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Abstract – Particle filtering is a widely used Monte
Carlo method to approximate the posterior density in
non-linear filtering. Unlike the Kalman filter, the par-
ticle filter deals with non-linearity, multi-modality or
non Gaussianity. However, recently, it has been ob-
served that particle filtering can be inefficient when the
dimension of the system is high. We discuss the effect
of dimensionality on the Monte Carlo error and we an-
alyze it in the case of a linear tracking model. In this
case, we show that this error increases exponentially
with the dimension.
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1 Introduction
Particle filters are non-linear/non-Gaussian Bayesian
estimation techniques with a wide range of applications,
like target tracking [3], [10], navigation [11], geophysics
[17], etc. It typically applies on sequential data gener-
ated by so-called hidden Markov models.

It is well known that the Kalman filter gives opti-
mal estimation when the model is linear and Gaus-
sian. Versions of the Kalman filter that can handle
non-linear and/or non-Gaussian models have been de-
velopped, such as the extended Kalman filter (EKF)
and the unscented Kalman filter (UKF) [12]. In these
Kalman-like methods, the posterior density is approxi-
mated by its first two moments.

Unlike the EKF and the UKF, the particle filter es-
timates sequentially the posterior density by a discrete
density, and not only by its approximated mean and
covariance. The discrete density is computed thanks to
Monte Carlo (MC) sampling methods. The strength of
particle methods is that they can handle highly non-
linear non-Gaussian models.

Recently, it has been observed that particle filtering
is not efficient when applied to a high dimensional esti-
mation problem [2], [6], [17]. The purpose of this paper
is to study theoretically the behaviour of particle filter
in case of a high-dimensional linear system.

The outline of the paper is the following. In section
2, we shortly present the particle filter and recall a con-
vergence result of the particle estimator which gives an
approximation of the root mean squared error (RMSE).
In section 3, the degradation of this convergence in a
high-dimensional state space is discussed from the view
point of the RMSE. The main contribution of the paper
is the section 4. In this section we analyze precisely the
influence of the dimension on a linear target tracking
model. We show that the particle filter error increases
exponentially with the state dimension. Some numeri-
cal simulations illustrate these theoretical results.

2 Particle filtering
The typical Bayesian models on which particle filtering
methods can be applied are non-linear/non-Gaussian
hidden Markov models. Such models involve a hidden
(i.e. unobserved) Markov chain of states (Xn, n ≥ 0)
(denoted by X0:n) and of a sequence of measurements
(Yn, n ≥ 1) (denoted by Y1:n). The states transition
law

Xn|Xn−1 = xn−1 ∼ f(xn|xn−1)

is known (throughout the paper, probability laws are
characterized by their densities). The measurements
are independent conditionally to the state process, with
known distribution

Yn|Xn = xn ∼ h(yn|xn).

The objective of filtering is to estimate at each time step
n the law p(xn|y1:n) of the hidden state conditionally to
the past observations, which is the Bayesian posterior
density.

At each time step n, a particle filter iteration consists
in a prediction step and a correction step. In the predic-
tion step, a set of particles ξ1

n, . . . , ξN
n is sampled from a

given importance distribution (also called proposal dis-
tribution) that depends on the past estimates. In the
correction step, a weight wi is assigned to each parti-
cle ξi

n. This weight depends on the likelihood h(yn|ξi
n).



The empirical density

p̂N
n (xn) =

N∑
i=1

wiδξi
n
(xn) (1)

is a discrete estimate of the posterior density pn(xn) =
p(xn|y1:n). Particle filtering has been introduced in
[10]. It can be seen as a sequential application of impor-
tance sampling, that is why it belongs to the so-called
sequential Monte Carlo methods [8].

