Impact of instruction cache replacement policy on the tightness of WCET
estimation

Aurore Junier, Damien Hardy, Isabelle Puaut
University of Rennes / IRISA

Abstract

Cache memories have been introduced to decrease the
access time to the information due to the increasing gap
between fast micro-processors and relatively slower main
memories. Thus, there is a need for considering caches
when validating the temporal behavior of real-time systems,
in particular when estimating tasks’ worst-case execution
times (WCETs). In this paper, we use new theoretical re-
sults to improve a static instruction cache analysis method
for set-associative instruction caches with a Pseudo-LRU
and a random replacement policies. The proposed method
is experimented on three medium-size benchmarks to quan-
tify the impact of the replacement policy on the tightness of
WCET estimation.

1. Introduction

Cache memories have been introduced to decrease the
access time to the information due to the increasing gap
between fast micro-processors and relatively slower main
memories. Caches are very efficient at reducing average-
case memory latencies for applications with good spatial and
temporal locality. Architectures with caches are now com-
monly used in embedded real-time systems due to the in-
creasing demand for computing power of many embedded
applications.

In real-time systems it is crucial to prove that the execu-
tion of a task meets its deadline in all execution situations,
including the worst-case. This proof needs an estimation of
the worst-case execution times (WCETs) of any sequential
task in the system. WCETs estimate have to be safe (larger
than or equal to any possible execution time). Moreover,
they have to be tight (as close as possible to the actual worst-
case execution time) to correctly dimension the ressources
required by the system.

The presence of caches in real-time systems makes the
estimation of both safe and tight WCET bounds difficult due
to the dynamic behavior of caches. Safely estimating WCET
on architectures with caches requires a knowledge of all pos-
sible cache contents in every execution context, and requires
some knowledge of the cache replacement policy. Many

static analysis methods have been proposed in order to pro-
duce a safe WCET estimation on architectures with caches
[8,2,9,6].

Regarding set-associative instruction caches with LRU
(Least Recently Used) replacement policy, static cache anal-
ysis methods have been designed, based on two classes of
approaches: static cache simulation [9, 6] or abstract inter-
pretation [8, 2]. Although our work could also be integrated
in static cache simulation methods, we will concentrate in
the reminder of the paper on the methods based on abstract
interpretation.

In such approaches, three different analyses are applied
which use fixpoint computation to determine: if a memory
block is always present in the cache (Must analysis), if a
memory block may be present in the cache (May analysis),
and if a memory block will not be evicted after it has been
first loaded (Persistence analysis).

A cache categorisation (always-hit (AH), always-miss
(AM), first-miss (FM) for access into loops and not classi-
fied (NC)) can then be assigned to every instruction based
on the results of the three analyses to classify the worst-case
behavior of the cache for a given instruction. AH is deter-
mined by the Must analysis, FM is determined by the Per-
sistence analysis and AM, NC are differenciated by the May
analysis.

This approach originally designed for LRU set-
associative caches has been extended for Pseudo-LRU and
Pseudo-Round-Robin cache replacement policies in [4] but
without considering the results of the Persistence analysis.
In addition, recently, theoretical results were proposed in [7]
for cache using Pseudo-LRU replacement policy among oth-
ers.

The contributions of this paper are twofold. On the one
hand, we propose a persistence analysis for the Pseudo-LRU
and Random replacement policies to improve the precision
of the analysis for application with loops structures. On
the other hand, we integrate the theoretical results proposed
in [7] in our analysis tool in order to quantify the impact of
the cache replacement policy on the tightness of cache anal-
ysis.

