ALPA LECTURE 3: PRAM MODEL

Outline

More pointer jumping (Euler Tour)

Divide and Parallelize

Work-Depth Paradigm and Brent's Theorem

Relative Power of PRAM models

Rajopadhye — ALPA 2000 — Nov 00

P

IRISA

More Pointer Jumping: Euler Tour

Similar data structures, but more complicated than lists

Problem: Given a binary tree with n nodes: each node i has
three fields, parent, right & left. Determine the depth of all
nodes in the tree.

Naive solution: Work from root down to leaves (increment a
counter as you go along)

Drawback: What if tree is not balanced?

Solution: Use an Euler Tour

—
2 Rajopadhye — ALPA 2000 — Nov 00 = |RISA

Basic Background

e Definition: Euler tour = cycle that traverses each edge ex-
actly once (nodes may be visited multiple times)

e Remark: A connected directed graph admits an ET iff in-
degree = out-degree.

e Hence the directed version of an undirected, connected graph
has an ET.

—
Rajopadhye — ALPA 2000 — Nov 00 = |RISA

Use ET for solving depth problem

For each node, associate three processors, A, B and C, and set
up a linked list as follows:

e Node's A processor points to A processor of left child, if it
exists, otherwise to own B processor.

e B processor points to A processor of right child if it exists,
otherwise to own C processor.

e If a3 node is a left child of its parent, C' processor points to
B processor of parent, otherwise to C processor of parent.

e Root's C processor set to nil.

—
4 Rajopadhye — ALPA 2000 — Nov 00 = |RISA

Question

What values should be placed in A, B and C processors, so that
parallel prefix of the linked list gives depth of node?

e A processors get 1
e B processors get O

e (processors get -1

—
5 Rajopadhye — ALPA 2000 — Nov 00 = |RISA

Divide & Parallelize

Scan on an array

Input: Vector z[1,...n], (for n = 2F) of elements of type T,
binary associative operator, @ : T'x T — T

Output: Vector s[1,...n] of type T, where S[i] = @WHH&E

—
6 Rajopadhye — ALPA 2000 — Nov 00 = |RISA

Solution: (& is op)

1 if n = 1 then s[1] := x[1]
2 return s
3 endif
4 forall i =1 ... n/2
5 do y[i] := x[2i-1] op x[2i] enddo
6 z[1, ... n/2] := Scan(y[1l ... n/2])
4 forall i =1 ... n do
8 if even i then s[i] := z[i/2]
9 elseif i= 1 then s[1] := x[1]
10 else s[i] := z[(i-1)/2] op x[i]
11 endif
12 enddo
13 return s
7 Rajopadhye — ALPA 2000 — Nov 00 " IRISA

Work-Time Paradigm (recap)

e Algorithm/Program = sequence of steps

e Step = parallel operations = forall construct (on as many
processors as needed)

e Tackle actual number of physical processors later
Two complexity measures

e Step complexity, S(n)

e Work complexity, W(n), total number of operations
S(n)

Wn) =Y W(n)
1=1

—
8 Rajopadhye — ALPA 2000 — Nov 00 = |RISA

Analysis of array scan

e S(n) =1g9(n)

Algorithm is not work-optimal.

—
9 Rajopadhye — ALPA 2000 — Nov 00 = |RISA

Brent’s Theorem

Theorem: [Brent 74] A WT algorithm with step complexity S(n)
and work complexity W(n) can be simulated on a p-processor

%%
PRAM in no more than %E; + S(n) steps
p

Proof For each step ¢ (for 1 << S(n), let W;(n) be the number
of operations. Simulate each step on p processors in ﬁﬁm:g time
(load balanced). Hence total time is:

S(n) . S(n) .
T — MU ﬁE% < A%E;uTHvM %E;u_.mﬁ:v

i=1 p

I
10 Rajopadhye — ALPA 2000 — Nov 00 — IRISA

Implications

Efficiency improvement (by load balancing)

e Using a run time system/scheduler (a la Cilk [MIT], Atha-
pascan [IMAG]

e At compile time (a la automatic parallelization)

e At algorithm design time (gives limits of parallelization —
scalability)

I
11 Rajopadhye — ALPA 2000 — Nov 00 — IRISA

Return to scan

Efficiency improvement (by load balancing)

S(n) =19(n) W(n) = ©(n)

Question: How many processors can we have without sacrificing
running time?

Answer: As long as ?\M:J = 0(S(n))

We can retain O(lgn) running time, but on only _@Fz Processors.

How? Careful scheduling at algorithm design time

I
12 Rajopadhye — ALPA 2000 — Nov 00 — IRISA

Return to scan

Split array into blocks of Ign elements, an put one block per

processor (so p = _@F:v.

1. Each processor locally scans its block sequentially

2. The processors use the previous parallel (naive) algorithm
on the last element of their local result, getting the last
element(s) in the final result.

3. Each processor uses its local result to update the remainder
of its result (again sequentially)

I
13 Rajopadhye — ALPA 2000 — Nov 00 — IRISA

Analysis

1. lgn

M._@ A|v ”_©3I_©w3”02©3v
Ign

3. lgn

14 Rajopadhye — ALPA 2000 — Nov 00 — IRISA

Scalability “analysis”

Recap: deinition If W(n) = T'(n, 1) is the same as best sequential
algorithm T¢(n) then algorithm is work optimal

T(n,p) = O Aﬂmmi +o Aiv A%Ma " m?vv
_ Ts(n) _ W(n) - pWin)
Speedup § = T(np) 2 S\Nm:v + S(n) = AS\ASV +ﬁm3vv

S is ©(p) if p= QAM\%VJ. Common sense (corollary of Brent's

theorem) Of two work efficient parallel algorithm’s, the one with
the smaller step complexity is more scalable

I
15 Rajopadhye — ALPA 2000 — Nov 00 — IRISA

Comparison of PRAM sub-models: ER vs CR

We know ER C CR. Is the inclusion strict, i.e., is ER C CR?

Yes

We know EW C CW. Is the inclusion strict?

Yes

I
16 Rajopadhye — ALPA 2000 — Nov 00 — IRISA

