Fluminance publications

FLUMINANCE

Jump to : Download | Abstract | Contact | BibTex reference | EndNote reference |

Artana12a

G. Artana, A. Cammilleri, J. Carlier, E. Mémin. Strong and weak constraint variational assimilation for reduced order fluid flow modeling. Journ. of Comp. Physics, 213(8):3264-3288, April 2012.

Download [help]

Download Hal paper: Hal : Hyper Archive en ligne

Download paper: Adobe portable document (pdf) pdf

Copyright notice:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

Abstract

In this work we propose and evaluate two variational data assimilation techniques for the estimation of low order surrogate experimental dynamical models for fluid flows. Both methods are built from optimal control recipes and rely on proper orthogonal decomposition and a Galerkin projection of the Navier Stokes equation. The techniques proposed differ in the control variables they involve. The first one introduces a weak dynamical model defined only up to an additional uncertainty time-dependent function whereas the second one, handles a strong dynamical constraint in which the dynamical system’s coefficients constitute the control variables. Both choices correspond to different approximations of the relation between the reduced basis on which is expressed the motion field and the basis components that have been neglected in the reduced order model construction. The techniques have been assessed on numerical data and for real experimental conditions with noisy Image Velocimetry data.

Contact

Etienne Mémin

BibTex Reference

@article{Artana12a,
   Author = {Artana, G. and Cammilleri, A. and Carlier, J. and Mémin, E.},
   Title = {Strong and weak constraint variational assimilation for reduced order fluid flow modeling},
   Journal = {Journ. of Comp. Physics},
   Volume = {213},
   Number = {8},
   Pages = {3264--3288},
   Month = {April},
   Year = {2012}
}

EndNote Reference [help]

Get EndNote Reference (.ref)


This page has been automatically generated by bib2html.

logo of irmar logo of cnrs logo of inrialogo of irstea

Copyright 2009 © Fluminance Team - INRIA - IRSTEA

Webmaster mailto