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Abstract – This paper describes a fusion approach
to the problem of indoor localization of a pedestrian
user, in which PNS measurements, cartographic con-
straints and ranging or proximity beacon measurements
are combined in a particle filter approximation of the
Bayesian filter. Some critical issues are also addressed,
such as taking the constraints into account, monitor-
ing the degeneracy of the weights and the sample de-
pletion in terms of the effective sample size, detecting
track loss, and recovering from a detected loss.
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1 Introduction
In general terms, information fusion aims at combining
different sources of information to reach a given ob-
jective, where each single source of information alone
would fail to reach the assigned objective. Here, the
objective is to estimate the position of one or several
individual pedestrian users walking inside a building, so
that a satellite–based solution, such as the GPS (global
positioning system), could not be used in this context.
Three different sources of information are used here:

• a pedestrian navigation system (PNS) unit pro-
vides drifting measurements of the pedestrian
heading, as well as noisy measurements of the
walked distance,

• noisy measurements of the distance between the
user and a ranging beacon, or merely a binary de-
tection information when the user is within some
(small) distance of a proximity beacon: it is as-
sumed that beacons are well–localized and well–
identified, but there could be a limited number of
these beacons in the whole building, so that these
measurements are not frequently available,
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• finally, information of a different nature provided
by a map of the building, which lists obstacles (es-
sentially walls) to the user walk: this really brings
some useful information and should not be consid-
ered as a nuisance, and in some extreme cases, tak-
ing these constraints into account properly could
already be sufficient to reach the localization ob-
jective, even with no beacon available around.

2 Modelling
The localization problem considered here can be de-
scribed as follows. The state vector xk = (rk, θk) at
time tk is defined as the user 2D–position rk and its
orientation, represented as an angle θk or equivalently
as the unit 2D–vector u(θk) where

u(θ) =

(
cos θ
sin θ

)
.

Let

dk = |rk − rk−1| and αk = (θk − θk−1) ,

denote the true walked distance and direction change
in the time interval between tk−1 and tk. Clearly, the
state vector xk is related to the state vector xk−1 and
to the pair (dk, αk) by the relation

rk = rk−1 + dk u(θk) and θk = θk−1 + αk .

In practice, the true walked distance and direction
change are not known, but noisy PNS measurements
(d̂k, α̂k) are provided instead, from which PNS esti-

mates (r̂k, θ̂k) are obtained as

r̂k = r̂k−1 + d̂k u(θ̂k) and θ̂k = θ̂k−1 + α̂k .

These position and orientation estimates, based on PNS
measurements only, are know to diverge from the true
position and orientation, and additional measurements
should be used. To merge the different sources of infor-
mation, a Bayesian approach is adopted, and the idea
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is to exploit the PNS measurements (d̂k, α̂k) in a differ-
ent way, so as to obtain a random model for the evolu-
tion of the unknown position and orientation. Indeed,
(d̂k, α̂k) are noisy measurements of the true walked dis-
tance and direction change (dk, θk), with the following
random model for the error

dk = d̂k + wwalk
k and αk = α̂k + bk + wturn

k ,

with additive noises wwalk
k and wturn

k . The bias bk could
be modelled either as a constant or as a Gauss–Markov
random sequence, in which case it should be incorpo-
rated into the state vector. Only the simplest case
where bk ≡ 0 has been considered in the numerical ex-
periments presented in Section 5. Therefore, the model
for the evolution of the unknown state vector is

rk = rk−1 + (d̂k + wwalk
k ) u(θk) ,

θk = θk−1 + α̂k + wturn
k .

(1)

Next, if a ranging beacon located at position a is
active at time tk, then it provides a noisy measurement
of the distance between the user and the beacon, as

zk = |rk − a| + vrange
k , (2)

with additive noise vrange
k . If a proximity beacon lo-

cated at position a is active at time tk, then it provides
a binary detection characterized by the probability of
detection

P[user is detected | |rk − a| = d] = P (d) . (3)

as a function of the distance between the user and the
beacon. Ideally, P (d) = 1 if d ≤ d0 and P (d) = 0
otherwise, where d0 denotes the range of the proxim-
ity sensor, but a less sharp form of the function P (d)
could be used alternatively to take mis–detection into
account.

