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Exercise 1 [Brownian motion on the circle] Let B = (B(t) , 0 ≤ t ≤ T ) be a one–
dimensional standard Brownian motion defined on the interval [0, T ], with B(0) = 0. Consider
the two–dimensional (bilinear) SDE

X(t) = X(0)−
∫ t

0
F X(s) ds+

∫ t

0
RX(s) dB(s) ,

with initial condition X(0) = (0, 1), and with the 2× 2 matrices

F = 1
2

(
1 0
0 1

)
and R =

(
0 −1
1 0

)
.

(i) Check that this SDE has a unique solution.

(ii) Write the Itô formula for the real–valued function f(x) = |x|2 defined on R2.
Conclude that the solution satisfies the invariant: |X(t)|2 = 1 almost surely, for
any 0 ≤ t ≤ T .

Solution

[Solution postponed].

2

Exercise 2 [Stationary Gaussian diffusion] Let B = (B(t) , 0 ≤ t ≤ T ) be a two–
dimensional standard Brownian motion defined on the interval [0, T ], with B(0) = 0. Consider
the two–dimensional (linear) SDE

X(t) = X(0) +

∫ t

0
(−c I +R)X(s) ds+ σ B(t) ,

with two real numbers c > 0 and σ, and with the 2× 2 matrices

I =

(
1 0
0 1

)
and R =

(
0 −1
1 0

)
.

It is further assumed that the initial condition X(0) has zero mean E[X(0)] = 0 and finite
variance E[X(0)X∗(0)] = Σ.
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(i) Check that this SDE has a unique solution. Show that the solution satisfies
E[X(t))] = 0 for any 0 ≤ t ≤ T .

(ii) Write the Itô formula for the matrix–valued function f(x) = xx∗ defined on
R2, and give the differential equation satisfied by the covariance matrix Σ(t) =
E[X(t)X∗(t)].

[Hint: consider the real–valued process u∗X(t), where u is an arbitrary two–dimensional vector,
and write the Itô formula for the real–valued function f(r) = r2 defined on R.]

Solution

[Solution postponed].

2

(iii) Under which condition on c and σ2, and on the variance Σ at initial time t = 0,
is the solution stationary (in the following weak sense: E[X(t)X∗(t)] = Σ for
any 0 ≤ t ≤ T ).

Solution

[Solution postponed].
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Exercise 3 [Wright–Fisher diffusion approximation] Consider the following simplified
model for the reproduction of individuals through the transmissions of alleles (alternative types
of the same gene). Consider here the case of one gene, with two alleles A and a. The population
size N is assumed finite and constant at each generation. At generation k, each individual
inherits the allele of its parent, a randomly (uniformly) selected (with replacement) individual
present in the population at generation (k − 1). Define the random variable XN

k to be the
number of allele of type A present at generation k.

(i) Show that the random variable XN
k takes values in {0, 1, · · · , N}, and that the

sequence (XN
k , k ≥ 0) forms a Markov chain with transition probability matrix

πNi,j = P[XN
k = j | XN

k−1 = i] =

(
N
j

)
(
i

N
)j (1− i

N
)N−j ,

for any i, j ∈ {0, 1, · · · , N}.

Solution

Conditionally on XN
k−1 = i, the probability for an individual at generation k of getting an allele

A is equal to the proportion pi = i/N of allele A available at generation (k − 1). Therefore,
conditionally on XN

k−1 = i, the random variable XN
k is a sum of N independent Bernoulli random
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variables with parameter pi = i/N , i.e. the random variable XN
k follows a binomial Bin(N, i/N)

distribution. In other words

πNi,j = P[XN
k = j | XN

k−1 = i] =

(
N

j

)
(
i

N
)j (1− i

N
)N − j ,

for any i, j ∈ {0, 1, · · · , N}.

2

(ii) Check that

E[XN
k | XN

k−1 = i] = i and E[(XN
k −XN

k−1)
2 | XN

k−1 = i] = i (1− i

N
) .

Solution

Recall that a binomial Bin(N, p) random variable has mean N p and variance N p (1 − p), so
that

E[XN
k | XN

k−1 = i] = N
i

N
= i hence E[XN

k −XN
k−1 | XN

k−1 = i] = 0 ,

and

E[(XN
k −XN

k−1)
2 | XN

k−1 = i] = N
i

N
(1− i

N
) = i (1− i

N
) . 2

2

Thinking more in term of frequencies (i.e. proportions) rather than in terms of number of
individuals, introduce the normalized random variable Y N

k = XN
k /N .

