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Abstract

We address the problem of failure diagnosis in
discrete-event systems such as telecommunication
networks. We propose to extend the decentralized
diagnosis approach proposed in (Pencolé 2000) in
order to use it in an incremental way. The in-
cremental approach is needed in order to provide
on-line diagnosis and assist supervision operators.
The difficulties about the incremental decentral-
ized diagnosis approach are analyzed. Two solu-
tions are proposed and discussed. This incremen-
tal approach has been experimented on telecom-
munication networks.

Introduction
The problem we deal with is the supervision of complex
and large discrete-event systems such as telecommuni-
cation networks. Our purpose is to help operators of
such systems to diagnose failures in the system accord-
ing to observed events (alarms).

In the literature, a few failure diagnosis approaches
have been developed for discrete-event systems. We can
divide these approaches in two types.

The first type of approaches needs a centralized in-
formation about the system to diagnose. (Sampath et
al. 1998) has proposed the diagnoser approach which
consists in the compilation of diagnostic information in
a data structure (called diagnoser) which maps failures
and observations for on-line diagnosis. As telecommuni-
cation networks are concerned, (Rozé & Cordier 1998)
proposes an extension of this approach which is well-
updated for the on-line diagnosis. Nevertheless, a cen-
tralized approach needs to have a global information
about the system which is unrealistic due to the size of
the systems we are faced with.

For complex and large systems like telecommunica-
tion networks, the impossibility to use a centralized in-
formation obliges to use a decentralized information.
Moreover, such systems are naturally distributed so it
is easier to model those systems with decentralized in-
formation. In this way, (Debouk, Lafortune, & Teneket-
zis 2000) proposes an approach for diagnosing discrete-
event systems using decentralized and coordinated di-
agnosers. But in this approach, the computation of one

decentralized diagnoser needs a global information that
we cannot have with our applications. (Baroni et al.
1999) and (Console, Picardi, & Ribaudo 2000) propose
methods based on a model-simulation approach which
only needs a decentralized model, but these methods
are used off-line to solve a diagnosis problem a posteri-
ori.

Our motivation is to propose an approach which only
needs decentralized information and can provide on-line
diagnosis of a large discrete-event system (telecommu-
nication network). In (Pencolé 2000), we have already
defined a decentralized diagnosis approach that respects
the constraints we are faced with. Nevertheless, in order
to use this approach on-line, incrementality becomes a
crucial issue in order to efficiently update already com-
puted diagnoses by taking into account new observa-
tions received by the supervision center.

The paper is organized as follows. We first describe
a simple example of a telecommunication network that
will be used as a running example throughout the pa-
per. We then recall the decentralized approach by defin-
ing a decentralized model and the different notions of
diagnosis relying on the decentralized approach. In a
new section, the difficulties about the incremental de-
centralized approach are analyzed. Two solutions are
examined. The first one consists in carefully selecting
the breakpoints which determine the temporal windows
on which successive diagnoses are computed. The sec-
ond one consists in completing the flow of observations
received on a given temporal window. In both cases, it
is then possible to use an easy and efficient algorithm
based on the concatenation of diagnoses corresponding
to successive temporal windows. This incremental ap-
proach has been experimented on telecommunication
networks.

Running example
In this section, we introduce a very simple telecommu-
nication system (see figure 1) that we shall use as a
running example throughout the paper. It is formed by
two switches (SW1 and SW2 ) which send and receive
data, a control station CS which is in charge of manag-
ing the switches and a supervision center SC which is
in charge of monitoring the system by receiving alarms
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Figure 1: Running example of a simplified telecommu-
nication network.

from SW1 , SW2 and CS . For reasons of simplicity of
the example, we assume that the failures only occur on
the components; the connections between the compo-
nents are considered as safe. A failure is defined by two
events: the beginning of the failure and the end of the
failure. In the example, we consider that the failures
are repaired without an operator intervention.

