ALPA LECTURE 3: PRAM MODEL

Outline

- More pointer jumping (Euler Tour)
- Divide and Parallelize
- Work-Depth Paradigm and Brent's Theorem
- Relative Power of PRAM models

More Pointer Jumping: Euler Tour

Similar data structures, but more complicated than lists

three fields, parent, right & left. Determine the depth of all nodes in the tree. Problem: Given a binary tree with n nodes: each node i has

counter as you go along) Naive solution: Work from root down to leaves (increment മ

Drawback: What if tree is not balanced?

Solution: Use an Euler Tour

Basic Background

- actly once (nodes may be visited multiple times) Definition: Euler tour = cycle that traverses each edge ex-
- degree = out-degree. Remark: A connected directed graph admits an ET iff in-
- Hence the directed version of an undirected, connected graph has an ET.

Use ET for solving depth problem

up a linked list as follows: For each node, associate three processors, A, B and C, and set

- exists, otherwise to own B processor Node's A processor points to A processor of left child, if it
- B processor points to A processor of right child if it exists, otherwise to own C processor.
- If a node is a left child of its parent, C processor points to B processor of parent, otherwise to C processor of parent.
- Root's C processor set to nil.

Question

parallel prefix of the linked list gives depth of node? What values should be placed in A, B and C processors, so that

- A processors get 1
- B processors get 0
- C processors get -1

Divide & Parallelize

Scan on an array

Input: Vector x[1, ...n], (for $n = 2^k$) of elements of type T, binary associative operator, $\oplus: T \times T \to T$

Output: Vector s[1,...n] of type T, where $S[i] = \bigoplus_{j=1}^{i} x[j]$

Solution: (⊕ is op)

```
10
                                                                                                                                                                                                                                                                              endif
                                                                                                                                                                                           z[1, ... n/2] := Scan(y[1 ... n/2])
                                                                                                                                                                                                                                                 forall i = 1 \dots n/2
                                                                                                                                                                                                                                                                                                                                   if n = 1 then s[1] := x[1]
return s
                                                                                                                                                                                                                                                                                                         return s
                          enddo
                                                                                                                                                                 forall i = 1 \dots n do
                                                                                                                                                                                                                     do y[i] := x[2i-1] op x[2i] enddo
                                                     endif
                                                                                                                                   if even i then s[i] := z[i/2]
                                                                              else s[i] := z[(i-1)/2] \text{ op } x[i]
                                                                                                          elseif i=1 then s[1] := x[1]
```


Work-Time Paradigm (recap)

- Algorithm/Program = sequence of steps
- Step = parallel operations \Rightarrow forall construct (on as many processors as needed)
- Tackle actual number of physical processors later

Two complexity measures

- Step complexity, S(n)
- Work complexity, W(n), total number of operations $W(n) = \sum_{i=1}^{S(n)} W_i(n)$

Analysis of array scan

$$S(n) = \lg(n)$$

•
$$W(n) = \Theta(n)$$

Algorithm is not work-optimal.

Brent's Theorem

and work complexity W(n) can be simulated on a p-processor PRAM in no more than $\left\lfloor \frac{W(n)}{p} \right\rfloor + S(n)$ steps Theorem: [Brent 74] A WT algorithm with step complexity S(n)

of operations. Simulate each step on p processors in $\left\lceil \frac{W_i(n)}{p} \right\rceil$ time (load balanced). Hence total time is: Proof For each step i (for $1 \le i \le S(n)$, let $W_i(n)$ be the number

$$T = \sum_{i=1}^{S(n)} \left[\frac{W_i(n)}{p} \right] \le \sum_{i=1}^{S(n)} \left(\left\lfloor \frac{W_i(n)}{p} \right\rfloor + 1 \right) \le \left\lfloor \frac{W(n)}{p} \right\rfloor + S(n)$$

Implications

Efficiency improvement (by load balancing)

- Using a run time system/scheduler (à la Cilk [MIT], Athapascan [IMAG]
- At compile time (à la automatic parallelization)
- scalability) At algorithm design time (gives limits of parallelization

Return to scan

Efficiency improvement (by load balancing)

$$S(n) = \lg(n)$$
 $W(n) = \Theta(n)$

running time? Question: How many processors can we have without sacrificing

Answer: As long as
$$\left\lfloor \frac{W(n)}{p} \right\rfloor = \Theta(S(n))$$

We can retain $O(\lg n)$ running time, but on only $\frac{n}{\lg n}$ processors.

How? Careful scheduling at algorithm design time

Return to scan

processor (so $p = \frac{n}{\lg n}$). Split array into blocks of $\lg n$ elements, an put one block per

- 1. Each processor locally scans its block sequentially
- The processors use the previous parallel (naive) algorithm element(s) in the final result. on the last element of their local result, getting the last
- of its result (again sequentially) Each processor uses its local result to update the remainder

2. $\lg\left(\frac{n}{\lg n}\right)$

1. lg *n*

3. lg *n*

Scalability "analysis"

algorithm $T_S(n)$ then algorithm is work optimal Recap: deinition If W(n) = T(n, 1) is the same as best sequential

$$T(n,p) = O\left(\frac{T_S(n)}{p} + S(n)\right) = O\left(\frac{W(n)}{p} + S(n)\right)$$

Speedup
$$S = \frac{T_S(n)}{T(n,p)} = \Omega\left(\frac{W(n)}{\frac{W(n)}{p} + S(n)}\right) = \Omega\left(\frac{pW(n)}{W(n) + pS(n)}\right)$$

S is $\Theta(p)$ if $p=O(\frac{W(n)}{S(n)})$. Common sense (corollary of Brent's theorem) Of two work efficient parallel algorithm's, the one with the smaller step complexity is more scalable

Comparison of PRAM sub-models: ER vs CR

We know ER \subseteq CR. Is the inclusion strict, i.e., is ER \subset CR?

Yes

We know EW \subseteq CW. Is the inclusion strict?

Yes