(iii) Show that the random variable Y N
k takes values in {0, 1/N, · · · , 1−1/N, 1} ⊂ [0, 1],

and check that
E[Y N

k | Y N
k−1 = p] = p ,

and

E[(Y N
k − Y N

k−1)
2 | Y N

k−1 = p] =
1

N
p (1− p) ,

for any p ∈ {0, 1/N, · · · , 1− 1/N, 1}.

Solution

For any p ∈ {0, 1/N, · · · , 1 − 1/N, 1}, there exists some i ∈ {0, 1, · · · , N} such that p = i/N ,
hence

E[Y N
k | Y N

k−1 = p] =
1

N
E[XN

k | XN
k−1 = i] =

i

N
= p ,

and

E[(Y N
k − Y N

k−1)
2 | Y N

k−1 = p] =
1

N2
E[(XN

k −XN
k−1)

2 | XN
k−1 = i]

=
1

N2
i (1− i

N
) =

1

N
p (1− p) .

2
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(iv) Show that the candidate limit (in distribution, as the population size N ↑ ∞) of
the continuous–time process interpolating points Y N

k at time instants tNk = k/N ,
is the solution of the SDE

X(t) = X(0) +

∫ t

0

√
X(s) (1−X(s)) dB(s) .

Check that there exists a unique solution to this SDE, taking values in [0, 1].

[Hint: extend the definition of the diffusion coefficient outside the interval [0, 1].]

Exercise 4 [Exit time of a one–dimensional diffusion process] Let B(t) be a one–
dimensional standard Brownian motion, and consider the SDE

X(t) = X(0) +

∫ t

0
b(X(s)) ds+

∫ t

0
σ(X(s)) dB(s) ,

where the drift and the diffusion coefficients satisfy the global Lipschitz condition and the linear
growth condition. Let L denote the associated second–order differential operator. Let a < c and
consider the two hitting times

Ta = inf{t ≥ 0 , X(t) = a} and Tc = inf{t ≥ 0 , X(t) = c} ,

of a and c respectively, and let

Ta,c = Ta ∧ Tc = inf{t ≥ 0 : X(t) 6∈ (a, c)} ,

denote the exit time from the open interval (a, c). Assume that there exist two bounded functions
f and g, twice differentiable with bounded first and second derivatives, such that

Lf(x) = 0 for any a ≤ x ≤ c,

up to two (multiplicative and additive) arbitrary normalizing constants, and such that

Lg(x) = −1 for any a ≤ x ≤ c,

with conditions g(a) = g(c) = 0, respectively.

(i) Show that

E0,x[Ta ∧ Tc] = g(x) <∞ and P0,x[Ta < Tc] =
f(c)− f(x)

f(c)− f(a)
,

for any starting point x ∈ (a, c).

Solution
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The Itô formula for the function g yields

g(X(t)) = g(X(0)) +

∫ t

0
[g′(X(s)) b(X(s)) + 1

2 g
′′(X(s)) a(X(s)) ds]

+

∫ t

0
g′(X(s))σ(X(s)) dB(s) ,

for any t ≥ 0, and in particular for t ∧ Ta,c

g(X(t ∧ Ta,c)) = g(X(0)) +

∫ t∧Ta,c

0
[g′(X(s)) b(X(s)) + 1

2 g
′′(X(s)) a(X(s)) ds]

+

∫ t∧Ta,c

0
g′(X(s))σ(X(s)) dB(s)

= g(X(0))− (t ∧ Ta,c) +

∫ t∧Ta,c

0
g′(X(s))σ(X(s)) dB(s) .

