INSA Rennes, 4GM-AROM

Random Models of Dynamical Systems Introduction to SDE's

TP 2: Numerical simulation of stochastic differential equations

December 14 and 17, 2018

Exercise 1: Brownian motion on the circle

Let $B=(B(t), 0 \leq t \leq T)$ be a one-dimensional standard Brownian motion defined on the interval $[0, T]$, with $B(0)=0$. Consider the two-dimensional (bilinear) SDE

$$
X(t)=X(0)-\int_{0}^{t} F X(s) d s+\int_{0}^{t} R X(s) d B(s)
$$

with initial condition $X(0)=(0,1)$, and with the 2×2 matrices

$$
F=\frac{1}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \text { and } \quad R=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right) .
$$

Here, the final time is set to $T=10$.
(i) Check that this SDE has a unique solution.
(ii) Write the Itô formula for the real-valued function $f(x)=|x|^{2}$ defined on \mathbb{R}^{2}. Conclude that the solution satisfies the invariant: $|X(t)|^{2}=1$ almost surely, for any $0 \leq t \leq T$.
(iii) Solve numerically the SDE, using a Euler scheme with step-size h and using simulated sample-paths of the Brownian motion. Repeat the same experiment a few times (with different sample-paths of the Brownian motion in each experiment) and plot the corresponding two-dimensional approximations.
Try $h=2^{-6}$ down to $h=2^{-10}$ for instance.
How much is the invariant satisfied by the approximation?

The objective is now to obtain an accurate numerical approximation of the statistics $\mathbb{E}|X(t)|^{2}$ (the true value of which is known), using empirical Monte Carlo approximation based on Euler schemes. In practice, given a step-size h and a sample size N, the procedure consists of

- for any $i=1, \cdots, N$, solve numerically the SDE using a Euler scheme with step-size h, and store the approximate solution $\bar{X}_{i}^{h}(t)$ for any $0 \leq t \leq T$,
- compute the empirical mean

$$
\frac{1}{N} \sum_{i=1}^{N}\left|\bar{X}_{i}^{h}(t)\right|^{2}
$$

as an estimator (depending on h and N) of $\mathbb{E}|X(t)|^{2}$ for any $0 \leq t \leq T$.
(iv) Implement this procedure, and plot the empirical mean as a function of time, for different values of h and N.
Try $h=2^{-6}$ down to $h=2^{-10}$ and $N=100, N=1000$ up to $N=10000$ for instance.
How much is the invariant satisfied by the approximation?
(v) Implement the Romberg-Richardson extrapolation procedure, with two stepsize h and $2 h$.
Try a step-size as coarse as $h=2^{-6}$ (hence $2 h=2^{-5}$) and a sample-size as large as $N=10000$ for instance.
Check that the appropriate combination of the empirical mean with step size h and the empirical mean with double step-size $2 h$ provides a more accurate numerical approximation of the statistics $\mathbb{E}|X(t)|^{2}$ for any $0 \leq t \leq T$.
[Hint: to produce Brownian motion sample-paths with double step-size $2 h$, use the same Brownian motion sample-paths already simulated with step-size h.]
(vi) What about the variance of the three different Monte Carlo approximations with step-size h, with double step-size $2 h$, and with extrapolation? Display histograms for instance.

Let $B=(B(t), 0 \leq t \leq T)$ be a two-dimensional standard Brownian motion defined on the interval $[0, T]$, with $B(0)=0$. Consider the two-dimensional (linear) SDE

$$
X(t)=X(0)+\int_{0}^{t}(-c I+R) X(s) d s+\sigma B(t)
$$

with two real numbers $c>0$ and σ, and with the 2×2 matrices

$$
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \text { and } \quad R=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right) .
$$

Here, the final time is set to $T=10$. It is further assumed that the initial condition $X(0)$ has zero mean $\mathbb{E}[X(0)]=0$ and finite variance $\mathbb{E}\left[X(0) X^{*}(0)\right]=\Sigma$.
(i) Check that this SDE has a unique solution. Show that the solution satisfies $\mathbb{E}[X(t))]=0$ for any $0 \leq t \leq T$.
(ii) Write the Itô formula for the matrix-valued function $f(x)=x x^{*}$ defined on \mathbb{R}^{2}, and give the differential equation satisfied by the covariance matrix $\Sigma(t)=$ $\mathbb{E}\left[X(t) X^{*}(t)\right]$.
[Hint: consider the real-valued process $u^{*} X(t)$, where u is an arbitrary two-dimensional vector, and write the Itô formula for the real-valued function $f(r)=r^{2}$ defined on \mathbb{R}.]
(iii) Under which condition on c and σ^{2}, and on the variance Σ at initial time $t=0$, is the solution stationary (in the following weak sense: $\mathbb{E}\left[X(t) X^{*}(t)\right]=\Sigma$ for any $0 \leq t \leq T)$?
What is the expression of $\mathbb{E}|X(t)|^{2}$ in this case?
[Hint: the condition is $\sigma^{2}=2 c \kappa^{2}$ and $\Sigma=\kappa^{2} I$.]
From now on, the following numerical values are used: $c=\frac{1}{2}, \sigma=1$ and $\Sigma=I$.
(iv) Solve numerically the SDE, using a Euler scheme with step-size h and using simulated sample-paths of the Brownian motion. Repeat the same experiment a few times (with different sample-paths of the Brownian motion in each experiment) and plot the corresponding two-dimensional approximations.
Try $h=2^{-6}$ down to $h=2^{-10}$ for instance.
The objective is now to obtain an accurate numerical approximation of the statistics $\mathbb{E}|X(t)|^{2}$ (the true value of which is known), using empirical Monte Carlo approximation based on Euler schemes. In practice, given a step-size h and a sample size N, the procedure consists of

- for any $i=1, \cdots, N$, solve numerically the SDE using a Euler scheme with step-size h, and store the approximate solution $\bar{X}_{i}^{h}(t)$ for any $0 \leq t \leq T$,
- compute the empirical mean

$$
\frac{1}{N} \sum_{i=1}^{N}\left|\bar{X}_{i}^{h}(t)\right|^{2}
$$

as an estimator (depending on h and N) of $\mathbb{E}|X(t)|^{2}$ for any $0 \leq t \leq T$.
(v) Implement this procedure, and plot the empirical mean as a function of time, for different values of h and N.

Try $h=2^{-6}$ down to $h=2^{-10}$ and $N=100, N=1000$ up to $N=100000$ (vs. $N=10000$ in the previous exercice) for instance.

How much is the invariant satisfied by the approximation?
(vi) Implement the Romberg-Richardson extrapolation procedure, with two stepsize h and $2 h$.
Try a step-size as coarse as $h=2^{-6}$ (hence $2 h=2^{-5}$) and a sample-size as large as $N=100000$ for instance.

Check that the appropriate combination of the empirical mean with step size h and the empirical mean with double step-size $2 h$ provides a more accurate numerical approximation of the statistics $\mathbb{E}|X(t)|^{2}$ for any $0 \leq t \leq T$.
[Hint: to produce Brownian motion sample-paths with double step-size $2 h$, use the same Brownian motion sample-paths already simulated with step-size h.]
(vii) What about the variance of the three different Monte Carlo approximations with step-size h, with double step-size $2 h$, and with extrapolation? Display histograms for instance.