A known weakness of particle filtering is weight de-
generacy [8], or weight collapse. The variance of the
weights can only increase over time. In practice, after
a few time iterations, all but one particle have a very
low weight and the particle density does not fit well
anymore the true posterior. A means to avoid weight
degeneracy is to add a resampling step after the correc-
tion step. All the particles are resampled with a prob-
ability equal to their weight, which discards low weight
particles and regenerates high weight particles. The
sequential importance resampling (SIR) particle filter,
that includes such a resampling step, is presented in Ta-
ble 1. Generally, resampling is done only when weight
degeneracy is severe, which can observed with the ef-
fective sample size criterion [1].

n = 0 sample ξi
0 ∼ f(x0) for i = 1, . . . , N

n ≥ 1 for i = 1, . . . , N
sample ξi

n ∼ f(xn|ξi
n−1) (i = 1, . . . , N)

calculate w̃i = h(yn|ξi
n)

end
calculate s =

∑N
j=1 w̃j

for i = 1, . . . , N
normalize wi = w̃i/s

end
resample (ξi

n, wi)

Table 1: SIR particle filter

Improved particle filters have been developped in the
past few years, such as the Rao-Blackwellized particle
filter, the regularized particle filter, the auxiliary parti-
cle filter, etc. (see [1] for a review of these algorithms).

Theoretical results insure the convergence of the par-
ticle density (1) to the real posterior density when the
number of particles N goes to infinity [5], [7]. The fol-
lowing classical result formulates the convergence of the
RMSE:

E
[
(〈p̂N

n , φ〉 − 〈pn, φ〉)2
]1/2 ≤ cn

‖φ‖√
N

(2)

where 〈µ, φ〉 =
∫

φ(x)µ(dx) and ‖φ‖ = supx φ(x), with
φ a bounded measurable test function. Expectation is
taken with respect to the particles distribution. The
convergence rate of the RMSE w.r.t. the number of
particles is thus N−1/2. The upper bound (2) does
not show explicit dependency on the dimension of the

hidden state. However, authors have noticed that the
particle filter behaves poorly when the dimension in-
creases [2], [5], [6], [17]. The aim of the following work
is to give some more insight into the behaviour of par-
ticle approximation in a high-dimensional state space.

3 The effect of dimensionality
3.1 The particle approximation error

Let d denote the dimension of the system state Xn. Al-
though d does not explicitly appear in the upper bound
in (2), authors in [5], [6] have underlined that the de-
pendency on d of the constant cn can be strong.

To study the impact of the dimension, let us get
out of the sequential data framework and consider that
a whole trajectorial data batch is available simultane-
ously. This will allow us to simplify calculation without
considerable loss of generality. One observes simultane-
ously the data batch Y1:n and wants to estimate the hid-
den state Xn. In this non-sequential context, particle
filtering simply becomes importance sampling applied
to Bayesian inference. Let h(y1:n|x) be the likelihood
and f(x) the prior density. Suppose f(x) is chosen as
the importance density. We want to estimate the pos-
terior density p(x|y1:n) and we approximate it with the
empirical density

p̂N (x) =
N∑

i=1

wiδξi(x)

where the particles ξi are independent and identically
distributed (i.i.d.) according to the importance distri-
bution

ξi ∼ f(x),

and where the normalized weights wi are calculated
with the likelihood:

wi =
h(y1:n|ξi)∑N

j=1 h(y1:n|ξj)
. (3)

The RMSE convergence can here be bounded [14] as

E
[
(〈p̂N , φ〉 − 〈p, φ〉)2

]1/2 ≤ c0√
N

I(f, h)‖φ‖ (4)

where

I(f, h) =
supx h(y1:n|x)∫

Rd h(y1:n|x)f(x)dx
(5)

and where c0 is a constant independent of d.
Throughout the paper, we consider that the term