Indeed, note that a ≤ X(s) ≤ c for any 0 ≤ s ≤ t ∧ Ta,c and

Lg(y) = g′(y) b(y) + 1
2 g
′′(y) a(y) = −1 ,

for any a ≤ y ≤ c, hence the identity holds in particular for y = X(s) with 0 ≤ s ≤ t∧Ta,c. The
integrand belongs to M2([0, T ]) so that the stochastic integral has zero expectation, and using
the optional sampling theorem for the bounded stopping time t ∧ Ta,c yields

E0,x[g(X(t ∧ Ta,c))] = g(x)− E0,x[t ∧ Ta,c] ,

for any starting point a ≤ x ≤ c. Note that

0 ≤ E0,x[t ∧ Ta,c] = g(x)− E0,x[g(X(t ∧ Ta,c))] ≤M with M = 2 max
a≤y≤c

|g(y)| ,

and
0 ≤ E0,x[t ∧ Ta,c] = t P0,x[Ta,c =∞] + E0,x[(t ∧ Ta,c) 1(Ta,c <∞)] ≤M ,

hence the stopping time Ta,c is almost surely finite, and using the monotone convergence theorem
yields

E0,x[t ∧ Ta,c]→ E0,x[Ta,c] ≤M ,

as t ↑ ∞. By continuity g(X(t ∧ Ta,c))→ g(X(Ta,c)) = 0 almost surely as t ↑ ∞. Note that

|g(X(t ∧ Ta,c))| ≤ max
a≤x≤c

|g(x)| <∞,

is bounded. Using the Lebesgue dominated convergence theorem yields

E0,x[g(X(t ∧ Ta,c))]→ 0 ,

as t ↑ ∞, and uniqueness of the limit yields

g(x) = E0,x[Ta,c] .
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The Itô formula for the function f yields

f(X(t)) = f(X(0)) +

∫ t

0
[f ′(X(s)) b(X(s)) + 1

2 f
′′(X(s)) a(X(s)) ds]

+

∫ t

0
f ′(X(s))σ(X(s)) dB(s) ,

for any t ≥ 0, and in particular for t ∧ Ta,c

f(X(t ∧ Ta,c)) = f(X(0)) +

∫ t∧Ta,c

0
[f ′(X(s)) b(X(s)) + 1

2 f
′′(X(s)) a(X(s)) ds]

+

∫ t∧Ta,c

0
f ′(X(s))σ(X(s)) dB(s)

= f(X(0)) +

∫ t∧Ta,c

0
f ′(X(s))σ(X(s)) dB(s) .

Indeed, note that a ≤ X(s) ≤ c for any 0 ≤ s ≤ t ∧ Ta,c ≤ Ta,c and

Lf(y) = f ′(y) b(y) + 1
2 f
′′(y) a(y) = 0 ,

for any a ≤ y ≤ c, and the identity holds in particular for y = X(s) with 0 ≤ s ≤ t ∧ Ta,c. The
integrand belongs to M2([0, T ]) so that the stochastic integral has zero expectation, and using
the optional sampling theorem for the bounded stopping time t ∧ Ta,c yields

E0,x[f(X(t ∧ Ta,c))] = f(x) ,

for any starting point a ≤ x ≤ c. Recall that the stopping time Ta,c is almost surely finite, hence
by continuity f(X(t ∧ Ta,c))→ f(X(Ta,c)) almost surely as t ↑ ∞. Note that

|f(X(t ∧ Ta,c))| ≤ max
a≤x≤c

|f(x)| <∞,

is bounded. Using the Lebesgue dominated convergence theorem yields

E0,x[f(X(t ∧ Ta,c))]→ E0,x[f(X(Ta,c))] ,

as t ↑ ∞, and uniqueness of the limit yields

f(x) = E0,x[f(X(Ta ∧ Tc))] = f(a) P0,x[Ta < Tc] + f(c) P0,x[Tc > Ta] .

In other words
f(x) = f(a) P0,x[Ta < Tc] + f(c) (1− P0,x[Ta < Tc]) ,

hence

Px[Ta < Tc] =
f(c)− f(x)

f(c)− f(a)
.

Clearly, the solution of the second–order differential equation is defined up to two (multiplicative
and additive) arbitrary constants: indeed, if f(x) is a solution, so is c1 f(x) + c0. However, no
matter which particular solution is considered, the expression is the same, i.e. does not depend
on the two arbitrary constants c0 and c1.

2
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(ii) Apply these general results to the special case of the (limiting SDE in the)
Wright–Fisher genetic model.

Solution

In this special case, the two boundary points are a = 0 and c = 1, and the SDE to be considered
is

X(t) = X(0) +

∫ t

0

√
X(s) (1−X(s)) dB(s) ,

i.e.
b(x) = 0 and a(x) = x (1− x) ,

for any 0 ≤ x ≤ 1, and the second–order differential operator is

L = 1
2 x (1− x)

d2

dx2
.

