First Steps Towards Incremental Diagnosis of Discrete-Event Systems
AI'05
(Canadian Conference on Artificial Intelligence)
This paper deals with the incremental off-line computation
of diagnosis of discrete-event systems. Traditionally, the
diagnosis is computed from the global automaton describing
the observations emitted by the system on a whole time
period. The idea of this paper is to slice this global
automaton according to temporal windows and to compute local
diagnoses for each of these windows. It is shown that, under
some conditions, the global diagnosis can be computed from
the local diagnosis.
This paper presents the formalization used to compute an
incremental diagnosis, relying on the new concept of {\it
automata chain}. It is then shown that it is possible to
take into account the diagnosis obtained for the previous
temporal windows to incrementally compute the current
diagnosis more efficiently. This work is a first and
necessary step before considering the on-line diagnosis
computation. The main difficulty is then to ensure the
correct slicing of the observation automaton and to
determine the appropriate temporal windows.
@InProceedings{Grastienetal::dx::04,
- author = {A.~Grastien and M.-O.~Cordier and C.~Largou\"et},
- title = {First Steps Towards Incremental Diagnosis of Discrete-Event Systems},
- booktitle = {18th Canadian Conference on Artificial Intelligence ({AI}-05)},
- pages = {170--181},
- year = {2005},
- address = {Victoria, Canada}
}
L'article n'est pas disponible au téléchargement.
Extending decentralized discrete-event modelling to diagnose reconfigurable systems
DX'04
(International workshop on principles of Diagnosis)
On-line reconfiguration is the ability to rearrange
dynamically the elements of a system to accommodate failure
events or new requirements. Due to the modular
representation, decentralized discrete-event approach,
recently proposed for the diagnosis of systems, is
particularly well suited to the diagnosis of reconfigurable
systems. The contribution of this article is to extend our
decentralized approach to reconfigurable discrete-event
systems. A first step in this direction is to extend the way
a decentralized system is modelled. The idea consists in
modelling separately the behavior of the components and the
system topology.
A second step is to formally define what is a
reconfiguration. A property of reconfiguration, that we
call \ital{safety}, is identified to be important. When
satisfied, we show that our decentralized diagnosis approach
can easily be extended to reconfigurable systems.
@InProceedings{Grastienetal::dx::04,
- author = {A.~Grastien and M.-O.~Cordier and C.~Largou\"et},
- title = {Extending decentralized discrete-event modelling to diagnose reconfigurable systems},
- booktitle = {15th International Workshop on Principles of Diagnosis ({DX}-04)},
- pages = {75--80},
- year = {2004},
- address = {Carcassonne, France},
}
Calcul de trajectoires utilisant les propriétés d'interversibilité
RJCIA'03
(Rencontres jeunes chercheurs en Intelligence Artificielle)
Le temps de calcul des trajectoires sur un modèle de
comportement du système est un problème critique rencontré
aussi bien en diagnostic qu'en planification. Dans le but
d'améliorer l'efficacité de cette tâche, un intérêt
croissant est porté aux techniques de model-checking
développées dans le domaine de la vérification
automatique. Dans cet article, nous proposons de représenter
le système par un automate, et nous définissons une nouvelle
propriété appelée interversibilité. Cette propriété
est utilisée pour améliorer l'efficacité de l'algorithme de
recherche calculant les trajectoires. Nous présentons deux
exemples dans les domaines du diagnostic et de la
planification où cette approche donne des résultats
satisfaisants.
@InProceedings{Cordieretal::rjcia::03,
- author = {M.-O.~Cordier and A.~Grastien and C.~Largou\"et and Y.~Pencol\'e},
- title = {Calcul de trajectoires utilisant les propriétés d'interversibilité},
- booktitle = {{RJCIA}'03 (Rencontres jeunes chercheurs en Intelligence Artificielle)}
- pages = {15--28}
- year = {2003},
- address = {Laval}
}