Réseaux d'interconnexion statiques

Tanguy Risset Patrice Quinton

Version du 2/10/04

Réseaux d'interconnexion dynamique

Rstat-1

Introduction

Les réseaux d'interconnexion statique sont utilisés généralement pour les machines communiquant par messages (mémoire distribuée).

Version du 2/10/04

Réseaux d'interconnexion dynamique

Types de réseaux (1)

- •Réseaux complets : chaque processeur est connecté à tous les autres
- •Réseaux en étoile : chaque processeur est connecté au même processeur central
- •Réseaux en anneau :

Version du 2/10/04

Réseaux d'interconnexion dynamique

Rstat-3

Types de réseaux (2)

- Grilles à *n* dimensions (n-D):
 - généralisation du réseau linéaire
 - routage simple
 - 1 processeurs relié à 2n autres

ex: DAP, paragon, Cray T3D

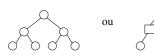
Version du 2/10/04

Réseaux d'interconnexion dynamique

Rstat-4

Types de réseaux (3)

- Réseaux en arbre:
 - les réseaux en étoile et linéaires en sont des cas particuliers
 - on peut aussi imaginer cette topologie en dynamique



Version du 2/10/04

Réseaux d'interconnexion dynamique

Rstat-5

Types de réseaux (4)

- Réseaux en Hypercube:
 - architecture ayant eu le plus de succès pour les machines parallèles
 - simplicité (routage, gestion de communication)
 - complétude (on peut émuler les grilles, arbres, etc.)

Version du 2/10/04

Réseaux d'interconnexion dynamique

Rstat-6

Hypercube (1)

Définition : Un hypercube de dimension r est un cube en dimension r

dimension 0

dimension 1

dimension 2

dimension 3

Version du 2/10/04

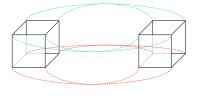
Réseaux d'interconnexion dynamique

,

Rstat-7

Hypercube (2)

- Chaque nœud a exactement r voisins
- On peut construire un hypercube de dimension r à l'aide de deux hypercubes de dimension r-1



Version du 2/10/04

éseaux d'interconnexion dynamique

Hypercube (3)

- Numérotation des sommets → code de Gray
- En dimension $r: 2^r$ sommets \Rightarrow numéros sur r bits
- Exemple en dimension 2: $\begin{bmatrix} 0 \\ 10 \end{bmatrix}$

Version du 2/10/04

Réseaux d'interconnexion dynamique

Rstat-9

Hypercube (4)

- Propriété de la numérotation de Gray: 2 voisins diffèrent uniquement par un bit
- Une arête est de dimension k si c'est le k^{ème} bit qui diffère entre les sommets

Version du 2/10/04

Réseaux d'interconnexion dynamique

Rstat-10

Hypercube (5)

- Si U représente un sommet, U^k représente son voisin en dimension k
- • $U^{\{k1,\dots,ks\}}$ est U dans lequel les bits k_1,\dots,k_s ont été complementés

Version du 2/10/04

Réseaux d'interconnexion dynamique

Rstat-11

Hypercube (6)

• Diamètre : $logN = log(2^r) = r$

• Les arêtes de dimension k forment un couplage parfait (couplage parfait = ensemble d'arêtes qui touchent tous les nœuds et qui ne partagent aucun nœud)

• Largeur de bissection : $\frac{N}{2}$ (arêtes dans une dimension)

Version du 2/10/04

Réseaux d'interconnexion dynamique

Hypercube et automorphisme (1)

Un hypercube contient des symétries: Pour toute paire d'arcs ((u,v),(u',v')) avec (u,v) de dimension k et (u',v') de dimension k', $\exists \Phi$ un automorphisme de H t.q

$$\begin{cases}
\Phi(u) = u' \\
\Phi(v) = v'
\end{cases}$$

C'est une bijection de H→H sur les nœuds et les arcs

Version du 2/10/04

Réseaux d'interconnexion dynamique

Rstat-13

Rstat-15

Hypercube et automorphisme (2)