SW1 and SW2 can have two kinds of failures: they
can boot or be blocked. Those failures are defined
by their start-event (SWiblk , SWibt where i = {1, 2})
and their end-event (SWiback , SWiendbt). When the
switch SWi begins to block, it emits an alarm SWistop.
Concerning the booting, the behaviors of the switches
are different: when SW1 begins to boot then it emits
SW1stop; when SW2 begins to boot then SW2 emits
SW2boot . When the switch SWi begins to work well
again, it emits the alarm SWirun. Nevertheless, when
SWi is blocked, then it does not emit any alarm when
it begins to boot.

As SW1 and SW2 , CS has two kinds of failures
(blocked and booting) defined by the events (CSblk ,
CSback , CSbt , CSendbt). When CS begins to block, it
emits CSstop. When CS begins to boot, it also emits
a CSstop alarm and sends to SWi a message SWibt
for the rebooting of the SWi switches. Nevertheless,
when CS begins to boot whereas CS is blocked, it only
sends a message to the SWi switches (no alarm is sent).
When CS begins to work well again, it emits the alarm
CSrun.

Overview of the decentralized approach

Model in a decentralized approach
The systems we consider are distributed systems com-
posed of components which interact each other. As said
before, dealing with a global model of such systems is
unrealistic. This section explains how the model of the
system is described in a decentralized way by means
of local models, which describe the behaviors of each
component of the system and the interactions between
them. The formalism chosen for such models is that of
communicating automata.

Each component can react to exogenous events such

as failures by changing of states and emitting observ-
able events. The components interact by exchanging
messages (named internal events) which occur for in-
stance when failures propagate through the system. We
make the hypothesis that no delays exist on the mes-
sages exchanged by the components.

A component is faced to two kinds of received events:
exogenous events (Σi

exo) such as failure events and in-
ternal events (Σi

intreceived). A component emits two
kinds of events: observable events via its communica-
tion channel (Σi

obs) and internal events (Σi
intemitted ).

Definition 1 (Model of a component) A compo-
nent behavior is described by a communicating finite-
state machine Γi = (Σi

in , 2(Σi
out ), Qi, Ei) where

• Σi
in is the set of input events (Σi

in = Σi
exo ∪

Σi
intreceived);

• Σi
out is the set of output events (Σi

out = Σi
obs ∪

Σi
intemitted);

• Qi is the set of states of the component;

• Ei ⊆ (Qi×Σi
in×2(Σi

out )×Qi) is the set of transitions.

The model of the system is described in a decentral-
ized way by the models of its components. Note that
this model could be explicitly built by composing (via
a classical operation of synchronization on the internal
events) the automata of its components but it is ex-
actly what we want to avoid due to the intractable size
of such a model for large systems.

Definition 2 (Model of a system) The model Γ of
a system is given by the set of models of its components
{Γ1, . . . , Γn}, a set of exogenous events (Σexo), a set
of observable events (Σobs) and a set of internal events
(Σint) such that:

• {Σ1
obs , . . . , Σ

n
obs} is a partition of Σobs ;

• {Σ1
exo, . . . , Σn

exo} is a partition of Σexo;
• {Σ1

intreceived , . . . , Σn
intreceived} and

{Σ1
intemitted , . . . , Σn

intemitted} are partitions of Σint;

• ∀e ∈ Σint, ∃!Γi|e ∈ Σi
intreceived∧∃!Γj |e ∈ Σj

intemitted∧
i 6= j.

We present in the figure 2, the model of the sys-
tem described in the previous section. The observ-
able events1 are (CSstop, CSrun, SW1stop, SW1run,
SW2stop, SW2run, SW2boot). The exogenous events
are the failure events which can occur on the system
(CSblk , CSback , CSbt , CSendbt , SW1blk , SW1back ,
SW1endbt , SW2blk , SW2back , SW2endbt). The set
of internal events permits to model the propagation of
the booting from the control station to the switches
(SW1bt , SW2bt).

1We suppose the existence of local sensors, one for each
component. We will come back on this point in the para-
graph defining a global diagnosis.
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Figure 2: Model of the system.