Clearly, the true position, and also the transition
between two successive true positions, do respect the
constraints. This information should also be incorpo-
rated in the localization procedure, by enforcing that
the transition between two successive unknown posi-
tions should also respect the constraints. How to take
these constraints into consideration is precisely the pur-
pose of the next Section.

3 Map–based Bayesian filtering
Estimating the user 2D–position and its orientation,
based on sensor measurements and on constraints, can
be formulated as a Bayesian filtering problem. In full
generality, MMSE (minimum mean–squere error) esti-
mates could be obtained in terms of the posterior prob-
ability distribution p(xk | z0:k) of the state xk at time
tk given a sequence z0:k = (z0, · · · , zk) of past sensor
measurements. Here, it is assumed that the sequence

of hidden states forms a Markov chain, characterised
by its initial probability distribution p(x0), which rep-
resents the uncertainty about the initial hidden state
x0 at time t0, and by its transition probability distri-
butions p(xk | xk−1), which represent the uncertainty
about the hidden state xk at time tk, if the hidden state
xk−1 at time tk−1 would be known exactly. It is also
assumed that the measurements are mutually indepen-
dent, if the hidden states would be known exactly, and
the sensor model is characterized by the probability dis-
tribution p(zk | xk), which is called the likelihood func-
tion, seen as a function xk 7→ p(zk | xk) of the hidden
state.

The Bayesian filter satisfies the following recurrence
equations: the prediction equation

p(xk | z0:k−1) =

∫
p(xk | xk−1) p(xk−1 | z0:k−1) dxk−1 ,

and the correction or update or filtering equation

p(xk | z0:k) ∝ p(zk | xk) p(xk | z0:k−1) ,

which is simply the Bayes rule, providing the poste-
rior distribution as the normalized product of the prior
distribution and the likelihood function.

The different terms involved in these equations can
be made more explicit for the model introduced in Sec-
tion 2. In view of (2), the likelihood function associated
with ranging mesurements is easily defined in terms of
the probability distribution of the additive noise vrange

k ,
and in view of (3), the likelihood function associated
with proximity detection is explicitely defined as the
probability of detection. In view of (1), the transition
probability distributions implicitely depend on the PNS
measurements and are easily defined using

p(xk | xk−1) = p(rk, θk | rk−1, θk−1)

= p(rk | rk−1, θk−1, θk) p(θk | rk−1, θk−1)

= p(rk | rk−1, θk) p(θk | θk−1) ,

in terms of the probability distributions of the additive
noises wwalk

k and wturn
k . For example, if wwalk

k and wturn
k

are independent Gaussian random variables with zero
mean and variance σ2

walk and σ2
turn respectively, then

p(θk | θk−1) is a 1D Gaussian distribution with mean
θk−1+α̂k and variance σ2

turn, and p(rk | rk−1, θk) is a 2D

Gaussian distribution with mean rk−1 + d̂k u(θk) and
degenerate covariance matrix σ2

walk u(θk)u∗(θk), non-
degenerate in the direction u(θk) only. Note that these
transition probability distributions provide a model for
a user walking in unconstrained space, i.e. without ob-
stacles, and do not take constraints into account.

Several different models are presented below, that
take constraints into account, in the sense that invalid
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transitions (xk−1, xk), that do not respect the con-
straints, are not possible under these alternate mod-
els. In other words, the idea is to replace the un-
constrained transition probability distributions p(xk |
xk−1) with map–consistent transition probability dis-
tributions p(xk | xk−1, map).

3.1 Restriction to a Voronoi graph

In the approach proposed in [8], a model is directly
specified on a graph, which by construction respects
the constraints. In the problem considered here, the
PNS provides information of a quite different nature,
namely a walked distance and a heading. This 2D in-
formation is indeed not necessarily consistent with re-
stricting the transitions to a graph, which is a 1D struc-
ture. Of course, a transition could be first proposed in
the unconstrained space and then projected back onto
the graph, but the resulting transition could differ too
much from the true transition walked by the user, since
the graph edges are not necessarily oriented like the
transition provided by the PNS. This would result in
a prior probability distribution not consistent with the
likelihood function, and a loss in accuracy.