Par exemple, pour toute permutation Π de $\{1,..,logN\}$ t.g $\Pi(k)=k'$, la transformation

$$\begin{split} &\Phi(x_1..x_{\log N}) = (x_{\Pi(1)} \oplus u_{\Pi(1)} \oplus u_1') \mid (x_{\Pi(2)} \oplus u_{\Pi(2)} \oplus u_2') \mid \\ &\dots \mid (x_{\Pi(\log N)} \oplus u_{\Pi(\log N)} \oplus u_{\log N}') \end{split}$$
 \oplus = ou exclusif \mid = concaténation

est un automorphisme ayant cette propriété

Version du 2/10/04

Réseaux d'interconnexion dynamique

Rstat-14

Hypercube et automorphisme (3)

Exemple:

$$k=3$$
 $k'=2$ $(000,001) \rightarrow (110,100)$

Version du 2/10/04

Réseaux d'interconnexion dynamique

Hypercube et automorphisme (4)

$$\Pi\{1,2,3\}=\{1,3,2\}$$

$$\begin{aligned} x_{\Pi(1)} & \oplus u_{\Pi(1)} \oplus u_{1}^{'} = x_{1} \oplus u_{1} \oplus u_{1}^{'} = x_{1} \oplus 1 \\ x_{\Pi(2)} & \oplus u_{\Pi(2)} \oplus u_{2}^{'} = x_{3} \oplus u_{3} \oplus u_{2}^{'} = x_{3} \oplus 1 \\ x_{\Pi(3)} & \oplus u_{\Pi(3)} \oplus u_{3}^{'} = x_{2} \oplus u_{2} \oplus u_{3}^{'} = x_{2} \end{aligned}$$

$$000 \to 110$$
 et $001 \to 100$

Version du 2/10/04

Réseaux d'interconnexion dynamique

Hypercube et automorphisme (5)

- G,H deux graphes non orientés
- Un plongement de G dans H est défini par deux fonctions: f associant à chaque sommet de G un sommet de H, et P_f associant une arête de G à une arête de H.
- Si f est injective \Rightarrow plongement, sinon \Rightarrow placement

Version du 2/10/04

Réseaux d'interconnexion dynamique

Rstat-17

Hypercube et automorphisme (6)

- dilatation d'un plongement $f:G \to H$, notée dil $(f) = \max_{[x,y]} (P_f[x,y])$
- expansion = $\frac{\#sommets(H)}{\#sommets(G)}$
- congestion = $\max_{e \in H} \{ \{x, y\} / e \in P_f[x, y] \}$
- congestion-sommet = $\max_{x \in H} \{ x', y'] / x \in P_f([x', y']) \}$

Version du 2/10/04

Réseaux d'interconnexion dynamique

Rstat-18

Lemme 1

- Lemme 1: L'hypercube à N noeuds contient un réseau linéaire (ou un anneau) de N cellules comme sous-graphe dès que N≥4
- Remarque: On dit alors que l'hypercube est hamiltonien

Version du 2/10/04

Réseaux d'interconnexion dynamique

Rstat-19

Preuve du lemme 1 (1)

Preuve du lemme 1:

N=4 : évident

N>4 : On découpe l'hypercube de N nœuds en deux sous-hypercubes de N/2 nœuds, chacun possédant un cycle hamiltonien (par récurrence)

On peut supposer que ces deux circuits comportent les

Version du 2/10/04

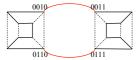
Réseaux d'interconnexion dynamique

Preuve du lemme 1 (2)

On construit le nouveau circuit de l'hypercube de dimension N en coupant ces deux arcs et en ajoutant les arcs

$$(0...0010 \atop logN)$$
, $(0...0110)$ et $(0...0011 \atop logN)$, $(0...0111 \atop logN)$

Exemple:



Version du 2/10/04

Réseaux d'interconnexion dynamique

Rstat-21

Produit cartésien

Définition: Soient k graphes $G_1, G_2, ..., G_k$ avec G_j = (V_j, E_j) . On défini ainsi le produit cartésien $G = G_1 \otimes G_2 \otimes ... \otimes G_k$:

$$G = (V,E)$$
avec $V = \{(v_1, v_2, ..., v_k) | v_i \in V_i\}$
et $E = \{(u_1, u_2, ..., u_k), (v_1, v_2, ..., v_k)\} | \exists j : (u_j, v_j) \in E_j \land \forall i \neq j : u_i = v_j\}$

 \otimes est associatif

Version du 2/10/04

Réseaux d'interconnexion dynamique

Rstat-22

Lemme 2

Lemme 2: Si on note H_r l'hypercube de dimension r: $\forall k \ge 1$ $r = r_1 + r_2 + ... + r_k$, on a $H_r = H_{r1} \otimes H_{r2} \otimes ... \otimes H_{rk}$

Preuve: H_r est simplement une grille $2\times 2\times ... \times 2$ donc $H_r = H_1 \otimes H_1 \otimes ... \otimes H_1$, et il suffit de factoriser

Version du 2/10/04

Réseaux d'interconnexion dynamique

Rstat-23

Lemme 3

Lemme 3: Si $G = G_1 \otimes G_2 \otimes ... \otimes G_k$ et $G' = G'_1 \otimes G'_2 \otimes ... \otimes G'_k$ et si $\forall i : G_i$ est un sous graphe de G'_i , alors G est un sous graphe de G'.

Version du 2/10/04

Réseaux d'interconnexion dynamique

Preuve du lemme 3

Preuve du lemme 3:

 $\begin{array}{l} \forall i \text{ on a un plongement } f_i: V_i {\longrightarrow} V'_i \text{ qui préserve les arêtes.} \\ \text{On défini le plongement } V {\to} V' \\ f: V = (\ v_1, \ ..., \ v_k) {\to} (\ f_i(v_1), \ ..., \ f_k(v_k)\) \\ \text{On a juste à montrer que f préserve les arcs} \\ (U,V){\in}E \text{ ssi } \exists j \text{ t.q } (u_j, v_j){\in}E_j \text{ et } \forall i {\neq} j : u_i {=} v_i \\ {\to} (\ f_j(u_j), \ f_j(v_j)\) {\in}E'_j \text{ par définition} \\ \text{et } \ f_i(u_i) = f_i(v_i) \ \forall i {\neq} j \\ \text{Donc } (\ f(u), \ f(v)\) {\in}E' \end{array}$

Version du 2/10/04

Réseaux d'interconnexion dynamique

Rstat-25

Conclusion (1)

On a donc trois lemmes qui nous permettent de conclure pour le plongement d'une grille de dimension quelconque:

- une grille est un produit cartésien de réseaux linéaires,
- un hypercube est un produit cartésien d'hypercubes,
- un réseau linéaire est un sous graphe d'un hypercube,
- \Rightarrow toute grille $2^{r_1} \times 2^{r_2} \times ... \times 2^{r_k}$ est un sous graphe de H_r avec $r = r_1 + r_2 + ... + r_k$
- ⇒ toute grille de 2^r nœuds (de dimension quelconque) est un sous-graphe de H_r car 2^r ne se factorise qu'en puissance de 2

Version du 2/10/04

Réseaux d'interconnexion dynamique

Rstat-26

Conclusion (2)

Si les tailles ne sont pas des puissances de 2, on arrondi Grille $M_1 \times ... \times_2 M_{\mathbb{R}^{M_+}} \dots + \lceil \log M_k \rceil$

On peut montrer que la grille $M_1 \times ... \times M_k$ est un sous graphe de l'hypercube à N nœuds ssi $N \ge 2^{\lceil \log M_1 \rceil +... + \lceil \log M_k \rceil}$

On peut aussi montrer que l'on peut toujours plonger une grille 2D à N nœuds dans un hypercube à N nœuds si l'on autorise une dilatation de 2

Version du 2/10/04

Réseaux d'interconnexion dynamique