I(f, h) characterizes the MC error. Specifically, when
the integral

∫
Rd h(y1:n|x)f(x)dx tends towards 0, the

MC error increases. Hereafter, we analyze this term as
a function of the dimension. In a way, this integral rep-
resents the discrepancy between the prior density f(x)
and the likelihood h(y1:n|x) in the state space Rd. Dis-
crepancy between the prior and the likelihood is a clas-
sical problem in importance sampling: when it occurs,



the particles ξi sampled from f(x) fall on the tails of
h(y1:n|x) (taken as a function of x), and therefore most
of the weights wi ∝ h(y1:n|ξi) are close to 0. Numeri-
cally, this implies that h(y1:n|x) is small when f(x) is
high, thus making the integral

∫
h(y1:n|x)f(x)dx small

and enlarging the bound in (4). In section 4, we show in
a linear case that this upper bound grows exponentially
with the state dimension by studying the term I(f, h).

We assume that I(f, h) is a relevant indicator of the
difficulty of the estimation problem. Another criterion
for evaluating the performance of particle filtering is
the variance of the normalized weights (3) (w.r.t. to
the prior density f(x)). Using the Delta method [13],
we have for a large N that

V ar(wi) ≈
1

N2

( ∫
Rd h(y1:n|x)2f(x)dx(∫
Rd h(y1:n|x)f(x)dx

)2 − 1

)

for all i = 1, . . . , N . The term
R

Rd h(y1:n|x)2f(x)dx

(
R

Rd h(y1:n|x)2f(x)dx)2 can

be shown to increase with d at the same rate I(f, h)
does in our case study in section 4. Therefore, in this
study, dimensionality actually aggravates weight degen-
eracy.

Moreover, the ratio I(f, h) can also be seen as inverse
of the probability of acceptation in the rejection algo-
rithm [16]. The rejection algorithm is used to sample
from the posterior distribution p(x|y1:n) by sampling
from the prior distribution f(x) and accepting each
realization with probability pa =

R
h(y1:n|x)f(x)dx
supx h(y1:n|x) =

1
I(f,h) . Consequently, when importance sampling be-
haves poorly (I(f, h) is large), the rejection algorithm
is slow (pa is small). I(f, h) thus characterizes the ac-
curacy of the MC approximation.

3.2 Weight collapse

The problem raised by high-dimensional systems has
been studied in the very last years from the viewpoint
of weight collapse. Authors in [2], [17] make the data
size n and the state dimension d grow simultaneously
to infinity, which allow them to do a Gaussian approx-
imation of the measurement model. Thanks to this ap-
proach, they show that the number of particles N needs
to increase exponentially in d to avoid weight collapse.

In the next section, we rather focus on the upper
bound in (4) to study the degradation of particle meth-
ods in high-dimensional state space. We consider a sim-
ple model to exhibit the behavior of the bound when d
increases from 1 to some fixed data size n.

4 Analysis of the MC error in a
linear framework

To analyze the influence of the state dimension on par-
ticle filtering, let us consider a simple target tracking
model. This model will allow us to calculate explicitly
the upper bound (4). Let xk be the position of the

target at time k. The target follows a deterministic
dynamical model defined by a (d − 1)th order Taylor
expansion of the motion equation

xk = xk−1 + ∆ẋk−1 + · · ·+ ∆d−1

(d− 1)!
x

(d−1)
k−1 (6)

for k ≥ 1, with the initial state (x0, ẋ0, . . . , x
(d−1)
0 )T .

x
(l)
k denotes the lth derivative of the target position.

The d-dimensional state of the system at each time k

is defined as Xk = (xk, ẋk, . . . , x
(d−1)
k )T . Let F denote

the d× d state transition matrix. The target dynamics
is

Xk = FXk−1

where

F =


1 ∆ ∆2

2 · · · ∆d−1

(d−1)!

0 1 ∆ · · · ∆d−2

(d−2)!

...
...

0 0 0 · · · 1

 .