3.2 Direct rejection (hard constraint)

In view of the discussion above, the preferred approach
is to propose transitions in the unconstrained space,
and then to reject invalid transitions. This could be
achieved using a hard acceptance/rejection procedure,
where a transition from x = (r, θ) to x′ = (r′, θ′) is
called invalid if the straight line joining the initial po-
sition r to the terminal position r′ crosses an obstacle,
as shown in Figure 1. The resulting map–consistent
transition probability distributions are defined as

p(xk | xk−1, map)

∝






p(xk | xk−1) valid transition

0 invalid transition

Particle Valid�transition

Wall�

Invalid�transition

�

Figure 1: Invalid transition

However, there is a risk that the probability of accep-
tance is too small, i.e. that too many proposed transi-
tions will be declared invalid, with the result that the
number of particles alive will decrease dramatically.

3.3 Shortest path control (soft con-
straint)

Another simple way to measure whether a transition
from x = (r, θ) to x′ = (r′, θ′) does respect the con-
straints is to look at the shortest path a user would need
to walk through within the environment represented by
the map, to go from the initial position r to the terminal
position r′. This path is conditioned on local cartog-
raphy, that is, walls or other obstacles or objects the
user has to go around. A simple acceptance/rejection
procedure is to look whether the shortest path length
s(x, x′) in the environment, between the initial posi-
tion r and the terminal position r′, is consistent with
the measured walked distance d̂k provided by the PNS,
as shown in Figure 2. One simple and sound way to
achieve this objective is to use a cost function depend-
ing of the difference between s(x, x′) and d̂k, associated
with a Gaussian assumption for instance. The resulting
map–consistent transition probability distributions are
defined in this case as

p(xk | xk−1, map)

∝ exp{− (s(xk−1, xk) − d̂k)2

2σ2
} p(xk | xk−1) .

(4)

Figure 2: The shortest path illustration

How to implement the shortest path approach will be
explained later in Section 5.2.

4 Particle filtering
The key idea behind particle filtering is to use weighted
samples, also called particles, to approximate the pos-
terior probability distribution p(xk | z0:k) of the state
xk at time tk given a sequence z0:k = (z0, · · · , zk) of
past sensor measurements. In other words

p(xk | z0:k) ≈
N∑

i=1

wi
k δ

ξi
k

with
N∑

i=1

wi
k = 1 ,

where (ξ1
k, · · · , ξN

k ) denotes the particle positions, and
(w1

k, · · · , wN
k ) denotes the particle (positive) weights.

In its simplest and very intuitive version, these parti-
cles propagate according to the state equation and con-
straints are easily taken into consideration, and as new
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measurements arrive, the particles are re–weighted to
update the estimation of the state. Beyond just weight-
ing the samples, the weights could also be used more
efficiently to resample, i.e. to select which samples are
more interesting than others and deserve to survive and
get offsprings at the next generation, and which samples
are behaving poorly and should be discarded. There are
many different ways to generate an independent N–
sample from a weighted empirical distribution, which
all reduce to specifying how many copies (or clones,
replicas, offsprings, etc.) will be allocated to each par-
ticle. The simplest method is to sample independently,
with replacement, from the weighted empirical distri-
bution, which is done efficiently by simulating directly
order statistics associated with a uniform N–sample.
Other resampling procedures which reduce the variance
are stratified sampling or residual resampling.

For the model introduced in Section 2, the parti-
cles positions and weights are updated as follows. If
the hard constraint approach is used, then for any
i = 1, · · · , N , a particle ξi

k is proposed according to
the probability distribution p(xk | ξi

k−1) in the uncon-
strained space, and the transition (ξi

k−1, ξ
i
k) is accepted

if it is valid, otherwise it is rejected, which results in
the loss of the corresponding particle.

If the soft constraint approach is used, then for any
i = 1, · · · , N , a particle ξi

k is proposed according to
the probability distribution p(xk | ξi

k−1) in the uncon-
strained space, with the corresponding weight

exp{−
(s(ξi

k−1, ξ
i
k) − d̂k)2

2σ2
} .

The weights just act like weights coming from a sensor
model, through the evaluation of a likelihood function,
and they are used in a resampling step, to select the
more realistic transitions.