Diagnosis in a decentralized approach
The idea is to use a decentralized diagnosis approach by
firstly computing a diagnosis for each component (local
diagnosis) and then building a diagnosis of the whole
system (global diagnosis) from these local diagnoses. In
the following, we formally define these notions and ex-
plain how the global diagnosis is computed by compos-
ing the local ones.

Local diagnosis Let denoteOΓi the sequence of local
observations, i.e the events locally observed by a sensor
plugged in the component Γi. We have OΓi ∈ (Σi

obs)
?.

We suppose that, at the beginning of the task, the com-
ponent is in one of the initial states XΓi

init.
Given the model of the component Γi, a local diag-

nosis ∆Γi describes the subset of trajectories from Γi

starting from elements of XΓi

init which explains the se-
quence of local observations OΓi , i.e such that their pro-
jections on observable events correspond exactly to OΓi .
We propose to represent a local diagnosis as a commu-
nicating finite-state machine ∆Γi(X

Γi

init,OΓi), shortly
∆Γi . Compared to the automaton Γi, the main syntac-
tical difference is that each state Q∆i of this automaton
is associated to a pair (sΓi , Ei) where sΓi ∈ Qi is a state
of the component and Ei is the prefix subsequence of
OΓi explained in this state. The initial states of ∆Γi

are those corresponding to XΓi

init. The final states are
those such that Ei = OΓi . They represent the states of
the component explaining the whole sequence of local
observations. As in Γi, the transitions are labeled with
exogenous or internal received events as input and with
observed or internal emitted events as output.

Definition 3 (Local diagnosis) The local diagnosis
∆Γi(X

Γi

init,OΓi) of Γi according to the sequence OΓi is
a finite-state machine: (Σi

in , 2(Σi
out ), Q∆i, E∆i) where

• Σi
in is the set of input events (Σi

in = Σi
exo ∪

Σi
intreceived);

• Σi
out is the set of output events (Σi

out = Σi
obs ∪

Σi
intemitted);

• Q∆i is the set of states (Q∆i ⊆ Qi × (Σi
obs)

?);

• E∆i ⊆ (Q∆i ×Σi
in × 2(Σi

out )×Q∆i) is the set of tran-
sitions.

Figure 3 gives the local diagnosis of the control sta-
tion when XCS

init = {x1} and OCS = [CSstop].

x1 x2CSstop

CSstop
                   SW1bt,
          SW2bt} x3

CSbt/{
          SW1bt,
          SW2bt}

CSblk/{            }

CSbt/{           ,  

[  ] [CSstop]

[CSstop]

Figure 3: Local diagnosis: ∆CS ({x1}, [CSstop]).

The way a local diagnosis is computed is not the sub-
ject of this paper. In our case, it is done by using a
diagnoser approach as detailed in (Pencolé 2000).

Global diagnosis We have defined local diagnoses as
finite-state machines which represent the possible be-
haviors of components according to local observations.
Let us now define a global diagnosis and explain how it
is computed from local diagnoses.

The global observation O corresponds to what is ob-
served by the supervisor which collects all the sequences
of observable events (alarms) sent by each of the com-
ponents through their own communication channels. It
is described by {O|Σ1

obs, . . . ,O|Σn
obs} where O|Σi

obs ∈
(Σi

Obs)
∗ is the sequence of observations received from

Γi.
Given a set of initial states XΓ

init, a global diagnosis
describes all the trajectories starting from elements of
XΓ

init which explain the global observation O, i.e such
that their projections on the observable events corre-
spond to O.

The global diagnosis is a communicating finite-state
machine ∆Γ(XΓ

init,O), shortly ∆Γ. The states Q∆ of
this automaton are pairs (sΓ, E) where sΓ ∈ Q1 × . . .×
Qn is a state of the system and E = {E1, . . . , En} where
Ei is the prefix of the sequence O|Σi

obs explained in this
state. The initial states of ∆Γ are those corresponding
to XΓ

init and the final states are such that E = O, i.e
∀i Ei = O|Σi

obs. So the final states represent the states
of the components explaining the whole sequence of ob-
servations. The transitions are labeled with exogenous
events as input (Σexo) and with observed events as out-
put (Σobs).