The data consist in n observations. At each time step
k = 1, . . . , n, a sensor measures the current position.
The measurement equation is thus

yk = xk + εk (7)

for k = 1, . . . , n where εk
i.i.d.∼ N (0, σ2

R) is a Gaussian
measurement noise. The yk are 1-dimensional. Let us
define Y1:n = (y1, . . . , yn)T the trajectorial data. The
number of measurements n is taken greater than the
state dimension d, in order to insure that the state Xk

is observable.
The hidden state to estimate is the state of the target

at initial time 0, that is

X0 = (x0, ẋ0, . . . , x
(d−1)
0 )T .

The continuous version of the dynamics gives for 0 ≤
t ≤ n:

Ẋt =


ẋt

ẍt

...
x

(d−1)
t

x
(d)
t

 = AXt (8)

where A is a d× d matrix such that

A =


0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

...
0 0 0 0 · · · 1
0 0 0 0 · · · 0

 .

The solution of (8) is then Xt = exp(At)X0. By dis-
cretizing this solution, one obtains

Xn = exp(n∆A)Xk = FnX0



for all k = 0, . . . , n. Using the fact that Ad = 0 and
denoting L1(·) the linear operator that associates to a
matrix its first line, we can re-write xk as

xk = L1(Xk)
= L1(exp(n∆A)X0)

= L1

 ∞∑
j=0

(k∆)jAj

j!

X0

=
d−1∑
j=0

L1

(
(k∆)jAj

j!

)
X0

=
d−1∑
j=0

(k∆)j

j!
x

(j)
0

=
(

1, k∆, . . . ,
(k∆)d−1

(d− 1)!

) x0

...
x

(d−1)
0


The above calculation leads to a compact formulation
of the measurement model (7):

Y1:n = HX0 + ε (9)

where

H =


1 ∆ · · · ∆d−1

(d−1)!

1 2∆ · · · (2∆)d−1

(d−1)!

...
...

1 n∆ · · · (n∆)d−1

(d−1)!

 (10)

is the n × d measurement matrix and where ε
i.i.d.∼

N (0, R), with R = σ2
RIn.

To get a Bayesian model, one needs a prior distri-
bution on the hidden state X0. The prior density is
chosen as

X0 ∼ N (m,Q) (11)

with Q = σ2
QId, and where m and σQ are known hy-

perparameters. For the sake of calculation simplicity,
we chose to estimate the initial state, which is equiva-
lent to estimate Xk at any time k = 0, . . . , n since the
dynamics (6) is deterministic.

We have at our disposal a non-sequential Bayesian
model, that enables us to make a case study on how
the particle approximation upper bound (4) is degraded
when the state dimension d increases from 1 to n.

4.1 Relationship between the MC error
and the dimension

In our target tracking model (9)–(11), the initial state
model is X0 ∼ f(x) where the prior density is

f(x) =
exp

[
− 1

2 (x−m)T Q−1(x−m)
]

(2π)d/2
√

det(Q)

and the measurement model is Y1:n|X0 = x ∼ h(y1:n|x),
with the likelihood

h(y1:n|x) =
exp

[
− 1

2 (y1:n −Hx)T R−1(y1:n −Hx)
]

(2π)n/2
√

detR

Let us calculate the upper bound of the particle ap-
proximation error (4)

c0√
N

I(f, h)‖φ‖

where

I(f, h) =
supx h(y1:n|x)∫

Rd h(y1:n|x)f(x)dx
.

As we are in presence of a Gaussian linear model, the
Kalman equations arise naturally. Let

S = HQHT + R

K = QHT S−1

m̂ = m + K(Y1:n −Hm)
P = (Id −KH)Q

where S is the innovation covariance matrix, K is the
gain matrix, m̂ is the posterior mean estimator and P
is the covariance of m. Note that, since the Kalman
filter provides minimum mean squared error estimator,
P is the posterior Cramér-Rao bound associated with
the parameter m. Straightforward calculations give us
the desired ratio (5) (see Appendix A):

I(f, h) = e
1
2 B

√
det(Q)
det(P )

(12)

where

B = (m̂−m)T Q−1(m̂−m)+(y1:n−Hm̂)T R−1(y1:n−Hm̂).

