INSA Rennes, 4GM–AROM Random Models of Dynamical Systems Introduction to SDE's

TP 2 : Numerical simulation of stochastic differential equations

December 14 and 17, 2018

EXERCISE 1: BROWNIAN MOTION ON THE CIRCLE

Let $B = (B(t), 0 \le t \le T)$ be a one-dimensional standard Brownian motion defined on the interval [0, T], with B(0) = 0. Consider the two-dimensional (bilinear) SDE

$$X(t) = X(0) - \int_0^t F X(s) \, ds + \int_0^t R X(s) \, dB(s) \; ,$$

with initial condition X(0) = (0, 1), and with the 2 × 2 matrices

$$F = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 and $R = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

Here, the final time is set to T = 10.

- (i) Check that this SDE has a unique solution.
- (ii) Write the Itô formula for the real-valued function $f(x) = |x|^2$ defined on \mathbb{R}^2 . Conclude that the solution satisfies the invariant: $|X(t)|^2 = 1$ almost surely, for any $0 \le t \le T$.
- (iii) Solve numerically the SDE, using a Euler scheme with step-size h and using simulated sample-paths of the Brownian motion. Repeat the same experiment a few times (with different sample-paths of the Brownian motion in each experiment) and plot the corresponding two-dimensional approximations. Try $h = 2^{-6}$ down to $h = 2^{-10}$ for instance. How much is the invariant satisfied by the approximation?

The objective is now to obtain an accurate numerical approximation of the statistics $\mathbb{E}|X(t)|^2$ (the true value of which is known), using empirical Monte Carlo approximation based on Euler schemes. In practice, given a step-size h and a sample size N, the procedure consists of

• for any $i = 1, \dots, N$, solve numerically the SDE using a Euler scheme with step-size h, and store the approximate solution $\bar{X}_i^h(t)$ for any $0 \le t \le T$,

• compute the empirical mean

$$\frac{1}{N} \sum_{i=1}^{N} |\bar{X}_i^h(t)|^2$$
,

as an estimator (depending on h and N) of $\mathbb{E}|X(t)|^2$ for any $0 \le t \le T$.

(iv) Implement this procedure, and plot the empirical mean as a function of time, for different values of h and N.

Try $h = 2^{-6}$ down to $h = 2^{-10}$ and N = 100, N = 1000 up to N = 10000 for instance.

How much is the invariant satisfied by the approximation?

(v) Implement the Romberg–Richardson extrapolation procedure, with two stepsize h and 2h.

Try a step-size as coarse as $h = 2^{-6}$ (hence $2h = 2^{-5}$) and a sample-size as large as N = 10000 for instance.

Check that the appropriate combination of the empirical mean with step size h and the empirical mean with double step-size 2h provides a more accurate numerical approximation of the statistics $\mathbb{E}|X(t)|^2$ for any $0 \le t \le T$.

[Hint: to produce Brownian motion sample–paths with double step–size 2h, use the same Brownian motion sample–paths already simulated with step–size h.]

(vi) What about the variance of the three different Monte Carlo approximations with step-size h, with double step-size 2h, and with extrapolation? Display histograms for instance.

EXERCISE 2: STATIONARY GAUSSIAN DIFFUSION

Let $B = (B(t), 0 \le t \le T)$ be a two-dimensional standard Brownian motion defined on the interval [0, T], with B(0) = 0. Consider the two-dimensional (linear) SDE

$$X(t) = X(0) + \int_0^t (-c I + R) X(s) \, ds + \sigma B(t) \,, \tag{(\star)}$$

with two real numbers c > 0 and σ , and with the 2×2 matrices

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 and $R = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

Here, the final time is set to T = 10. It is further assumed that the initial condition X(0) has zero mean $\mathbb{E}[X(0)] = 0$ and finite variance $\mathbb{E}[X(0) X^*(0)] = \Sigma$.

- (i) Check that this SDE has a unique solution. Show that the solution satisfies $\mathbb{E}[X(t))] = 0$ for any $0 \le t \le T$.
- (ii) Write the Itô formula for the matrix-valued function $f(x) = x x^*$ defined on \mathbb{R}^2 , and give the differential equation satisfied by the covariance matrix $\Sigma(t) = \mathbb{E}[X(t) X^*(t)]$.

[Hint: consider the real-valued process $u^* X(t)$, where u is an arbitrary two-dimensional vector, and write the Itô formula for the real-valued function $f(r) = r^2$ defined on \mathbb{R} .]

(iii) Under which condition on c and σ^2 , and on the variance Σ at initial time t = 0, is the solution stationary (in the following weak sense: $\mathbb{E}[X(t)X^*(t)] = \Sigma$ for any $0 \le t \le T$)?

What is the expression of $\mathbb{E}|X(t)|^2$ in this case?

[Hint: the condition is $\sigma^2 = 2 c \kappa^2$ and $\Sigma = \kappa^2 I$.] From now on, the following numerical values are used: $c = \frac{1}{2}$, $\sigma = 1$ and $\Sigma = I$.

(iv) Solve numerically the SDE, using a Euler scheme with step-size h and using simulated sample-paths of the Brownian motion. Repeat the same experiment a few times (with different sample-paths of the Brownian motion in each experiment) and plot the corresponding two-dimensional approximations.

Try $h = 2^{-6}$ down to $h = 2^{-10}$ for instance.

The objective is now to obtain an accurate numerical approximation of the statistics $\mathbb{E}|X(t)|^2$ (the true value of which is known), using empirical Monte Carlo approximation based on Euler schemes. In practice, given a step-size h and a sample size N, the procedure consists of

- for any $i = 1, \dots, N$, solve numerically the SDE using a Euler scheme with step-size h, and store the approximate solution $\bar{X}_i^h(t)$ for any $0 \le t \le T$,
- compute the empirical mean

$$\frac{1}{N} \sum_{i=1}^{N} |\bar{X}_i^h(t)|^2 ,$$

as an estimator (depending on h and N) of $\mathbb{E}|X(t)|^2$ for any $0 \le t \le T$.

(v) Implement this procedure, and plot the empirical mean as a function of time, for different values of h and N.

Try $h = 2^{-6}$ down to $h = 2^{-10}$ and N = 100, N = 1000 up to N = 100000 (vs. N = 10000 in the previous exercice) for instance.

How much is the invariant satisfied by the approximation?

(vi) Implement the Romberg–Richardson extrapolation procedure, with two step–size h and 2h.

Try a step-size as coarse as $h = 2^{-6}$ (hence $2h = 2^{-5}$) and a sample-size as large as N = 100000 for instance.

Check that the appropriate combination of the empirical mean with step size h and the empirical mean with double step-size 2h provides a more accurate numerical approximation of the statistics $\mathbb{E}|X(t)|^2$ for any $0 \le t \le T$.

[Hint: to produce Brownian motion sample–paths with double step–size 2h, use the same Brownian motion sample–paths already simulated with step–size h.]

(vii) What about the variance of the three different Monte Carlo approximations with step-size h, with double step-size 2h, and with extrapolation? Display histograms for instance.