The first ODE to be considered is

Lf(x) = 1
2 x (1− x) f ′′(x) = 0 ,

i.e. f ′′(x) = 0 for any x /∈ {0, 1}. Any first–order polynomial, say f(x) = c1 x+ c0, is a solution
and it follows that

P0,x[T0 < T1] =
f(1)− f(x)

f(1)− f(0)
= 1− x ,

for any 0 ≤ x ≤ 1. Note that this expression does not depend on the two arbitrary constants c0
and c1, as expected.

The second ODE to be considered is

Lg(x) = 1
2 x (1− x) g′′(x) = −1 with g(0) = g(1) = 0.

In other words, introducing h(x) = 1
2 g
′(x) it holds

h′(x) = − 1

x (1− x)
= −1

x
− 1

1− x
,

hence
1
2 g
′(x) = h(x) = − log x+ log(1− x) + c1 .

Setting φ0(x) = x− x log x and φ1(x) = φ0(1− x), it holds

φ′0(x) = − log x and φ′1(x) = −φ′0(1− x) = log(1− x) ,

hence

1
2 g(x) = φ0(x) + φ1(x) + c1 x+ c0

= x− x log x+ (1− x)− (1− x) log(1− x) + c1 x+ c0

= −x log x− (1− x) log(1− x) + c1 x+ c0 + 1 .
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The two boundary conditions g(0) = 0 and g(1) = 0 yield

c0 + 1 = 0 and c1 + c0 + 1 = 0 ,

i.e. c1 = c0 = 0, hence

E0,x[T0 ∧ T1] = g(x) = −2 [x log x+ (1− x) log(1− x)] ,

for any 0 ≤ x ≤ 1.

2

Exercise 5 [Ornstein–Uhlenbeck process] Let B(t) be a one–dimensional standard Brow-
nian motion, and for any positive real β > 0 and any real γ, consider the one–dimensional
SDE

X(t) = X(0)− β
∫ t

0
X(s) ds+ γ B(t) ,

where the initial condition X(0) is square–integrable and independent of the Brownian motion.

(i) Check that there exists a unique solution to this SDE.

(ii) Show that the solution is given explicitly as

X(t) = exp{−β t} X(0) + γ

∫ t

0
exp{−β (t− s)} dB(s) .

[Hint: use the variation of the constant method.]

Solution

Introducing the process Y defined by Y (t) = X(t) − γ B(t) for any t ≥ 0, and in particular
Y (0) = X(0) for t = 0, yields

Y (t) = X(0)− β
∫ t

0
X(s) ds = Y (0)− β

∫ t

0
Y (s) ds− γ β

∫ t

0
B(s) ds ,

since Y (0) = X(0). In other words, the process Y satisfies the ODE

Ẏ (t) = −β Y (t)− γ β B(t) .

The variation of the constant formula provides an explicit expression for the solution

Y (t) = exp{−β t} X(0)− γ β
∫ t

0
exp{−β (t− s)} B(s) ds ,

hence

X(t) = exp{−β t} X(0) + γ B(t)− γ β
∫ t

0
exp{−β (t− s)} B(s) ds ,
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Note that

B(t) exp{β t} = β

∫ t

0
exp{β s} B(s) ds+

∫ t

0
exp{β s} dB(s) ,

multiplying both sides by exp{−β t} yields

B(t)− β
∫ t

0
exp{−β (t− s)} B(s) ds =

∫ t

0
exp{−β (t− s)} dB(s) ,

and reporting this expression above yields

X(t) = exp{−β t} X(0) + γ

∫ t

0
exp{−β (t− s)} dB(s) .

2

(iii) Give the expression of the mean, the variance and the correlation coefficient,
defined as

m(t) = E[X(t)] and σ2(t) = E|X(t)−m(t)|2

and
ρ(t, h) = E[(X(t+ h)−m(t+ h)) (X(t)−m(t))] ,

respectively. Show that for a special choice of γ in terms of β > 0 and σ2(0),
the variance and the correlation coefficient do not depend on t ≥ 0.

Solution

Recall that

X(t) = exp{−β t} X(0) + γ

∫ t

0
exp{−β (t− s)} dB(s) ,

and clearly the stochastic integral has zero expectation. Taking expectation on both sides yields

E[X(t)] = exp{−β t} E[X(0)] ,

or in other words
m(t) = exp{−β t} E[X(0)] .