When a ranging beacon is active, the corresponding
likelihood function is evaluated at each particle posi-
tion to incorporate the ranging measurement into the
particle weight, i.e.

wi
k ∝ wi

k−1 p(zk | xi
k) , (5)

where wk−1 is the weight of the i–th particle at time
tk−1. If the additive noise vrange

k is Gaussian, with zero
mean and variance σ2

range, then

wi
k ∝ wi

k−1 exp{− (zk − di
k)2

2σ2
range

} , (6)

where zk is the ranging measurement and di
k = |ri

k−a| is
the distance between the active ranging sensor located
at position a and the i–th particle ξi

k = (ri
k, θi

k) located
at position ri

k. Notice that the orientation θi
k does not

appear explicitly in the expression of the weight wi
k.

4.1 Effective sample size

Resampling can avoid the degenerate situation where
all but one of the weights are close to zero. However,
especially if hard constraint is used, the rejection of
particles corresponding to invalid transitions results in
a loss of the diversity of particle population, which in
turn can induce a tracking loss, given that state es-
timation provided by PNS measurements alone has a
growing error with time. One strategy to benefit from
the positive effect of resampling but to keep diversity
is to reduce the resampling frequency, or even better
to resample only when the degeneracy problem is de-
tected.

One suitable measure of the degeneracy problem is
the effective sample size [4, Section III], defined as

Neff =
1

N ′∑

i=0

(wi
k)2

,

where wi
k is the normalized weight of the i–th particle.

The effective sample size is always smaller or equal to
the number N ′ of particles alive, i.e. with positive non–
zero weights. Equality means that all the particles have
the same weight. A too small effective sample size value
indicates a severe degeneracy problem, and an adaptive
startegy is to resample when the effective sample size
value is smaller than a threshold

Neff < β′ N ′ with 0 < β′ ≤ 1 .

With the hard constraint model, the number N ′ of
particles alive can only decrease. Before Neff attains
the prescribed threshold, it may happen that there is
already not enough particles alive. As the reduction
of the effective sample size is induced by the degener-
acy of the weights distribution and by the decrease in
the number of particles alive, the definition of criterion
should be modified. Instead of comparing Neff with N ′,
it is advisable to compare it with a fixed population size
N , which is the desired number of particles alive, i.e.
the number of particles after the last resampling step,
or in other words

Neff < β N with 0 < β ≤ 1 , (7)

to take the decrease in the number of particles alive
into account. In view of the identity

Neff

N
=

Neff

N ′

N ′

N
,

the novel form (7) monitors two phenomena: the de-
generacy problem and the loss of particles. Since the
rejected particles corresponding to invalid transitions
have indeed zero weights, then obviously

1/Neff =

N ′∑

i=0

(wi
k)2 =

N∑

i=0

(wi
k)2 ,
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which means that after all the new form is completely
consistent with the usual form. Moreover, a minimum
value is guaranteed for the number of particles alive,
which makes the filtering algorithms more robust.

4.2 Loss detection

In situations where the user is walking in open space
and has not met any ranging beacon for a long time, the
particle cloud begins to scatter because state estimation
provided by PNS measurements alone has a growing
error with time. When the particle cloud is too far
from the true state, the filtering algorithm is in trouble.
Different strategies can be proposed to recover from this
situation, but there is also a need to detect this loss
automatically.

An approach has been proposed in [9], which com-
pares a short–term average of the weights with a long–
term average. A novel idea is to compare the measured
distance zk between the user and the ranging beacon,
and the computed distances (d1

k, · · · , dN
k ) between each

particle and the same beacon, assuming that the user
meets a ranging beacon. If none of the computed dis-
tances matches the measured distance, then it is rea-
sonable to consider that the particle cloud cannot rep-
resent the unknown user position, and as a result all
the particles will have too small weights, which means
that a loss has occurred. This results in the following
criterion

max
i=1,··· ,N

exp{− (zk − di
k)2

2σ2
range

} < α , (8)

where zk is the measured distance provided by the rang-
ing beacon, di

k = |ri
k − a| is the distance between the

i–th particle and the active ranging beacon located at
position a, and 0 < α < 1 is the threshold. This is
equivalent to controlling the minimum difference be-
tween the measured distance and any computed dis-
tance, and the new criterion is

min
i=1,··· ,N

|zk − di
k| > ρ σrange , (9)

where ρ =
√
−2 log α is a given threshold.