The rest of the paper is organized as follows. Section 2

age

abstract cache STét{a} |{b} ‘ ACS;, ’{c} |{a} ‘ACSin

of 2-ways

LRU replacement
policy

a. Join function of Must analysis

/ "intersection”

+ maximal age

age +
—_—

absct)rfaé:i \j:vzc;ge sdt @ |1 ACS |,

i [c]

b. Update function of Must analysi

LRU replacement
policy

Figure 1. Join and Update functions for the Must analysis with LRU replacement

first presents an overview of the static analysis proposed
in [8] for a LRU replacement policy. Section 3 describes our
improvements of [4] to implement the persistence analysis
for other replacement policies than LRU and to use the new
theoretical results proposed in [7]. Experimental results are
given in Section 4. Finally, Section 5 concludes with a sum-
mary of the contributions of this paper, and gives directions
for future work.

2. Static cache analysis for LRU caches

When a block is to be evicted from the cache, the Least
Recently Used (LRU) replacement policy always selects the
least recently used block. The method detailed in [8] for
LRU caches is based on three separate fixpoint analyses ap-
plied on the program control flow graph:

— a Must analysis determines if a memory block is always
present in the cache at a given point: if so, the block is
classified always-hit;

— aMay analysis determines if a memory block may be in
the cache at a given point: if not, the block is classified
always-miss. Otherwise, if not present at this point in
the Must analysis and in the Persistence analysis the
block is classified not classified,

— a Persistence analysis determines if a memory block
will not be evicted after it has been loaded; the clas-
sification of such blocks is first-miss.

In order to capture all possible cache contents in every
execution context, these three analyses use the concept of
Abstract Cache States (ACS). Abstract cache states are com-
puted at every basic block. Two functions on the abstract
domain, named Update, and Join are defined for each anal-
ysis:

— Function Update is called for every memory reference
on an ACS to compute the new ACS resulting from the
memory reference. This function considers both the
cache replacement policy and the semantics of the anal-
ysis.

— Function Join is used to merge two different abstract
cache states in the case when a basic block has two pre-

decessors in the control flow graph, like for example at
the end of a conditional construct.

Figure 1 gives an example of the Join (1.a) and Update
(1.b) functions for the Must analysis for a 2-ways set-
associative cache with a LRU replacement policy. As in this
context sets are independent from each other, only one set is
depicted. A concept of age is associated with the cache block
of the same set. The smaller the block age the more recent
the access to the block. For the Must analysis, memory block
a is stored only once in the ACS, with its maximum age. It
means that its actual age at run-time will always be lower
than or equal to its age in the ACS. The Join and Update
functions are defined as follows for the Must analysis with
LRU replacement policy (see Figure 1):

— The Join function applied to two ACS results in an
ACS containing only the references present in the two
input ACS and with their maximal age.

— The Update function performs an access to a memory
reference ¢ using an input abstract cache state AC'S;,
(the abstract cache state before the memory access) and
produces an output abstract cache state AC'S,,; (the
abstract cache state after the memory access). The
Update function maps c onto its AC'S,,,; set with the
younger age and increases the age of the other memory
blocks present in the same set in AC'S;,,. When the age
of a memory block is higher than the number of ways,
the memory block is evicted from AC'S,;.

For the other analyses (May and Persistence), the ap-
proach is similar and the Join function is defined as follows:

— May analysis: “union” of references present in the ACS
and with their minimal age;

— Persistence analysis: “union” of references present in
the ACS and with their maximal age.

For more details see [8].

3. Proposed static cache analysis

3.1. Analysis for pseudo-LRU replacement
policy

To reduce the implementation cost of strict LRU, Pseudo-
LRU replacement policies approximates the concept of age
of strict LRU replacement. As Figure 2 shows us, the age is
defined by a binary tree which nodes are 0 or 1 and leaves
are cache lines in a set. A zero in the tree tells us that the
under right tree is (approximately) younger than the left one
and a one defines the contrary. Bits in the path binary tree
are flipped every time a cache line is accessed.

N
STER

Figure 2. Pseudo-LRU replacement policy

Theoretical results. To avoid the modeling of the binary
tree used in the PLRU replacement policy, as well as the in-
ternal data structures used by other cache replacement poli-
cies (e.g. MRU), some new theoretical results were recently
proposed in [7]. Among others, two metrics are defined
in [7]%:

— Minimum life span (mls). This metric defines the mini-
mal life duration of an element in a cache set for a given
number of ways. After mls(nbWays) accesses to dif-
ferent pieces of information at the same set, it is guar-
anteed that all elements are still in the cache set. This
metric is useful for the Must and Persistence analyses
to compute the references that are guaranteed to be in
the cache or persistent in the cache at every execution
point.

