and as a
function of the wall distance. The identification method used did not allow us to detect
eddy structures with a centre lower than 40+ because of the size of the damping radius.
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In the (ex, ey)-plane, the two types of eddy structure (ωo < 0 and ωo > 0) are
presented as they correspond to a different interpretation (no homogeneity hypothesis
in that plane as in planes containing the z-axis). It appears clearly in this plane that
the eddy structures rotating in the natural sense (ωo < 0) are at least twice as numerous
than the counter-rotating one (ωo > 0).

In the three transverse planes, it has been checked first that the eddy structure, with
both signs of vorticity are in equivalent quantity. Herein, only the eddy structures with
the same sign of vorticity are presented. The (ez, eu)-plane shows clearly a peculiar
behaviour. The number of detected eddy structures is obviously increasing rapidly
when approaching the wall. On the contrary, in the (ez, ed)-plane, the total number
is much smaller and it decreases toward the wall. Also, the data in these two tilted
planes are available only up to y+ = 180. Above this wall distance, an evolution
toward some kind of equiprobability would lead the number of eddy structures in
both tilted planes to converge toward the same value (No

+ = (n/S)(νuτ )
2 � 2 10−5)

around y+ =180.
In the (ez, ey)-plane, the behaviour is comparable to the (ez, eu)-plane; the number

of eddy structures is again increasing toward the wall, but they are about half as
numerous as compared to the (ez, eu)-plane. Above y+ � 180, based on a reasonable
equiprobability hypothesis, we can expect all curves, except the one for ωo < 0 in the
(ex, ey)-plane, to converge to the same and more or less constant value of No

+ �
2 × 10−5. The region under investigation can then be separated into two sub-regions:

(i) Above y+ = 180, the number of eddy structures detected is the same in all
planes except for ωo < 0 in the (ex, ey)-plane. These last eddies are more or less
twice as numerous as the others and their population is slowly decreasing with the
wall distance (while the others remain relatively constant in the field of view). An
extrapolation of the curves leads to the conclusion that we should come to a kind
of isotropy of the vortex distribution at y+ � 800, which is the limit between the
logarithmic and the wake region in the present case. The fact that the number
of ωo < 0 eddy structures is about twice the number of eddy structures of one sign
in the (ez, eu)- and (ez, ey)-planes indicates that statistically one head is more or less
associated to one leg (of either sign) in this region, thus arguing more in favour of
the cane hypothesis that the hairpin one.

(ii) In the range, 40 <y+ < 180, the situation is more complex. The number of
eddy structures detected in the (ez, eu)-plane increases rapidly toward the wall, while
the number in the (ez, ed)-plane is nearly constant and finally decreases very near to
the wall. Taking into account the fact that the detector used somehow favours eddy
structures normal to the corresponding plane, this result supports the hypothesis that
the eddy structures in this region are preferably tilted at more or less 45◦ downstream
to the wall. This hypothesis is somewhat contradicted by the results in the (ez, ey)-
plane which does not increase toward the wall as fast as those in the (ez, eu)-plane
(a vortex at 45◦ downstream should cut the (ez, ey)-plane). This contradiction is not
so strong if we take into account the fact that, if these vortices are really at an angle
of 45◦ to the wall, they should appear fairly elliptic in the (ez, ey)-plane and be,
at least partly, eliminated by the present detector. The last interesting result in this
region is the strong decrease toward the wall of the number of eddy structures of
both signs detected in the (ex, ey)-plane indicating that the number of cane vortices
is decreasing toward the wall, in favour of eddy structures forming small angles with
the (ex, ey)-plane.

Figure 28 gives the same quantity in the (ez, eu)-plane as a function of the Reynolds
number. This result, confirms the evolution observed in figure 27 (a significant increase
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Figure 28. Density profiles of eddy structures in the (ez, eu)-plane: �, Rθ = 7500;
�, Rθ =10 500; �, Rθ = 13 500; �, Rθ = 19 000.
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Figure 29. Mean radius profiles of eddy structures: 
, (ex, ey)-plane and Rθ = 7500;
�, (ez, eu)-plane and Rθ =7500; �, (ez, eu)-plane and Rθ = 10 500; �, (ez, eu)-plane and
Rθ = 13 500; �, (ez, eu)-plane and Rθ = 19 000.

of the number of eddies in this plane) at all Reynolds numbers. Looking carefully
at the results, a different slope is observed between the group Rθ =7500 and 10 500
and the group Rθ = 13 500 and 19 000. It is not clear at the present stage whether this
should be interpreted as a Reynolds-number dependence or attributed to a lack of
statistical convergence.