Definition 4 (Global diagnosis) The global di-
agnosis ∆Γ(XΓ

init,O) is a finite-state machine:
(Σin , 2(Σout), Q∆, E∆) where
• Σin is the set of input events (Σin = Σexo);
• Σout is the set of output events (Σout = Σobs);



• Q∆ is the set of states of the diagnosis;
• E∆ ⊆ (Q∆ ×Σin × 2(Σout) ×Q∆) is the set of transi-

tions.

Computing global diag from local diags In a de-
centralized approach, the global model of the system is
not explicitly built but defined as the set of its compo-
nent models. Consequently, instead of computing di-
rectly the global diagnosis from the global model, the
idea is to compute the global diagnosis from the local
diagnoses. As local diagnoses are represented by au-
tomata, the global diagnosis is built by composing the
local diagnoses.

Let us suppose that the sequence of observations
received by the supervisor from each component Γi

(O|Σi
obs) corresponds exactly to the sequence of lo-

cal observations emitted by Γi (OΓi). We have then
O|Σi

obs = OΓi . This property will be referred as prop-
erty 1 in the following.

To compute the global diagnosis, we use the following
equation where � is the classical composition operation
between two communicating finite-state machines syn-
chronized on the internal events exchanged between the
local diagnoses:

∆Γ(XΓ
init,O) =

n⊙

i=1

∆Γi(X
Γi

init,O|Σi
obs) (1)

Figure 4 gives the global diagnosis of the model shown
in figure 2 for the initial state XΓ

init = {(x1, y1, z1)} and
the global observationO = {[CSstop], [SW1stop], []}. It
was obtained by the operation: ∆CS ({x1}, [CSstop])�
∆SW1 ({y1}, [SW1stop])�∆SW2({z1}, []).

x1,y1,z1

CSstop

  SW1stop

  SW1stop

x1,y2,z1 CSstop x2,y2,z1

 CSblk/{           }

SW1blk/{             }  CSblk/{            }

SW1blk/{             }

{[],[],[]} {[],[SW1stop],
[]}

{[CSstop],[],[]}

{[CSstop],
[SW1stop] ,[]}

x2,y1,z1

Figure 4: Global diagnosis of the system:
∆Γ({(x1, y1, z1)}, {[CSstop], [SW1stop], []}).

Local observations / global observation The lo-
cal observations were defined as observable events ob-
served by local sensors, i.e sensors associated to each
of the components. The global observation corresponds
to what is observed by a supervisor which collects all
the observations emitted by the components. In the
previous paragraph, we make the supposition (prop-
erty 1) that what is received by the supervisor corre-
sponds exactly to what is emitted by each component
(O|Σi

obs = OΓi).
This property is clearly satisfied when the local sen-

sors are directly observable, or when the messages they
sent are received without delay to the supervisor. In

most of the cases however, such local sensors are not
directly observable, and the messages are sent to the
supervisor via communication channels. The respective
order in which the events sent by each component are
received by the supervisor depends on the characteris-
tics of the communication channels. In the following,
we make the hypothesis that the communication chan-
nels behave as FIFO files. We have then :

Hypothesis 1 Let o1 and o2 be observable events emit-
ted by one component. We assume that o1 and o2 are
received by the supervisor in the order of their emission
by the component.

With this hypothesis on the communication channels,
the property 1 relating local observations and global ob-
servation holds (O|Σi

obs = OΓi) and the global diagnosis
can be built as explained before (equation 1).

An important point to remark is that property 1
holds because we consider that the set of observa-
tions received by the supervisor is complete, i.e all ob-
servable events sent by the components have been re-
ceived by the supervisor (the communication channels
are empty).

In the next section, we turn to the problem of the on-
line computing of a diagnosis and we show that prop-
erty 1 is a central issue to preserve the correctness and
the efficiency of an incremental algorithm.

Incremental diagnosis

In the on-line diagnostic approaches, the observations
are considered on successive temporal windows. Having
computed a global diagnosis for a given temporal win-
dow, the problem is to update it by taking into account
the observations of the next temporal window.