By difference

X(t)−m(t) = exp{−β t} (X(0)−m(0)) + γ

∫ t

0
exp{−β (t− s)} dB(s) ,

hence

|X(t)−m(t)|2 = exp{−2β t} |X(0)−m(0)|2 + γ2 |
∫ t

0
exp{−β (t− s)} dB(s)|2

+ 2 γ exp{−β t} (X(0)−m(0))

∫ t

0
exp{−β (t− s)} dB(s) ,
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Taking expectation on both sides and using the Itô isometry yields

E|X(t)−m(t)|2 = exp{−2β t} E|X(0)−m(0)|2 + γ2
∫ t

0
exp{−2β (t− s)} ds

= exp{−2β t} E|X(0)−m(0)|2 +
γ2

2β
(1− exp{−2β t}) ,

or in other words

σ2(t) = exp{−2β t} E|X(0)−m(0)|2 +
γ2

2β
(1− exp{−2β t}) .

By difference

X(t+ h)−m(t+ h) = exp{−β h} (X(t)−m(t)) + γ

∫ t+h

t
exp{−β (t+ h− s)} dB(s) ,

hence

(X(t+ h)−m(t+ h)) (X(t)−m(t)) = exp{−2β h} |X(t)−m(t)|2

+ 2 γ exp{−β h} (X(t)−m(t))

∫ t+h

t
exp{−β (t+ h− s)} dB(s) .

Taking expectation on both sides yields

E[ (X(t+ h)−m(t+ h)) (X(t)−m(t)) ] = exp{−2β h} E|X(t)−m(t)|2 ,

or in other words
ρ(t, h) = exp{−2β h} σ2(t) .

If the variance does not depend on time (then necessarily the correlation coefficient also does
not depend on time), i.e. if σ2(t) ≡ σ2 for any t ≥ 0, then

σ2 = exp{−2β t} σ2 +
γ2

2β
(1− exp{−2β t}) i.e. σ2 =

γ2

2β
.

2

(iv) Assume further that the initial condition is a Gaussian random variable. Show
that the process X(t) is Gaussian.

Exercise 6 [Kramers–Smoluchowski approximation] Let B(t) be a one–dimensional
standard Brownian motion, let the real–valued drift function b(x) be globally Lipschitz con-
tinuous. Consider the one–dimensional SDE

Y (t) = Y (0) +

∫ t

0
b(Y (s)) ds+B(t) , (?)
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with initial condition Y (0) independent of the Brownian motion, and for any positive α > 0,
consider the two–dimensional SDE

X(t) = X(0) +

∫ t

0
V (s) ds

V (t) = α [−
∫ t

0
V (s) ds+

∫ t

0
b(X(s)) ds+B(t) ]

(??)

with initial condition (X(0), V (0)) = (Y (0), 0) independent of the Brownian motion. The objec-
tive is to show that the (first component of the) solution of (??) provides a smooth (differentiable)
approximation of the solution of (?) uniformly on [0, T ], as α→∞.

(i) Show that the drift function satisfies the linear growth condition.

(ii) Check that there exist a unique solution to the SDE (?), and a unique solution
to the SDE (??).

(iii) Show that

|X(t)− Y (t)| ≤ 1

α
|V (t)|+ L

∫ t

0
|X(s)− Y (s)| ds ,

for some positive constant L > 0.

[Hint: check that

X(t) = X(0)− 1

α
V (t) +

∫ t

0
b(X(s)) ds+B(t) .]

Solution

Extracting ∫ t

0
V (s) ds = − 1

α
V (t) +

∫ t

0
b(X(s)) ds+B(t) ,

from the second component of (??) and reporting this expression in the first component of (??)
yields

X(t) = X(0)− 1

α
V (t) +

∫ t

0
b(X(s)) ds+B(t) .

By difference, and since X(0) = Y (0), it holds

X(t)− Y (t) = − 1

α
V (t) +

∫ t

0
[b(X(s))− b(Y (s))] ds ,

and using the triangle inequality and the global Lipschitz property yields

|X(t)− Y (t)| ≤ 1

α
|V (t)|+ L

∫ t

0
|X(s)− Y (s)| ds .