4.3. Mean characteristics

Figures 29 and 30 show the mean radius and the mean vorticity profiles of the
eddy structures at four Reynolds numbers in the (ez, eu)-plane and at Rθ = 7500
in the (ex, ey)-plane. These two quantities appear relatively universal in wall
units.
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Figure 30. Mean vorticity profiles of eddy structures: 
, (ex, ey)-plane and Rθ = 7500;
�, (ez, eu)-plane and Rθ = 7500; �, (ez, eu)-plane and Rθ = 10 500; �, (ez, eu)-plane and
Rθ =13 500; �, (ez, eu)-plane and Rθ = 19 000; - - -, r.m.s. spanwise vorticity; ———, Van Driest
profile.

In the (ez, eu)-plane, the mean radius increases slowly away from the wall, starting
from about 20+ at y+ = 40 and with a mean value of about 24+ in the region
of investigation. By contrast, the mean vorticity decreases slowly. The combination
of both keeps the circulation (defined by 〈Γo〉 =2π〈ωor

2
o 〉 in the case of an Oseen

vortex) almost constant in wall units (〈Γo〉+/2π = 140). The mean vorticity profiles,
extrapolated toward the wall, intersects the ω′

z profile around y+ = 25, which
corresponds to the peak of this quantity (the peak of ω′

x being nearby at y+ = 20).
At this wall distance, ω′

z is about twice the mean velocity gradient ∂U/∂y (which
represents the main component of the mean vorticity). This supports the idea
that the vortical structures observed further away from the wall have their origin
around y+ = 25, in the region of the strongest vorticity fluctuation, with an initial
radius around 20+ which places them just above the viscous sublayer.

In the (ex, ey)-plane, the size of the vortex heads is starting from the same near-wall
value. It slowly increases (almost linearly) with wall distance, leading to a slightly
smaller mean value ( ∼ 22+). The vorticity of the heads is slightly higher and remains
significant away from the wall. The circulation is somewhat smaller (〈Γo〉+/2π =100).
It decreases slowly and linearly away from the wall. The results in the two other
planes (not shown) agree well with those presented. Globally, we can conclude that
the mean radius 〈ro〉+ of the vortices varies between 20 and 30 and increases slowly
away from the wall while the mean circulation 〈Γo〉+/2π varies between 80 and 150
in the different planes and is almost constant (or very slowly linearly decreasing)
through the region of observation.

To conclude, figure 31 gives the mean convection velocity of the eddy structures
in the (ez, ey)-plane as a function of the wall distance (available thanks to the use
of a stereoscopic PIV measurements). This convection velocity, which is provided by
the least-squares procedure, is compared to the mean velocity profile proposed by
Van Driest. As can be seen, the difference between them is very small. This result,
which was already approached by a visualization study by Hoyez-Delaliaux (1990),
is in good agreement with Adrian et al. (2000b). The latter authors find very good
coincidence between the convection velocity of the vortices and the mean velocity
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Figure 31. Mean convection velocity of eddy structures in the (ez, ey)-plane: �, Rθ = 7500;
———, Van Driest profile.

profile up to y+ = 800 at Rθ =7500, which is in agreement with the present results.
Farther from the wall, the convection velocity measured by Adrian et al. (2000b)
becomes smaller than the mean and more scattered. Looking at the number of
samples used, we may question the convergence of their results in this outer region
where the vortices are less numerous. This result on the convection velocity in the log
region has recently been confirmed by Christensen & Adrian (2002). The same results
(not shown) are obtained in the (ex, ey)-plane together with a very good universality
in wall units for 50 < y+ < 500 and for the four Reynolds numbers.

4.4. Spatial relationships between coherent structures

It is commonly assumed that the low-speed streaks come from the interaction of the
eddy structures with the wall and that their lift-up causes the formation of ejections
responsible for the turbulent kinetic energy production (see Kim, Kline & Reynolds
1971). The relationships between these various types of coherent structure can be
revealed by building the indicative functions of the regions occupied by each of them
in the velocity maps. These indicative functions are binary functions in the plane of
interest. They take the value 1 at a point inside a corresponding coherent structure
and the value 0 elsewhere. The relationships investigation is possible especially with
the 2D3C PIV measurements performed in the (ez, ey)-plane. The indicative functions
of different coherent structures are cross-correlated with each other to give the
probability map of the location of one (at the moving point) compared to the other
(at the fixed point). To improve the convergence, the fixed point was moved along the
transverse direction and the cross-correlation maps obtained were averaged together
around the fixed point (to take advantage of the homogeneity of the flow in that
direction). Consequently, the convergence decreases as the moving point is moved
away from the fixed point in the transverse direction. The probability maps obtained
for various coherent structures are shown in figures 32 to 37.