Notations
• Oj described by {Oj|Σ1

obs, . . . ,Oj |Σn
obs} represents all

the observations that have been received from the
beginning at time j.

• ∆j is the diagnosis explaining Oj .

• Wj denotes a temporal window. OWj described by
{OWj |Σ1

obs, . . . ,OWj |Σn
obs} is the set of observations

received during the temporal window Wj . We have
∀i,Oj|Σi

obs = [Oj−1|Σi
obs,OWj |Σi

obs].

• ∆Wj is the diagnosis on the temporal window Wj .

Problem of the incremental diagnosis
The problem of the incremental diagnosis is that, by
randomly splitting the sequence of observations in tem-
poral windows, we have no guarantee to have them sat-
isfying the property 1 (see the previous section).

Let us see what happens on the example given by
figure 5 (which is a part of the running example) with
three components CS as Γ1, SW1 as Γ2 and SW2 as Γ3.
Each component has only two states and one transition.
The initial states of the components are respectively x1,
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Figure 5: Simplified model of the system.

y1 and z1. Let us first suppose a single temporal win-
dow W with OW = {[CSstop], [SW1stop], [SW2boot]}.
The global diagnosis, computed as described before, is
given by figure 6.

x1,y1,z1
{[],[],[]}

x3,y3,z3
CSbt/{CSstop,SW1stop,SW2boot}

{[CSstop],[SW1stop],[SW2boot]}

Figure 6: Global diagnosis on OW for the simplified
model.

Let us now consider two successive temporal win-
dows with OW1 = {[CSstop], [], []} and OW2 =
{[], [SW1stop], [SW2boot]}. The local diagnosis (see
figure 7) ∆W1,Γ1 explains CSstop but requires syn-
chronizations on SW1bt and SW2bt with ∆W1,Γ2 and
∆W1,Γ3 . Theses synchronizations are not satisfied and
no diagnosis is then found. The problem is that, during
W1, SW1stop and SW2boot have been emitted by the
component but are still not received by the supervision
center. Both alarms will be received during W2. The
property is clearly not satisfied on W1.

∆
1,Γ1

∆
1,Γ2

∆
1,Γ3

x1 []

y1 []

z1 []W

W

W x3 [            ]
CSbt/{            ,SW1bt,SW2bt}CSstop

CSstop

Figure 7: Local diagnoses on the window W1 for the
simplified model.

This example illustrates that the choice of the tem-
poral window is very important. We firstly examine the
case where, by choosing appropriate breakpoints, it is
possible to ensure that each temporal window satisfies
the property 1. A refinement algorithm, based on the
concatenation of automata, is proposed and allows us to
compute efficiently a diagnosis on successive temporal
windows.

We then examine the general case and show how, by
extending the definition of diagnosis, it is still possible
to use the refinement algorithm.

Incremental algorithm in the case of sound
temporal windows
A first solution is to carefully choose the breakpoints
in order to ensure that each temporal window satisfies
property 1.

Definition 5 A temporal window Wj is said to be
sound wrt a sequence of observations Oj−1 iff ∀o2 ∈
OWj , ∀o1 ∈ Oj−1, o2 has been emitted after the re-
ception of o1. Two successive sound temporal windows
meet at a sound breakpoint.

In the case where the temporal windows are sound,
the global diagnosis ∆j results from the concatena-
tion of the diagnosis ∆j−1 with the diagnosis ∆Wj .
The only condition is that the final states of ∆j−1,
noted Xfinal , are considered as the initial states for
∆Wj . ∆Wj is computed as before (eq 1) by ∆Wj =
∆Γ(Xfinal ,OWj ) =

⊙n
i=1 ∆Γi(X

Γi

final ,OWj |Σi
obs). The

global diagnosis ∆j is computed by the application of
a refinement operator (noted ⊕) defined by the incre-
mental algorithm 1. We have ∆j = ∆j−1 ⊕∆Wj .