The following lemma is useful in a linear Gaussian
context.

Lemma 1. Let Q and R be two definite positive matrix,
with dimension d and n respectively, and let H be a d×n
matrix. Then,

(HT R−1H + Q−1)−1 = Q−QHT (HQHT + R)−1HQ.

The next proposition gives a relation between the MC
error and the dimension in our model, through a lower
bound of the term I(f, h) where d explicitly appears.

Proposition 1. For all d such that 2 ≤ d ≤ n,

I(f, h) ≥ e
1
2 B

√
1 +

σ2
Q

σ2
R

eα(d−1)

2π(2d− 1)e
1
6

where

α = 2min(∆, 1)
(

1 + log max
(

1,
n∆

d− 1

))
≥ 2 min(∆, 1).



Proof. Using lemma 1, we can write the posterior co-
variance matrix P as

P = (HT R−1H + Q−1)−1 =

(
1

σ2
R

HT H +
1

σ2
Q

Id

)−1

.

Since H is full rank, HT H is definite positive. Let
λ1, . . . , λd be its positive eigen values. We have

det(Q)
det(P )

= det

(
1

σ2
R

HT H +
1

σ2
Q

Id

)
det
(
σ2

QId

)
=

1
(σ2

Q)d
det

(
σ2

Q

σ2
R

HT H + Id

)
(σ2

Q)d

=

(
1 +

σ2
Q

σ2
R

λ1

)
× · · · ×

(
1 +

σ2
Q

σ2
R

λd

)

= 1 +
σ2

Q

σ2
R

Tr(HT H) + · · ·

+

(
σ2

Q

σ2
R

)d

det(HT H)

≥ 1 +
σ2

Q

σ2
R

Tr(HT H).

Consequently, I(f, h) is bounded from below in the
following way:

I(f, h) ≥ e
1
2 B

√
1 +

σ2
Q

σ2
R

Tr(HT H). (13)

In Appendix B, we show that

Tr(HT H) ≥ eα(d−1)

2π(2d− 1)e
1
6

for any d, so that

I(f, h) ≥ e
1
2 B

√
1 +

σ2
Q

σ2
R

eα(d−1)

2π(2d− 1)e
1
6

(14)

≥ e
1
2 B σQe

α
2 (d−1)

σR

√
2π(2d− 1)e

1
12

.

Since B ≥ 0, e
1
2 B ≥ 1 and the upper bound (4) grows

with d faster than

c0
σQe

α
4 (d−1)

σR

√
2πe

1
12
‖φ‖ (15)

where the coefficient α is larger than 2min(∆, 1) > 0
uniformly in d.

We observe that when the state noise is close to 0
(σQ ≈ 0), the bound (15) does not depend anymore on
d. The next proposition gives the behavior of I(f, h) in
this case.

Proposition 2.

I(f, h) −→
σQ→0

e
1

σ2
R

(y1:n−Hm)T (y1:n−Hm)

Proof. Recall

I(f, h) = e
1
2 B

√
det(Q)
det(P )

.

From the proof of Proposition 1, we have that

det(Q)
det(P )

−→
σQ→0

1.

Moreover, B is defined as

B = (m̂−m)T Q−1(m̂−m)+(y1:n−Hm̂)T R−1(y1:n−Hm̂).

Recall Q = σ2
QId and R = σ2

RIn. We have

m̂−m = K(y1:n −Hm)
= σ2

QHT (σ2
QHHT + σ2

RIn)−1(y1:n −Hm)

∼
σQ→0

σ2
Q

σ2
R

HT (In −
σ2

Q

σ2
R

HHT )(y1:n −Hm),

so that
(m̂−m)T Q−1(m̂−m) −→

σQ→0
0.

Besides, m̂ −→
σQ→0

m. Therefore,

B −→
σQ→0

1
σ2

R

(y1:n −Hm)T (y1:n −Hm).