The regions occupied by the eddy structures in the indicative function should have
a size proportional to the size of the eddy structures themselves. As was observed,
ro does not vary too much (see figure 19), and to simplify the processing, a circular
region with a constant radius equal to the damping radius σ was selected for all the
eddy structures.
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Figure 32. Probability map of the location of negative eddy structure and positive eddy
structure compared to positive eddy structure at y+ = 50 and Rθ = 7500 in the (ez, ey)-plane.
(a) Fixed point, positive eddy structure; moving point, negative eddy structure. (b) Fixed point,
positive eddy structure; moving point, positive eddy structure.
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Figure 33. Probability map of the location of positive eddy structure compared to high-speed
streak and low-speed streak at y+ = 15 and Rθ =7500 in the (ez, ey)-plane. (a) Fixed point,
high-speed streak; moving point, positive eddy structure. (b) Fixed point, low-speed streak;
moving point, positive eddy structure.
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Figure 34. Probability map of the location of ejection compared to positive eddy structure
and positive eddy structure compared to ejection at y+ = 50 and Rθ = 7500 in the (ez, ey)-plane.
(a) Fixed point positive eddy structure; moving point, ejection. (b) Fixed point, ejection; moving
point, positive eddy structure.
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Figure 35. Probability map of the location of sweep compared to positive eddy structure and
positive eddy structure compared to sweep at y+ =50 and Rθ = 7500 in the (ez, ey)-plane. (a)
Fixed point, positive eddy structure; moving point, sweep. (b) Fixed point, sweep; moving
point, positive eddy structure.

The indicative functions of the regions occupied by the ejections in a velocity map
are obtained according to the quadrant method by Wallace, Eckelmann & Brodkey
(1972). The detection variable for the ejections (corresponding to the second quadrant
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Figure 36. Probability map of the location of ejection and sweep compared to low speed
streak at y+ = 15 and Rθ = 7500 in the (ez, ey)-plane. (a) Fixed point, low-speed streak;
moving point, ejection. (b) Fixed point, low-speed streak; moving point, sweep.
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Figure 37. Probability map of the location of ejection and sweep compared to high-speed
streak at y+ = 15 and Rθ = 7500 in the (ez, ey)-plane. (a) Fixed point, high-speed streak;
moving point, ejection. (b) Fixed point, high-speed streak; moving point, sweep.

in the joint probability density function of u′ and v′) was chosen as the instantaneous
Reynolds shear stress u′v′, normalized by the local standard deviation product σuσv .
The detection function is the map of the detection variable. The indicative function
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is the detection function thresholded at a level H and binarized. As in Wallace,
Eckelmann & Brodkey (1972), a value of H = 1 was chosen.

The characteristic variable of the streaks is the longitudinal velocity fluctuation u′.
Therefore it is natural to choose it, normalized by the local variance σu, as the detection
variable. The detection function for the low-speed streaks is the negative part of the
detection variable (and vice versa for the high-speed streaks). The indicative function
is the detection function thresholded by H and binarized. There are no references to
provide guidance for the best value of H , but H = 1 appeared to suit very well in the
present case.

4.4.1. Eddy structures

Figure 32(a) gives the probability of finding a negative eddy structure (clockwise)
in the field of view when a positive one (counterclockwise) is located at y+ = 50 in
the (ez, ey)-plane at Rθ = 7500. Figure 32(b) gives the same probability, but with two
positive eddy structures. It is clear from these two diagrams that the most probable
situation, which is fairly weak (about 10 %), is to have counter-rotating adjacent eddy
structures near the wall separated in the spanwise direction. Note that the fixed point
is at y+ =50, which is the nearest possible to the wall with this data set and which is
the outer limit of the buffer-layer. Taking into account the mean radius of the eddy
structures at this wall distance (23+), they penetrate deep into this buffer-layer (see
figure 25).

4.4.2. Eddy structures – streaks

Figure 33(a) gives the probability of finding a positive eddy structure in the field
of view when a high-speed streak is located at y+ = 15 in the (ez, ey)-plane. A peak
is clearly observable in the immediate vicinity of the high-speed streak, showing that
eddy structures are relatively often associated with these streaks. This is true also for
low-speed streaks, as illustrated by figure 33(b) (but with a maximum of correlation
slightly farther in the transverse direction: 75+ instead of 50+). The second peak
appearing on both diagrams at dz+ ∼ 300 should be looked at with caution, as the
convergence is not as good near the border of the field of view. However, although
the known size difference in the longitudinal direction (200+ for the vortical structures
at the wall and 1000+ for the low speed streaks, see Kim et al. (1987), the level and
the size of the regions of highest probability in figures 33(a) and 33(b) indicate that
the chances that the (ez, ey)-plane cuts these two types of coherent structure (vortices
and streaks) simultaneously are fairly high.