Algorithm 1 Refinement operation: ∆j = ∆j−1⊕∆Wj

input: Diagnosis on the past windows ∆j−1

input: Diagnosis on the current window ∆Wj{Appending of the diagnoses}
∆tmp ← Append(∆j−1, ∆Wj ){Eliminating trajectories that do not explain all the
observations Oj}
for all x = (sΓ, (E1, . . . , En)) ∈ final states(∆tmp)
do

if ∃Ei such that Ei 6= Oj |Σi
obs then

{x is not a final state in the new diagnosis.}
∆tmp ← ElimTraj(∆tmp, x)

end if
end for
output: ∆Wj ← ∆tmp

Append is an operation based on the classical con-
catenation of finite-state machines (Hopcroft & Ullman
1979). ElimTraj is the operation which eliminates the
states x from which we cannot find a diagnosis for the
observations of Wj . ElimTraj also eliminates all the
states that are predecessors of x and have no other suc-
cessors2.

We present in the figure 8 the update of the global
diagnosis of the system presented in the figure 4.

We suppose that in the new temporal window Wj ,
we observe OWj = {[CSrun], [], [SW2boot ]}. In the
diagnosis of the figure 4, there is one final state
((x2, y2, z1), {[CSstop], [SW1stop], []}). We compute
the global diagnosis ∆{CS ,SW1 ,SW2}((x2, y2, z1),OWj)
which is appended to the final state of the previous di-
agnosis. In this update, there is no elimination because

2Typically, such an elimination can be done with the help
of a classical garbage collector.
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Figure 8: Update of the global diagnosis ∆j .

each previous final state is followed by an explanation
of OWj . We can remark that the resulting diagnosis do
not contain trajectories which explain CSstop by the
occurrence of CSbt. Because we assume the soundness
of the windows, we suppose that CSstop is observed be-
fore the emission of SW2boot, so CSbt cannot explain
the observation CSstop.

Incremental algorithm in the general case
It is not always possible to select sound breakpoints.
In this section, we consider the general case where it
cannot be guaranteed that the temporal windows are
sound. The difficulty of an incremental diagnostic al-
gorithm consists then in taking into account two kind
of observable events:
1. the observations received by the supervisor in the cur-

rent temporal window;
2. the events emitted by the components during (or even

before) the current temporal window which have not
yet been received by the supervisor in the current
temporal window. They are still in the communica-
tion channels.
In order to have an efficient way to update the current

global diagnosis of the system, we want to use the refine-
ment algorithm presented above (see algorithm 1). The
idea is to complete the set of received observations by a
set of potentially emitted (but not yet received) events.
Therefore, we propose to compute, for each temporal
window Wj , an extended diagnosis ∆ext

Wj
which summa-

rizes trajectories that explain the events observed inWj

and a set of hypothetical unreceived events during Wj .
∆ext

Wj
is computed (see algorithm 2) by composing ex-

tended local diagnoses ∆ext
Γi

(Wj) in a similar way as seen
above.

Extended local diagnosis The extended local di-
agnosis ∆ext

Γi
(Wj) on the window Wj depends on the

states of Γi described in the final states of the ex-
tended diagnosis ∆ext

j−1 (extended diagnosis of Oj−1).
In such a state x, x = ((x1, . . . , xn), (E1, . . . , En)),
some observations of Γi may have been supposed to
be emitted and unreceived before Wj , we have Ei =
[Oj−1|Σi

obs, SupposedObsx]. Looking to OWj |Σi
Obs, it

can be checked whether this supposition is satisfied or
not. If it is satisfied, we have two cases:

1. OWj |Σi
obs is a prefix of SupposedObsx. This means

that OWj |Σi
Obs was totally explained in the pre-

vious temporal window. Thus, SupposedObsx =
[OWj |Σi

Obs, unObsx] where unObsx is a sequence of
observations of Γi potentially emitted before Wj and
not yet observed during Wj .

2. SupposedObsx is a prefix of OWj |Σi
obs. This

means that OWj |Σi
Obs was partially explained

in the previous temporal window. Thus,
OWj |Σi

Obs = [SupposedObsx, UnExplainObsx]
where UnExplainObsx is the sequence that
terminates OWj |Σi

Obs which is not yet explained.