4.2 Discussion

In our target tracking example, we can assert by Propo-
sition 1 that increasing the dimension degrades drasti-
cally the particle approximation. More precisely, the
MC error grows exponentially with the dimension faster
than the rate O

(
e

α
4 d
√

N

)
. Consequently, to maintain a

given MC accuracy, the number of particles must in-
crease exponentially.

By Proposition 2, we have that I(f, h) has no more
dependency on d when σQ → 0. That is, when the
prior density f(x) converges weakly to a Dirac mea-
sure on x = m, the MC error does not depend on the
dimension, but only on the distance between the true
measure y1:n and the predicted measure Hm. The MC
error increases exponentially with this distance.

Another remark can be done about the measurement
noise. From (15), we see that the MC error grows when
σR → 0. Indeed, when the likelihood is narrow, al-
most no particles have a sufficiently large weight, thus
degrading the particle approximation.

Note that the particle approximation is also getting
weaker when the number of observations n increases.



The Cramér-Rao bound P , which decreases with n, ap-
pears on the denominator in equation (12). More pre-
cisely, calculations in Appendix B show that, for a fixed
dimension d, the MC error grows with n at rate O(nd).
The explication is that, for a large n, the likelihood is
narrow (the measurement noise variance is roughly σ2

R

n )
so that the weight degeneracy is severe, just as it has
been explained above in the case where σR → 0.

4.3 Numerical results

For several values of the prior covariance σ2
Q, Fig-

ure 1 shows the bevahiour of the ”true” MC error up-
per bound I(f, h) (12) and of the bounds (13) and
(14) we found out in Proposition 1. For these simu-
lations, we chose σR = 1 as the standard deviation of
the measurement noise, ∆ = 1 as the time period, and
m = (1, . . . , 1)T ∈ Rd as the mean value for the prior
distribution of X0. We set σQ to 0.1, 0.01 and 0.001
successively. We increase the dimension from d = 2 to
d = 10. The number of observations is n = 10.

We observe the expected increase of the MC error
with d at exponential rate, which confirms our deriva-
tions. Moreover, when σQ is small, the dependency on
the dimension vanishes as explained in section 4.2.

In Figure 2, we increase further the dimension. It
shows I(f, h) and its lower bounds (13) and (14) for
d = 2, . . . , 20 with n = 20. σQ is set to 1 and ∆ to 0.5.
The other parameters remain the same as in Figure 1.

The vertical scale on Figures 1 and 2 is logarithmic.
Note that the curves on both figures seem to increase
less than linearly. This is due to the fact that the coef-
ficient α in front of d in Proposition 1 actually depends
on the dimension. However, α remains greater than a
strictly positive value for all d (α ≥ 2 min(∆, 1) > 0),
which insures that the growth of the bounds is at least
exponential.

5 Conclusion
Using a target tracking example, we established that

the performance of the particle filter is drastically weak-
ened when the state dimension is high. More precisely,
in a linear context, the MC error increases exponen-
tially with the dimension. The linear assumption allows
explicit derivations of the MC error. We expect that
this result can be generalized to a non-linear frame-
work. Indeed, by using a local linearization of the joint
distribution h(y1:n|x)f(x) around the maximum a pos-
teriori estimate, one could proceed as in section 4.

Several solutions can be considered in order to atten-
uate this curse of dimensionality. A known solution for
improving importance sampling is to use information
about the observations to sample the particles. This
means that one does not simply use the prior f(x) as a
proposal distribution, but preferably some distribution
π(x|y1:n), where the data is taken into account. How-
ever, the distribution π(x|y1:n) can be hard to obtain

Figure 1: I(f, h) (black solid line) and its lower bounds
(13) (diamond blue line) and (14) (dotted green line)
for σQ = 0.1 (top), σQ = 0.01 (middle), and σ2

Q = 0.001
(bottom). The vertical scale is logarithmic.

in general [8]. In the case where the likelihood is very
narrow (σR in (7) is small), an alternative solution is to
use the progressive correction algorithm [15]. Both of
these techniques allow the reduction of I(f, h) but the
issue of dimensionality remains.