4.4.3. Eddy structures – ejections and sweeps

Figure 34(a) gives the probability of finding an ejection in the field of view when
a positive eddy structure is located at y+ =50 in the (ez, ey)-plane. A region of
ejection, with a probability of 10 %, is clearly evidenced at the right-hand side of the
eddy structures, starting very near the vortex (of radius 23+) and extending from the
wall to y+ = 300. This means that the chances to have an ejection associated to an
eddy near the wall are high. The complementary correlation is given in figure 34(b)
(ejection at the fixed point and positive eddy structures at the moving point). As
can be observed, the correlation peak is significantly stronger here and much more
localized. Although the local probability is not very high in these maps, the region
at this level is wide enough to expect, for example, in figure 34(b) a vortex to be
centred somewhere inside it with a fairly high probability. This does not exclude the
fact that other types of coherent structure can be well correlated with an ejection, but
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it shows at least that coherent vortex structures are fairly often linked to this event.
The two diagrams of figure 34 indicate that the probability of an eddy structure being
closely tied to an ejection is less than for an ejection to be directly linked to an eddy
structure.

Figures 35 shows the same correlations as in figure 34, but now for a sweep instead
of an ejection. The direct link between an eddy structure and a sweep appears stronger
than for an ejection in figure 34(a). Again, the probability is higher for a sweep to be
associated to an eddy structure than the contrary.

4.4.4. Streaks – ejections and sweeps

Figure 36 gives the probability of finding an ejection or a sweep in the field of view
when a low-speed streak is located at y+ = 15 in the (ez, ey)-plane. The same data are
given in figure 37 for high-speed streaks. These four diagrams illustrate clearly the
well-known relation existing between low-speed streaks and ejections on one hand
and high-speed streaks and sweeps on the other hand. It should nevertheless be
noted that the level of correlation obtained leaves room for low-speed streaks without
ejections and high-speed streaks without sweeps. This point cannot be confirmed here
as the corresponding complementary correlation is not accessible within the present
data set.

5. Discussion
The aim of the present contribution was to take advantage of PIV to bring some

new experimental information to the characterization and the understanding of the
near-wall coherent structures at high Reynolds number. After presenting the data
obtained and the main immediate insights that they can bring, it is important to
situate and discuss them with respect to the present understanding of near-wall
turbulence. Looking at the large number of publications since Theodorsen (1952),
this seems a giant task. Thankfully, this problem, which is of strong interest for the
turbulence community, has been reviewed from time to time. This discussion refers
to the review by Panton (1997). Most of the teams working on near-wall turbulence
contributed to this book, summarizing their views on the flow organization in this
region. Not all of these contributions will be detailed in the discussion. Only those
based on the types of data comparable to those provided in the present contribution
(mostly DNS and PIV) will be addressed in detail here (Smith & Walker 1997;
Hanratty & Papavassiliou 1997; Kline & Portela 1997; Schoppa & Hussain 1997).
Concerning the team of Adrian, a more recent paper (Christensen & Adrian 2002)
has appeared and is more relevant. In addition, the Schoppa & Hussain (1997) point
of view has been laid out in Schoppa & Hussain (2002). Apart from the Adrian
group which has an experimental approach similar to the present one, most of these
workers obtained their knowledge mainly from DNS or experiments at low Reynolds
numbers. It is thus of interest to see how the present data corroborate, or not, their
results for higher Reynolds numbers. Moreover, several of these workers focused
particularly on the very near-wall region, to try to understand the self-sustaining
mechanism in the buffer-layer. Although the present measurements could not go deep
into this region (except data not shown in the (ex, ez)-plane), it is of interest to see how
they agree with the different models proposed and their consequences away from the
wall.

As far as these near-wall self-sustaining mechanisms are concerned, it should be
recalled, as was emphasized by Schoppa & Hussain (2002), that they can be classified
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in two categories: those based on a parent–offspring scenario (see Smith & Walker
1997; Hanratty & Papavassiliou 1997), which suppose that new vortices are generated
by the interaction of older vortices with the wall, and those based on an instability
mechanism (see Kline & Portela 1997; Schoppa & Hussain 1997), which suppose
that the vortices are generated mainly by an instability of the near-wall low-speed
streaks. Up to now, most models of the second type rely on a shear-layer type
of instability generating horseshoe or hairpin vortices. Schoppa & Hussain (2002)
have now proposed a streak transient growth mechanism generating staggered and
overlapping alternate quasi-streamwise vortices.

Looking at the present results, one of the most significant ones is that all the
physical characteristics of the vortices (size, intensity, convection velocity) in the
logarithmic region seem to scale in wall units. The only contributors addressing this
point in Panton (1997) are Hanratty & Papavassiliou (1997), who come to the same
conclusion for both the size and the velocity scale of the vortices. Moreover, they
obtained a size of 2ro

+ � 50 near the wall, which is in fair agreement with the one
found here.