In the first case, x is a state resulting from trajecto-
ries which already explain the observations OWj |Σi

Obs.
We only need to determine local trajectories from xi

which explain hypothetical unreceived events which can
follow the events of unObsx. In the second case, we
have to determine local trajectories from xi which ex-
plain UnExplainObsx followed by hypothetical unre-
ceived events.

Therefore, in both cases, we have to determine hypo-
thetical unreceived events. If we do the hypothesis that
there is a bounded number k of local observations at the
same time in the communication channel associated to
Γi, then the sequence of hypothetical unreceived events
of Γi is finite and belongs to:

Definition 6 (UnRcvObsi(k)) Let k be a positive in-
teger. We note by UnRcvObsi(k) the sequences of ob-
servable events sq such that sq ∈ (Σi

obs)
?, |sq| ≤ k.

For example, in figure 2, UnRcvObsCS(2) =
{[],[CSrun],[CSstop],[CSrunCSstop],[CSstopCSrun]}.

Thus from the state x, we have to compute the lo-
cal trajectories of Γi which explain the sequences of
Compi(x, k) where Compi(x, k) is a set of observa-
tion sequences. In the case 1, each sequence obsSeq
of Compi(x, k) is such that:

obsSeq ∈ UnRcvObsi(k − |unObsx|).



x2,y2,z1 SW1back/{SW1run}

x3,y3,z3
SW2endbt/{SW2run}

CSbt/{SW2boot}

[                ]}
SW1stop
SW2boot

wjGlobal diagnosis at j−1

j−1

x1,y2,z2x2,y2,z2
CSstop{[              ],
[SW1stop],

[SW2stop]}

x3,y3,z3
CSstop{[              ],
[SW1stop],

[SW2boot]}

CSstop{[              ],

[SW1stop],[]}

x2,y2,z1

x3,y3,z1

[                             ],SW1runSW1stop

[                              ]} SW2boot SW2run

x1,y1,z1

SW1stop[                              ],SW1run
[                              ]}SW2boot SW2run

x3,y1,z1

[                              ],SW1stop SW1run
[]}

x3,y3,z1

{[                ],CSstop

[                ],[]}SW1stop
CSstop{[              ],  

{[                ],CSstop
     [                 ],

{[              ],CSstop

{[                ],CSstop{[                ],CSstop
[ SW2boot

SW2run ]}
[               ],SW1stop

SW2stop]}SW2run
SW2boot[                  SW1stop],

SW1stop SW1run

CSstop{[               CSrun],
[ 

Temporal window j:  O   ={[],[SW1stop,SW1run],[SW2boot,SW2run]}

O ={[CSstop],[],[]}

Figure 9: Update of the extended global diagnosis ∆ext
j .

In the case 2, obsSeq is such that:

obsSeq = [UnExplainObsx, UnRcvObs]

UnRcvObs ∈ UnRcvObsi(k).

Thus, the extended diagnosis ∆ext
Γi

(Wj) is the set of
local trajectories computed from each final state x of
∆ext

j−1 that explain Compi(x, k). Because we make hy-
potheses about the set of unreceived events duringWj ,
each state resulting of a trajectory that explains such
events is possible, so we mark it as a final state.

Algorithm 2 Extended diagnosis of Wj : ∆ext
Wj

input: Oj−1, OWj

input: Xj
init {Final states of the diagnosis ∆ext

j−1 }
for all i ∈ {1, . . . , n} do
{Computation of the extended diagnosis of Γi.}
∆tmp ← ∅
for all x ∈ Xj

init do
{x = ((x1, . . . , xn), (E1, . . . , En))}
{Computation of the local observation sequences
to explain}
for all obsSeq ∈ Compi(x, k) do

∆tmp ← ∆tmp ∪∆Γi({xi}, obsSeq)
end for

end for
∆ext

Γi
(Wj)← ∆tmp

end for
{Computation of the extended diagnosis of Wj .}
output:

∆ext
Wj
←⊙n

i=1 ∆ext
Γi

(Wj)

Update of the global diagnosis The global diag-
nosis ∆j is computed, as before, by the application of
the refinement operation (noted ⊕) defined by the algo-
rithm 1. The difference is that ∆j is changed in ∆ext

j .
We have:

∆ext
j = ∆ext

j−1 ⊕∆ext
Wj

.