— Eviction distance (evict). This metric defines the num-
ber of distinct accesses in a cache set, different from an
access to a reference x to make sure that reference x
is evicted from the cache. This metric is useful for the
May analysis to determine the references that are guar-
anteed not to be in the cache at every execution point.

Implementation For the PLRU replacement policy, mls
and evict are defined as follows [7]:

mls(nbWays) = loga(nbWays) + 1

nbWays

evict(nbWays) = loga(nbWays) + 1

'We only give here an informal description of the metrics, for a formal
description, please refer to [7]

These results are used in the following manner:

— Must analysis for a set-associative cache with nb-
Ways ways is achieved in the same manner as
for LRU caches, except that ACS only comprizes
mls(nbWays) < nbWays instead of nbWays. In
other terms, Must analysis considers a cache with an
associativity degree lower than the one of the actual
cache, resulting in a loss of precision of the analysis
as compared to the analysis of a LRU cache.

— May analysis for a set-associative cache with nbWays
ways is achieved in the same manner as for LRU cache,
except that ACS have evict(nbWays) > nbWays in-
stead of nbWays. For a given reference x, more than
nbW ays different accesses after = are required to make
sure that x gets evicted from the cache.

— Persistence analysis uses the same principles as for a
LRU cache, except that ACS of size mls(nbWays) <
nbW ays instead of nbW ays are used.

3.2. Analysis for random replacement policy

For a random replacement policy, mls(nbWays) = 1
and evict(nbWays) = oco. The analysis is achieved as be-
fore, except that the May analysis is now useless since there
is no absolute guarantee that a cache line will be evicted from
the cache.

4. Experimental results

In this section, we quantify the loss of precision resulting
from the use of replacement policies other that LRU. Exper-
imental conditions are given in paragraph 4.1. Quantitative
results are given in section 4.2.

4.1. Experimental setup

Cache analysis and WCET estimation. The experiments
were conducted on MIPS R2000/R3000 binary code com-
piled with gcc 4.1 with flag O0. The WCETS of tasks are
computed by the Heptane? timing analyzer [1], more pre-
cisely its Implicit Path Enumeration Technique (IPET?). The
analysis is context sensitive (function are analyzed in each
different calling context).

To separate the effect of the caches from those of the parts
of the processor micro-architecture, WCET estimation only
takes into account the contribution of caches to the WCET.
The effects of other architectural features are not considered.
In particular, we do not take into account timing anomalies
caused by interactions between caches and pipelines, as de-
fined in [5]. The cache classification not-classified is thus

2Heptane is an open-source static WCET analysis tool available at
http://www.irisa.fr/aces/software/software.html.

3So-called IPET methods estimate WCET by solving linear equations
generated from the program control flow graph [10].

Adpcm

120%

100%

Ifdctint

Minver

98% 1
96% -
S4% 1
92%
90% 4
BB% -
BE% 1
B4%
B2%

100%

BO%

60%

40%

Predicted hit ratio
Predicted hit ratio

20%

0%

4 B 16

4

100%

95%

90%

B3%

Predected hit ratio

BO%

75%

8 16 4 B 16

BLRU 9B8,02% 96,32% 92,93% B6,52% ELRU 98,79%

58,79%

58,79% | 98,75% mLRU 96,38% | 56,38% | 93,95% | 90,28%

FLEU 9B,02% 93,11% B9, 73% B84,82% PLRU 98, 79%

58,79%

50,58% | 90,58% PLRU 96,38% | 56,38% | 93,95% | 90,28%

EMRandom| 83,31% B3,30% B83,28% 759,81% ERandom | 94,38%

50,58%

50,98% | B7,81% WRandom | B8,47% | BB,47% | 87,92% | 84,78%

Assoclativity degree

Assoclativity degree

Assoclativity degree

Figure 3. Tightness of cache analysis

assumed to have the same worst-case behavior as always-
miss during the WCET computation in our experiments. The
cache analysis starts with an empty cache state.