Christensen & Adrian (2002) also addressed this point for a channel flow, and came
to a somewhat different conclusion that the spatial extent of the eddy structures is
fairly constant in outer variable scaling. The first reason which could be invoked is
that the present results are biased toward small eddy size owing to the small field
of view. This does not stand analysis as the data in the (ez, ey)- and (ex, ey)-planes,
which have a field of view in wall units comparable to that of Christensen & Adrian
(2002) at Rτ = 550, are in very good agreement with the planes having a smaller field
of view. Three points can be made to explain this disagreement. (i) The spatial extent
mentioned by Christensen & Adrian (2002) is not quantitatively defined and can be
different from the radius used here. (ii) This spatial extent applies to an average eddy
structure whereas we computed the average of the radius of individual structures.
(iii) These authors mentioned that the same magnification (i.e. spatial resolution) was
used for the PIV recording at the two Reynolds numbers in their study. This was also
done at first in the present study and led to the same apparent conclusion. Because
the size of the eddy structures diminishes in physical units when the Reynolds number
increases, the spatial resolution has to be adapted to catch the PDF correctly on the
small size side.

A second result concerns the characteristic scales of the eddy structures. Apart
from near the wall, the vorticity of these eddies is much larger than the local mean
shear stress (Ux,y) and even the r.m.s. of ωz. This vorticity decreases very slowly
away from the wall, while the sizes of the vortices increase, but also very slowly. The
result is that the circulation of the eddies is nearly constant all through the region
of observation which extends from the top of the buffer-layer to the middle of the
logarithmic region (y+ � 500). Although data are not available here to prove it, the
extrapolation of the present results on the circulation indicates that the constancy of
the circulation of the vortices should not change until at least the upper limit of the
logarithmic region. A striking result is that this is true in all the planes of observation,
that is for both ‘legs’ and ‘heads’. Also striking is the fact that these eddies seem to
have the same origin: the near-wall region around y+ = 25, and a range of scale ro

+

between 10+ and 50+ (standard deviation about 30 %) in the whole region of interest
(see figure 19). As has been found previously (see Christensen & Adrian 2002) and
as shown in figure 31, these eddies are convected on average with the local mean
velocity. They thus evidence little self-induction, being submitted mainly to the mean
shear stress.
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One question which should be further discussed is that of the size and scaling of the
eddy structures. In fact, the present results seem to contradict partly those obtained
by Klewicki & Falco (1996) on the duration of ωz events, using hot-wire anemometry.
Based on a local Taylor hypothesis, a parallel can be made between the two scales
(time and length). If the agreement is quite good in that these two scales are nearly
constant in the range 50 < y+ < 250, Klewicki & Falco (1996) find that the duration
of ωz events does not scale in wall units, but with the Taylor micro time scale. First,
it must be mentioned that both the Taylor-scale values and their Reynolds-number
dependences are in reasonable agreement here with the data from these authors.
This means that the present results do not scale with Taylor scales. Consequently,
in the ωz events detected by Klewicki & Falco (1996), there are events other than
the present vortex structures, which scale differently from them. These events should
most probably be local shear layers which have been filtered by the vortex detector
used here.

Looking at Panton (1997), it is clear that this result on the scaling of the vortices
contradicts some well-accepted ideas. Smith & Walker (1997), for example, are
convinced that both hairpins and a majority of cane vortices travel near the wall in
the outer part above the buffer-layer and send legs down toward the wall. The heads
of these vortices are supposed to behave quite differently from the legs, that is, to
expand and reduce their vorticity. That is to say, hairpin vortices evolve into similar,
but much larger, vortices in the outer flow. The coalescence of smaller vortices into
coherent structures of larger scale is also suggested. Vortex stretching is supposed to
conserve the angular momentum ω2r while increasing the energy ω2r2, reducing the
size and increasing dissipation. Here, the observed structures appear to nearly keep
their circulation (ωr2).

Hanratty & Papavassiliou (1997) come also to the conclusion that vortices grow
significantly in size away from the wall (although the size they find near the wall is
in fair agreement with the present result: ‘turbulence production is controlled in the
viscous wall region by vortical motions centred on average at y+ = 20–25 and having
a spanwise dimension of 40–50+’). From their point of view, the stress-producing
eddy structures in the viscous wall region are parts of vortical structures attached to
the wall upstream, with a size of 10+ along y and 20+ along z (not detectable in the
present data), which grow, tilt backward and eventually lift from the wall. They then
increase in size and decrease in vorticity downstream until they disappear. Some of
them reappear in the (ex, ey)-plane as spanwise heads.