4.3 Loss recovery (particles injection)

Once the loss happens, the filter should be reinitialized,
by generating particles randomly over the state space.
However, the cost of the reinitialization depends a lot on
the environment size and the initial probability distri-
bution of particles. One more precise and less–costing
approach is to add particles randomly around the rang-
ing beacons that has just been met by the user [9]. This
reinitialization procedure is called particles injection.

The particles injection can take place automatically
once the loss is detected or be carried out manually
through the tracking server. The particles are injected
randomly, according to the ranging sensor measurement
zk and to the probability distribution of the additive
noise vrange

k .
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Figure 3: Posterior distribution of the pedestrian’s pose
given by ranging beacon

5 Simulation
Some implementation issues are discussed here, and a
short presentation of the simulator is given.

5.1 Acceptance/rejection with retry

To avoid the roughness of the acceptance/rejection
model, instead of deleting all invalid transition parti-
cles immediately, they are given several chances to try
to advance according to the same PNS measurements
but with different noise realization. If all the chances
fail, then the particle is thrown out. Otherwise, the
particle will be added to the set of living particles.

Figure 4 shows an example of how an invalid tran-
sition particle survives. The green spot is the particle
at time tk−1 and the red one is the proposed particle
at time tk, and the corresponding transition crosses a
wall. The particle at instant tk−1 was given five chances
to try with different noise realization each time. The
transition is valid at the fourth try. Then the blue spot
representing the new particle at time tk is kept for the
next iteration.

Particle

Wall�

Transition�with�different�noise�

realization�

Invalid�transition

�

Figure 4: Invalid transition survived with chance

There is a different way to exploit the surviving with
chance model, which reduces to prior boosting . Instead
of just giving another chance to particles with invalid
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transitions, all the particles at time tk−1 are given a
certain number of chances. The terminal states of all
the valid transitions are accepted for the next filtering
iteration.

The surviving with chance model ensures that parti-
cles near an obstacle have more chance to survive during
the prediction step. It works especially well in the case
that there are many corridors, which are usually nar-
row, because it can avoid the situation that particles
are rejected too easily.

5.2 Computation of shortest path

One efficient way to compute the shortest path on the
map between two state hypotheses xk−1 and xk is to
use the map visibility graph.

A map can be modelled as a set S of disjoints simple
polygons in the plane which are called obstacles. The
visibility graph is the graph whose nodes are the ver-
tices of S, as shown in Figure 5(a). There is an edge
between vertices v and w if they can see each other,
that is, if the segment joining v to w does not inter-
sect the interior of any obstacle in S. Two vertices that
can see each other are called (mutually) visible and the
segment connecting them is called a visibility edge.

When we want to compute the shortest path between
two points P1 and P2, as shown in Figure 5(b), we just
add these two points to the adjacency matrix of the
visibility graph, considering that P1 or P2 are adjacent
to an edge of the visibility graph when there exists a
direct linking between P1 or P2 and that edge without
crossing any obstacles. Finally applying the Dijkstra
algorithm with Fibonacci heaps, we can get the shortest
path between P1 and P2 from the obtained graph 5(b),
as the green one in the Figure 5(c).

The following Figure 6 shows an execution of the al-
gorithm in the case that we use only inertial sensors
measurements with known initial (position and orien-
tation) state. The khaki dash–dot line is the trajectory
obtained from inertial sensors measurements only. The
violet dashed line is the estimated trajectory obtained
from inertial sensors measurements and incorporating
also cartographic information: it is very close to the
blue solid line, which represents the true trajectory. No
ranging beacons measurements are used in this exam-
ple.