2
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(iv) Show that

1

α
V (t) =

∫ t

0
exp{−α (t− s)} b(X(s)) ds+B(t)− α

∫ t

0
exp{−α (t− s)}B(s) ds .

[Hint: use the variation of the constant method.]

Solution

Introducing the process Z defined by Z(t) =
1

α
V (t) − B(t) for any t ≥ 0, it follows from the

second component of (??) that

Z(t) = −
∫ t

0
V (s) ds+

∫ t

0
b(X(s)) ds

= −α
∫ t

0
Z(s) ds+

∫ t

0
b(X(s)) ds− α

∫ t

0
B(s) ds .

In other words, the process Z satisfies the ODE

d

dt
Z(t) = −αZ(t) + b(X(t))− αB(t) .

The variation of the constant formula provides an explicit expression for the solution

Z(t) =

∫ t

0
exp{−α (t− s)} b(X(s)) ds− α

∫ t

0
exp{−α (t− s)} B(s) ds ,

hence

1

α
V (t) =

∫ t

0
exp{−α (t− s)} b(X(s)) ds+B(t)− α

∫ t

0
exp{−α (t− s)} B(s) ds ,

which proves the claim. Note that integration by parts yields

B(t) exp{α t} = α

∫ t

0
exp{α s} B(s) ds+

∫ t

0
exp{α s} dB(s) ,

multiplying both sides by exp{−α t} yields

B(t)− α
∫ t

0
exp{−α (t− s)} B(s) ds =

∫ t

0
exp{−α (t− s)} dB(s) ,

and reporting this expression above yields

1

α
V (t) =

∫ t

0
exp{−α (t− s)} b(X(s)) ds+

∫ t

0
exp{−α (t− s)} dB(s) .

2

(v) Show that almost surely

sup
0≤t≤T

|B(t)− α
∫ t

0
exp{−α (t− s)}B(s) ds | → 0 ,

as α→∞.
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Solution

Note that

B(t)− α
∫ t

0
exp{−α (t− s)}B(s) ds

= −α
∫ t−δ

0
exp{−α (t− s)}B(s) ds

+ α

∫ t

t−δ
exp{−α (t− s)} (B(t)−B(s)) ds+ exp{−α δ}B(t) ,

and using the triangle inequality yields

|B(t)− α
∫ t

0
exp{−α (t− s)}B(s) ds |

≤ sup
0≤s≤t

|B(s)| α
∫ t−δ

0
exp{−α (t− s)} ds

+ sup
t−δ≤s≤t

|B(t)−B(s)| α
∫ t

t−δ
exp{−α (t− s)} ds+ exp{−α δ} |B(t)|

≤ sup
0≤s≤t

|B(s)| [exp{−α δ} − exp{−α t}]

+ sup
0≤u≤δ

|B(t)−B(t− u)| [1− exp{−α δ}] + exp{−α δ} |B(t)|

≤ sup
0≤s≤t

|B(s)| exp{−α δ}+ sup
0≤u≤δ

|B(t)−B(t− u)|+ exp{−α δ} |B(t)| .

Therefore

sup
0≤t≤T

|B(t)− α
∫ t

0
exp{−α (t− s)}B(s) ds |

≤ sup
0≤t≤T

|B(t)| exp{−α δ}+ sup
0≤u,v≤T
|u−v|≤δ

|B(u)−B(v)|+ exp{−α δ} sup
0≤t≤T

|B(t)| ,

and

lim sup
α→∞

sup
0≤t≤T

|B(t)− α
∫ t

0
exp{−α (t− s)}B(s) ds | ≤ sup

0≤u,v≤T
|u−v|≤δ

|B(u)−B(v)| ,

and the right–hand side can be made arbitrary small by taking δ > 0 small enough.

2
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(vi) Show that almost surely

sup
0≤t≤T

1

α
|V (t)| → 0 hence sup

0≤t≤T
|X(t)− Y (t)| → 0 ,

as α→∞.

Solution

Under the assumptions
sup
0≤s≤t

|b(X(s))| ≤ K (1 + sup
0≤s≤t

|X(s)|) ,

and

|
∫ t

0
exp{−α (t− s)} b(X(s)) ds| ≤

∫ t

0
exp{−α (t− s)} |b(X(s))| ds

≤ sup
0≤s≤t

|b(X(s))|
∫ t

0
exp{−α (t− s)} ds

≤ K (1 + sup
0≤s≤t

|X(s)|) 1− exp{−α t}
α

,

hence

sup
0≤t≤T

|
∫ t

0
exp{−α (t− s)} b(X(s)) ds| ≤ 1

α
K (1 + sup

0≤t≤T
|X(t)|) .