The contribution of Kline & Portela (1997) is mainly based on the well-known
analysis of the database of Spalart (1988) by Robinson (1991). They identify two
families of vortices: tilted streamwise vortices near the wall (legs) and transverse
vortices in the outer part (heads). Both are present in the logarithmic region
and they are often connected on one side by a shoulder (very rarely on both
sides ∼ 2 %). They give no hint about the vortex size evolution away from the wall
(see Robinson 1991), but find a diameter of about 50+ near the wall, in agreement with
Hanratty & Papavassiliou (1997). Schoppa & Hussain (2002) look in detail at the
instability mechanism very near the wall in the buffer-layer, and give almost no
indication about the logarithmic region. They come to a model of staggered vortices
of opposite sign riding over the low-speed streaks and overlapping each other. These
vortices are inclined at 9◦ to the wall in the (ex, ey)-plane and at ± 4◦ in the (ex, ez)-
plane. They originate from an instability of the streaks. Their results and theory
locate the origin of the vortices around y+ = 30 with initial sizes of the order of 20+

along y and z and 150+ along x. These vortices are supposed to evolve rapidly into
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arches, through a streaks instability → streamwise vortices → arch vortices mechanism
instead of a streaks instability → arch vortices → streamwise vortices as inferred by
Robinson (1991). No indication is given about the size of the heads, but their pictures
from DNS data seem to indicate heads larger than the legs.

Apart from evident agreement with some results of each of these authors, the
main contradiction between these results and the present data is that the size of the
vortices is proposed to grow rapidly as they move outward. Two main reasons can be
put forward to explain this discrepancy. The first possible reason is that the present
analysis may have missed the larger vortices because they are not isotropic enough
to fulfil the detection criterion. This reason is not supported by visual analysis of
the data and also by the fact that Adrian et al. (2000b), using the same approach,
come to a very similar estimation of the size of what they call the ‘smallest’ eddy
structures. They also observe that this size is fairly constant throughout the boundary
layer. The second possible reason to explain this discrepancy is that most of the
conclusions of the other authors, described above, rely mainly on the analysis of
DNS or experimental data at fairly low Reynolds number, where the logarithmic
region is very small (or even does not exist). This is not the case for the present
data (see figure 5). If it can be confirmed that the sizes of the vortices increase in the
wake region at high Reynolds number, then the contradiction may not be as strong
between the present results and the existing data. Besides, it should be mentioned
that no evidence of coalescence was found directly in the present data (vortices were
found to be fairly isolated), but the range of size observed (10 < ro

+ < 50) leaves some
room for such pairing to occur, especially near the wall where the rapid variation
with the wall distance of the number of vortices in the (ez, eu)-plane suggests some
pairing.

As a preliminary conclusion, we could tentatively define the upper limit of the low-
Reynolds-number domain in wall turbulence as the situation where a clearly defined
log layer exists to separate the buffer layer from the wake region. This situation
should occur around Rθ = 2000 for a boundary layer, which corresponds to about
ReH = 20 000 for a channel flow (based on half-channel height and mean velocity).
Above this value, comes the question of the Reynolds-number dependance of such a
flow. This question is still open (even for the mean velocity profile), mainly due to the
lack of accuracy on the wall shear stress measurement. If this proposal is true,
the present data would be outside the range of low-Reynolds-number effect, whereas
the data of Adrian et al. (2000b) would be on both sides and most of the DNS would
be on the low-Reynolds-number side.

Before going further into the discussion of eddy structures, it would be worth
summarizing the main results deduced from figure 27: above y+ = 180, the mean
number of heads is comparable to the total number of legs (of both signs) arguing for
a cane configuration of the eddy structures in this region (but canes with a head size
comparable to the leg size). A significant number of counter-rotating heads (ωo > 0)
do appear in the (ex, ey)-plane (comparable to the number of legs in the transverse
planes), with the same scales as the others. This is in agreement with the findings of
Falco (1974), Klewicki & Falco (1996) and Kline & Portela (1997), but not supported
by the data from Adrian. Between 50+ and 180+, eddy structures appear to be tilted
downstream (around 45◦) and streamwise-oriented (fewer heads) vortex tubes with a
rapidly decreasing number away from the wall.

Summarizing the picture of eddy structures which emerge from the present data,
we could say that the vortices in the logarithmic region are mainly canes of both sign,
which scale in wall units. They find their origin near the wall, around y+ = 25 and
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evolve initially mainly as tilted streamwise vortices. They keep their circulation and
evolve very slowly with wall distance while being convected at the local mean velocity.
The number of vortices found in each map indicates that they are fairly sparse in
space, supporting somehow the hypothesis of active/inactive motions. Comparing this
picture to the above literature summary, it is clear that, apart from the size evolution
with wall distance, it is in fair agreement with most of them. This agreement is
particularly good with the model developed by Schoppa & Hussain (2002), except for
two points. First, the heads appear much larger than the legs in the model. This can
be explained by the low-Reynolds-number effect mentioned earlier and by the fact
that the stretching should be much stronger at high Reynolds number and should
counteract the diffusion and keep the vortex size growing slowly. Secondly, the model
does not account for the counter-rotating heads observed in the experiment. This can
also be explained by the fact that the model, as any model, is somewhat ideal. It
gives angles of ± 4◦ in the (ex, ey)-plane to the initial quasi-streamwise vortices and
proposes that vortices of each sign tilt afterwards to generate canes with the right
vorticity sign (ωz < 0). Taking into account the large standard deviation associated
with all the characteristics of near-wall events (see Kline & Portela 1997), it can be
expected that some of these initial quasi-streamwise vortices tilt on the wrong side
of the (ex, ey)-plane and develop canes with a counter-rotating head (ωz > 0). As the
migration away from the wall of cane vortices cannot be attributed to self-induction,
it should be attributed to mutual induction. It is not surprising then to find counter-
rotating heads all through the region of observation. It should be emphasized that the
Schoppa & Hussain model is the only one (of those addressed here) which provides a
logical explanation of the counter-rotating heads. The other models, as they suppose
that the full cane is generated initially, give little chance for a counter-rotating head
to appear, except by strong distortion of the legs or by closure of the hairpin vortices
into vortex loops as suggested by Falco (1983).