5.3 Tracking simulator

A complete tracking simulator has been developped
which allows to show the evolution of particles in re-
lation to the true path. The simulation is a fusion of
PNS measurements, cartographic constraints and rang-
ing beacon measurements. A map of the building, the
coordinates of the ranging beacons and a Voronoi graph
automatically generated from the map are loaded in the
database before the simulation begins. The Voronoi
graph is used to provide a road map, and to generate
the true trajectories automatically. The additive noises

(a) Visibility graph (b) Graph with P1 and P2

(c) Shortest path on graph
between P1 and P2

Figure 5: Impermeable surface treatments

 

 

real path central inertial trajectory path estimated with cartographic constraints 

Figure 6: Simulation of trajectory using inertial sensors
measurements and cartographic information

wwalk
k and wturn

k in the PNS measurements model are
independent Gaussian random vectors, with zero mean
and standard deviation 0.13m and 15◦, respectively. A
more realistic heading model would incorporate a con-
stant drift bk of 10◦ per minute and an additive Gaus-
sian noise wturn

k , with zero mean and standard deviation
0.1◦, using the notations of Section 2. The correspon-
dance between lengths in the physical world and the
map pixel is 1m for 3.6 pixel. The map is 940 pixels by
1220 pixels, which corresponds in the physical world to
a size of about 250m by 339m. Once the true trajec-
tory is build, the user begins to walk along the given
path with a constant time step ∆ = 1 s which is also
the time interval between two filtering iterations. At
the beginning of each iteration, new PNS measurements
are generated and the ranging beacon measurements
are generated if a user is detected within the beacon
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range, which is set as 15 m. The additive noise vrange
k

in the range measurement model is a Gaussian random
variable, with zero mean and standard deviation 2.5m.

The main cycle of the filtering algorithm is shown in
Figure 7:

1. Initialization: particles are initialized randomly
around the true position and orientation.

2. Prediction: new particles are computed, com-
bining PNS measurements and cartographic con-
straints.

3. Weigths update: only if the ranging measure-
ments are available, weights are updated and the
loss detection is performed.

4. Effective sample size: weights are normalized
and the effective sample size is computed.

5. Resampling: only if the effective sample size is
smaller than the threshold, the particle population
is resampled and in particular the population size
is reset to its desired value.

6. Particles injection: only if loss is detected, parti-
cles are injected around the active ranging beacons,
assuming there is one at least.

1.initialize�

5.Resampling�

6.Add�particles��

Lost?

<�threshold?

3.Update�weights�

Measurements�

are�availible?�

�

Yes�

No�

2.Prediction�
4.Update�

N_effective�

Yes�

No�

Yes�

No�

7. Swap arrays

Figure 7: Diagram of simulation program

Figure 8 gives a simulation example. The solid line
is the true trajectory and the dashed line is the esti-
mated trajectory. When the user meets a ranging bea-
con (green triangle), it becomes red and the measured
distance between the user and the beacon is drawn as
a circle with the appropriate radius. Note that the es-
timated trajectory in the space where there are many
obstacles or walls and more ranging beacons is very
close to the true trajectory, whereas the situation is
the opposite in the open space. However, with the ac-
tive ranging beacon located near the exit of the open
space, the estimated trajectory returns close to the true
trajectory, since only the particles that are close to the
true state are kept after the resampling step and for the
next filtering iteration.

Figure 8: Tracking simulator using inertial sensors mea-
surements, cartographic information and ranging bea-
cons measurements

6 Future work
This paper describes a data fusion algorithm to localize
one or several independent pedestrian users, using PNS
measurements, noisy measurements of the distance to
beacon, and cartographic information. An additional
source of information, that will be considered in future
work, is noisy measurements of the distance to another
user, considered as a moving beacon with unprecise lo-
cation [6]. It is also planned to consider a more real-
istic error model for the PNS estimate of the direction
change, such as

αk = α̂k + bk + wturn
k ,

with additive error wturn
k , and with a bias bk that could

be modelled either as a constant or as a Gauss–Markov
random sequence, in which case it should be incorpo-
rated into the state vector. Indeed, if

bk = ck bk−1 + wbias
k ,

with random input wbias
k , then it is possible to consider

an extended state vector xk = (rk, θk, bk), with the fol-
lowing model

rk = rk−1 + (d̂k + wwalk
k ) u(θk) ,

θk = θk−1 + α̂k + bk + wturn
k ,

bk = ck bk−1 + wbias
k ,
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which generalizes (1).
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