The experiments were conducted on three medium-size
benchmark named adpcm, jfdctint and minver maintained
by Milardalen WCET research group* and by considering
a 2KB cache with 32B lines.

4.2. Results

The results of the cache analysis for the LRU, PLRU and
Random replacement policy are given in figure 3. They are
expressed in terms of percentage of cache hits detected by
the analysis (the higher the percentage the tighter the analy-
sis).

As expected, the LRU replacement policy can be ana-
lyzed more tightly than the PRLU replacement policy, which
itself can be analyzed more tightly than the Random replace-
ment policy. However, when the loops in the applications
are small enough to fit entirely in mls(nbW ays) ways in the
cache, there are no difference between the analyses. One can
also notice than the higher the cache associativity, the larger
the difference between the tightness of the analyses. This is
explained by the larger difference between mis(nbWays)
when nbW ays gets larger.

5. Conclusion

In this paper, we have implemented a cache analysis
method using a part of the theoretical bounds proposed
in [7]. We have quantified the pessimism resulting from non-
LRU replacement policies and discussed the circumstances
in which the loss of precision is significant. In our future
work, we will extend our evaluation to the other replacement
policies studied in [7]. Moreover, we wish to study the im-
pact of the cache replacement policy on the tighness of multi-
level cache analysis [3], specially on multi-core platforms.

“http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

References

[10]

[1] A. Colin and I. Puaut. A modular and retargetable framework
for tree-based WCET analysis. In Euromicro Conference on
Real-Time Systems (ECRTS), pages 37-44, Delft, The Nether-

lands, June 2001.
C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin,

M. Schmidt, H. Theiling, S. Thesing, and R. Wilhelm. Re-
liable and precise WCET determination for real-life proces-
sor. In EMSOFT '01: Proceedings of the First International
Workshop on Embedded Software, volume 2211 of Lecture
Notes in Computer Science, pages 469—485, Tahoe City, CA,

USA, Oct. 2001.
D. Hardy and I. Puaut. WCET analysis of multi-level non-

inclusive set-associative instruction caches. In Real Time Sys-

tems Symposium (RTSS), Barcelona, Spain, December 2008.
R. Heckmann, M. Langenbach, S. Thesing, and R. Wilhelm.

The influence of processor architecture on the design and the
results of WCET tools. Proceedings of the IEEE, vol.9, n7,

2003.
T. Lundqvist and P. Stenstrom. Timing anomalies in dynami-

cally scheduled microprocessors. In Real-Time Systems Sym-

posium, pages 12-21, 1999.
F. Mueller. Timing analysis for instruction caches. Real-Time

Systems Journal, 18(2-3):217-247, 2000.
J. Reineke, D. Grund, C. Berg, and R. Wilhelm. Timing pre-

dictability of cache replacement policies. Real-Time Syst.,
37(2):99-122, 2007.

H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and precise
WCET prediction by separated cache and path analyses. Real-

Time Systems Journal, 18(2-3):157-179, 2000.
R. White, F. Mueller, C. Healy, D. Whalley, and M. Harmon.

Timing analysis for data caches and set-associative caches. In
RTAS °97: Proceedings of the 3rd IEEE Real-Time Technol-

ogy and Applications Symposium, pages 192-202, June 1997.
R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing,

D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann,
F. Mueller, 1. Puaut, P. Puschner, J. Staschulat, and P. Sten-
strom. The Determination of Worst-Case Execution Times—
Overview of the Methods and Survey of Tools. ACM Trans-
actions on Embedded Computing Systems (TECS), 2008.

(2]

(3]

(4]

(5]

(6]
(71

(8]

(9]