It must also be mentioned that, apart from the size, the picture obtained in the
logarithmic region is in good agreement with the results of Christensen & Adrian
(2002). The eddy structures appear to originate at the wall, to move slowly outward,
while being convected downstream at the local mean velocity.

Besides the characterization of eddy structures in the logarithmic region, the present
data set, although it does not fully resolve the buffer-layer, provides some information
of interest on the near-wall mechanisms. This information is gathered in figures 32
to 37 and will be summarized and discussed.

Near the wall, counter-rotating adjacent vortices are the most probable
configuration in the spanwise direction, with a separation between 50+ to 250+.
Adjacent vortices of the same sign are extremely rare. This point is, in fact, in
agreement with all the models (hairpin vortices of Smith & Walker (1997), cane
vortices of Hanratty & Papavassiliou (1997) and Kline & Portela (1997), alternate
quasi-streamwise vortices of Schoppa & Hussain (1997)). It should nevertheless be
kept in mind that the maximum value of the probability in figure 32(a) is of the order
of 10 % which leaves room for isolated vortices of each sign. In figure 33, both low-
and high-speed streaks appear closely associated with individual near-wall vortices of
the appropriate sign and on the appropriate side (that is a vortex generating a sweep
on a high-speed streak and an ejection on a low-speed streak). The probability of these
events is not so high, suggesting the need for the construction of the complementary
correlation (vortex at the fixed point and streak at the moving point), which is not
available from the present data set. This picture is again in fair agreement with the
models cited above, but does not contribute to the debate between hairpin and cane
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vortices. To do so, the probability of having simultaneous counter-rotating vortices
above a streak should be constructed.

Looking at the relation of near-wall vortices with sweeps and ejections, it was
found that both ejections and sweeps are highly correlated to a nearby vortex, while
the opposite correlation is less strong. This means that a near-wall vortex is required
inorder to generate a sweep or ejection, but not all of them do so. Again, this point
is accepted by several modellers and explicitly made, for example, by Zhou et al.
(1999). Finally, as expected, ejections and sweeps are well correlated, respectively,
with low- and high-speed streaks. The sweeps and ejections appear above the streaks.
What is surprising in the present results is the shape of the correlation functions.
Looking at the literature, we would expect a local extremum just above the streak and
fairly localized in space. The shape observed here seems to indicate a direct vertical
exchange of momentum between the near-wall region and the logarithmic region.
Clearly, this point is not addressed in the literature, at least in this range of Reynolds
number. Although, a clear relation is evident in the very near-wall region (y+ < 100)
as in the other diagrams (figures 32 to 35), this correlation is the only one to indicate
a direct relation between the wall region and the outer flow.

6. Conclusion
A PIV experiment has been performed in a turbulent-boundary-layer wind tunnel.

The aim of this experiment was to study the coherent structures taking part in
the generation process of wall turbulence. This experiment was performed at high
Reynolds number in a fairly thick boundary layer, allowing us to obtain a well-
developed logarithmic region. The recording of instantaneous velocity maps in planes
oriented at different angles to the flow has allowed us to characterize, with some detail,
the eddy structures which develop into the logarithmic region. A sufficient number of
fields were recorded in each plane to obtain statistical characteristics of these vortices
(density, size and intensity). It was also possible, in the plane normal to the flow and
to the wall (in the (ez, ey)-plane), to investigate the links between vortices, streaks,
sweeps and ejections. The analysis of these results and the comparison with the
existing points of view in the literature is instructive. The present results complement
the existing data by providing high-Reynolds-number results. Globally, they are in fair
agreement on many aspects of the flow structure with the previous experiments and
the existing theories as summarized in Panton (1997). The most important conclusion
from the above discussion is with regard to the low-Reynolds-number effects on
wall turbulence. It seems that, in the range of relatively high Reynolds number
investigated here (a well-defined log layer exists to separate the buffer layer from the
wake region), the vortices which travel in the logarithmic region scale universally in
wall units and keep fairly constant characteristics throughout this region. This point
is somewhat different from conclusions drawn by Smith & Walker (1997), Hanratty &
Papavassiliou (1997) and Kline & Portela (1997) from the studies by either DNS data
or experiments at low Reynolds number. At high Reynolds number, cane vortices
of the type described by Robinson (1991) appear to be born in the buffer-layer as
quasi-streamwise vortices similar to those proposed by Schoppa & Hussain (2002).
As observed here, they are already lifted up at an angle to the wall near 45◦ and they
move slowly away from the wall, while being convected at the local mean velocity
(see Christensen & Adrian 2002). During this travel, their size increases and intensity
decreases (both slowly), keeping their circulation (ωr2) almost constant. Thus, these
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vortices appear as some flow entities from the buffer-layer that reach the logarithmic
region, explaining perhaps the scaling of this region in wall units.