Rao-blackwellization on the other hand uses parti-
cle approximation on a reduced state vector [1]. An-
other promising tool is the notion of effective dimension
[4]: retaining dimensions of interest only and discard-
ing non-informative ones could attenuate the problem
of state dimensionality.



Figure 2: The MC error behaviour from d = 2 to d = 20
with σQ = 1. The vertical scale is logarithmic.

Appendix A
The integral of interest is∫

Rd

h(y1:n|x)f(x)dx

=
1

(2π)
d+n

2
√

det(R)det(Q)

×
∫

Rd

exp
[
− 1

2
((y1:n −Hx)T R−1(y1:n −Hx)+

(x−m)T Q−1(x−m)
]
dx

=
e−

1
2 B

(2π)
d+n

2
√

det(R)det(Q)

×
∫

Rd

exp
[
− 1

2
(x− m̂)T P−1(x− m̂)

]
dx

where m̂ and P are defined in section 3.1 and where B
is such that

(x− m̂)T P−1(x− m̂) + B

= (y1:n −Hx)T R−1(y1:n −Hx)

+ (x−m)T Q−1(x−m)

for all x ∈ Rd. By setting x = m̂ we get

B = (m̂−m)T Q−1(m̂−m)+(y1:n−Hm̂)T R−1(y1:n−Hm̂).

Finally, since∫
Rd

exp
[
− 1

2
(x−m̂)T P−1(x−m̂)

]
dx = (2π)

d
2
√

det(P )

and

sup
x

h(y1:n|x) =
1

(2π)
n
2
√

det(R)
,

we have

supx h(y1:n|x)∫
Rd h(y1:n|x)f(x)dx

=

√
det(Q)
det(P )

e
1
2 B .

Appendix B
Let us bound from below Tr(HT H) with a quantity
that grows up with d.

Knowing Hij = (i∆)j−1

(j−1)! (see (10)), we have

Tr(HT H) =
d∑

i=1

∆2i−2

(i− 1)!2

n∑
k=1

k2i−2.

Noticing
n∑

k=1

k2i−2 ≥
∫ n

0

x2i−2dx =
n2i−1

2i− 1
,

we have

Tr(HT H) ≥ n

2d− 1

d∑
i=1

(n∆)2i−2

(i− 1)!2

The sequence
(

(n∆)2i

i!2

)
i≥0

reaches its maximum for i =

bn∆c (b·c is the floor function). Therefore,
d−1∑
i=0

(n∆)2i

i!2
≥ (n∆)2m

m!2

where m = min(bn∆c, d− 1).
Suppose d ≥ 2. Knowing the following inequality for

all integer m [9]:

m!√
2πmm+ 1

2 e−m
≤ e

1
12m ≤ e

1
12 ,

we have
d∑

i=1

(n∆)2i−2

(i− 1)!2
≥ e2m log(n∆)e−

1
6

2πm2m+1e−2m

=
e2m(log(n∆)−log m+1)− 1

6

2πm
.

We observe that

log(n∆)− log m + 1 = 1 + log
n∆

min(bn∆c, d− 1)

≥ 1 + log max
(

1,
n∆

d− 1

)
,

then
d∑

i=1

(n∆)2i−2

(i− 1)!2
≥ e2m(1+log max(1, n∆

d−1 ))− 1
6

2πm
.

Since m ≥ (d− 1) min(∆, 1),

Tr(HT H) ≥ (n− 1)
2d− 1

e2m(1+log max(1, n∆
d−1 ))− 1

6

2πm

≥ e2(d−1) min(∆,1)(1+log max(1, n∆
d−1 ))− 1

6

2π(2d− 1)

where the last inequality comes from n ≥ d.
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