After the use of the refinement algorithm on the tem-
poral window Wj , the current diagnosis ∆ext

j describes
trajectories that all explain Oj and some of them ex-
plain a set of complementary events supposed to have
been emitted but not yet observed by the supervisor
at Wj . It is then clear that we have: ∆Γ(Xinit,Oj) ⊆
∆ext

j .
Finally, if we consider Om as “complete”, meaning

that no more observation is expected (Wm is the last
window), the extended diagnosis ∆ext(Wm) is com-
puted with k = 0 (no expected event). Thus, po-
tential wrong assumptions made during the computa-
tion of the successive extended diagnoses are eliminated
with help of the diagnosis of the last window. We get:
∆Γ(Xinit,Om) = ∆ext

m .

Example We present in the figure 9, the scheme
of the ∆ext

j computation. In this example, the
extended diagnosis ∆ext

j−1 explains the observation
Oj−1 = {[CSstop], [], []}. Some of its final states
are represented. Some final states of ∆ext

j−1 not only
contain the occurrence of Oj−1 (in bold) but also
other alarms due to the completion of observable
events done during Wj−1 (here, we consider that
each communication channel conveys at the most
k = 1 observation at the same time). Given the new
temporal window Wj and its observations OWj =
{[], [SW1stop, SW1run], [SW2boot, SW2run]}, we
compute ∆ext

Wj
by considering the final states of ∆ext

j−1.



∆ext
Wj

summarizes the trajectories explaining OWj . We
also complete the diagnosis by supposing the emission
of other alarms. In ∆ext

Wj
, we suppose in particular

the occurrence of CSrun, SW1stop or SW2stop.
Once ∆ext

Wj
is computed, we apply the refinement

algorithm. We append the initial states of ∆ext
Wj

to the
corresponding final states of ∆ext

j−1. Some final states of
∆ext

j−1 are eliminated because they do not permit to find
an explanation of OWj (in the figure, the eliminated
state considers the observation of SW2stop whereas
we observed SW2boot).

Conclusion

Our motivation was to extend the decentralized diag-
nosis approach initially presented by (Pencolé 2000) in
order to be able to analyze, on-line, a flow of incoming
observations. In an on-line context, the observations
are considered on successive temporal windows. A cru-
cial issue is to incrementally update the current diagno-
sis by taking into account the observations of the next
temporal window.

Two solutions have been examined. The first one
consists in carefully selecting the breakpoints which de-
termine the temporal windows. We define a property
(the soundness) which, when satisfied by the windows,
allows us to use an easy and efficient refinement algo-
rithm based on the concatenation of automata. It is
not however always possible to determine such sound
breakpoints. In the general case, we propose to com-
plete the observations by guessing what is lacking and
we consequently define extended local diagnoses. The
refinement algorithm can still be used for the incremen-
tal computation of the global diagnosis.

In the first case, the issue is to use domain knowl-
edge, and especially knowledge on the properties of the
communication channels, in order to split the flow of
observations in sound windows. For instance, when
you know the maximal delay of transmission, the ab-
sence of any alarms received by the supervisor during
a delay greater than this threshold determines a sound
breakpoint. In the second case, an important issue to
be studied is the optimal size of the window. Small
windows mean small local diagnoses but frequent com-
putations of the current global diagnosis whereas large
windows mean space-consuming local diagnoses but less
computations. This point is currently investigated.

Another alternative solution to this problem of incre-
mental decentralized diagnosis is presented in (Cordier,
Pencolé, & Rozé 2001). It consists in modelling the
communication channel as part of the component it is
connected to. In this case, it can be shown that the
soundness property is satisfied whatever the temporal
windows are. The problem of the optimal size for the
window becomes the central one. The counterpart is
the risk of increasing the size of the local models.
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