Among the different models investigated in the discussion, it is clear that the
overall behaviour of the vortices in the logarithmic region, as deduced from the
present results, is in fair agreement with the theory of Schoppa & Hussain (2002)
which supposes that they are generated as quasi-streamwise vortices near the wall
and not directly as arch, cane or hairpin vortices. In particular, this theory is the only
one to give a logical explanation to the counter-rotating heads observed throughout
the logarithmic region. It would now be of interest to investigate the wake region, to
see if the tendency toward an isotropic distribution of vortices in the different planes
is confirmed and to determine how the size and intensity of these vortices evolve in
this region.

In the (ez, ey)-plane, the picture deduced from the correlation maps between the
different coherent structures (vortices, streaks, ejections and sweeps) is consistent with
the previous observations made mostly at low Reynolds number (see Panton 1997):
sweeps are tightly linked to high-speed streaks and near-wall vortices, ejections are
tightly linked to low-speed streaks and also near-wall vortices. The level of probability
reached in these maps (and some of these maps themselves) leaves room for near-
wall vortices generating no ejections or sweeps and streaks not directly associated
with a vortex. This is consistent with the accepted model of active/inactive motions
of Townsend (see Robinson 1991; Kline & Portela 1997). The agreement here is
fairly close with all the results available at low Reynolds number, indicating that,
in contrast to the logarithmic region, the buffer-layer appears to be less sensitive to
low-Reynolds-number effects. This is of interest, as it indicates that the result of low-
Reynolds-number DNS in the near-wall region are relevant for high Reynolds number
and that the self-sustaining mechanism near the wall should not be so dependent
(at least at first order) on the outer region. This is in agreement with a number of
proposals (see Kim et al. 1987; Jiménez & Pinelli 1999; Schoppa & Hussain 2002;
etc.). It is particularly striking that the sizes of the vortices obtained here through
the logarithmic region are in fair agreement with the sizes obtained at low Reynolds
number near the buffer-layer (see Hanratty & Papavassiliou 1997). If this result can
be confirmed by further studies (in particular DNS at higher Reynolds number which
are underway at the CTR), it means that, first the main part of the self-sustaining
mechanism of wall turbulence is localized under y+ � 100 and second that it can be
studied by DNS at a reasonable Reynolds number. This point is supported by the
well-known behaviour of the mean velocity profile as a function of the Reynolds
number as illustrated by figure 5: when the Reynolds number increases, only the
extension outward of the logarithmic layer changes in wall scaling. This universality
of the near-wall self-sustaining mechanism appears, based on the present results,
extended to the range of Reynolds number investigated (Rθ < 19 000). Extrapolation
to very high Reynolds number would be presently purely speculative.

Besides, the relevance of PIV for the quantitative study of turbulence and coherent
structures should be emphasized. The present data, although far from being perfect,
illustrate clearly that reliable and statistically relevant data can now be obtained
from PIV to investigate the spatial organization of turbulence. Although the spatial
resolution is limited and the measurement noise limits the range of scales accessible
on the high-wavenumber side (see Foucaut & Stanislas 2002), careful use of this
tool gives a deep insight into the flow organization. It is obvious from the present
results that stereoscopic PIV with the largest possible CCD is an adequate tool
to study turbulence organization. This is clearly illustrated by the richness of the
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information gathered in the (ez, ey)-plane, which was the only stereoscopic one in
the present study. The use of this technique in the other planes would be of strong
interest and would allow us to confirm the present results and to answer a certain
number of remaining open questions. The increase of the spatial resolution near
the wall in the (ex, ey)-plane would also be of great interest. Finally, although the
statistical study of turbulence with PIV is at its very beginning as compared to hot-
wire anemometry, it should be mentioned that the stereoscopic dual-plane approach
of Kähler & Kompenhans (2000) and Kähler & Stanislas (2000) already provides one
more dimension of information, as it allows us to measure space–time correlations.
This opens a wide field of investigation.

The authors are grateful to Dr J.H. Foucaut for his help in the experiments and to
Dr E. Kaehler for providing the stereo PIV data.
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