Recalling the identity stated in question (iv) and using the triangle inequality yields

| 1
α
V (t)| ≤ |

∫ t

0
exp{−α (t− s)} b(X(s)) ds|

+ |B(t)− α
∫ t

0
exp{−α (t− s)}B(s) ds|

≤ sup
0≤t≤T

|
∫ t

0
exp{−α (t− s)} b(X(s)) ds|

+ sup
0≤t≤T

|B(t)− α
∫ t

0
exp{−α (t− s)}B(s) ds| ,

and using the result proved in question (v) yields

sup
0≤t≤T

| 1
α
V (t)| ≤ 1

α
K (1 + sup

0≤t≤T
|X(t)|)

+ sup
0≤t≤T

|B(t)− α
∫ t

0
exp{−α (t− s)}B(s) ds| → 0 ,

almost surely as α ↑ ∞.
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Finally, the bound stated in question (iii) yields

|X(t)− Y (t)| ≤ [ sup
0≤t≤T

1

α
|V (t)| ] + L

∫ t

0
|X(s)− Y (s)| ds ,

and using the Gronwall lemma yields

|X(t)− Y (t)| ≤ [ sup
0≤t≤T

1

α
|V (t)| ] exp{L t}

and

sup
0≤t≤T

|X(t)− Y (t)| ≤ [ sup
0≤t≤T

1

α
|V (t)| ] exp{LT} → 0 ,

almost surely as α ↑ ∞.

2

Exercise 7 [SDE for the Brownian bridge] Consider the process defined by

Z ′(t) = (1− t)
∫ t

0

dB(s)

1− s
,

for any 0 ≤ t < 1.

(i) Show that Z ′(t)→ 0 in L2 as t→ 1 (and define Z ′(1) = 0 by continuity, assuming
that the convergence holds also almost surely). Show that Z ′ has the same
distribution as the Brownian bridge.

Solution

It follows from the Itô isometry that

E|
∫ t

0

dB(s)

1− s
|2 =

∫ t

0

ds

(1− s)2
=

1

1− t
− 1 =

t

1− t
,

hence

E|Z ′(t)|2 = (1− t)2 E|
∫ t

0

dB(s)

1− s
|2 = (1− t)2 t

1− t
= t (1− t)→ 0 ,

as t→ 1.

It follows again from the Itô isometry that

E[

∫ t

0

dB(u)

1− u

∫ s

0

dB(v)

1− v
] = E[

∫ max(t,s)

0

dB(u)

1− u

∫ min(t,s)

0

dB(v)

1− v
]

= E|
∫ min(t,s)

0

dB(u)

1− u
|2

=

∫ min(t,s)

0

du

(1− u)2

=
min(t, s)

1−min(t, s)
,
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hence

K ′(t, s) = E[Z ′(t)Z ′(s)]

= (1− t) (1− s) E[

∫ t

0

dB(u)

1− u

∫ s

0

dB(v)

1− v
]

= (1−min(t, s)) (1−max(t, s))
min(t, s)

1−min(t, s)

= min(t, s) (1−max(t, s)) .

Note on the Wiener integral

Note that a Wiener integral, i.e. the stochastic integral of a deterministic square–integrable
function φ, is a Gaussian random variable. Indeed, for any convergent subdivision 0 = t0 < t1 <
· · · < tn = t, the finite sum

n∑
i=1

φ(ti−1) (B(ti)−B(ti−1)) ,

is a Gaussian random variable, as a linear combination of independant Gaussian random vari-
ables, and so is its limit

W (t) =

∫ t

0
φ(s) dB(s) .

For any integer n ≥ 1 and any time instants 0 < t1 < · · · < tn < t, the vector (W (t1),W (t2)−
W (t1), · · · ,W (tn)−W (tn−1)) is a Gaussian random vector as a collection of independent Gaus-
sian random variables, hence the vector (W (t1), · · · ,W (tn)) is a Gaussian random vector as a lin-
ear transformation of the Gaussian random vector (W (t1),W (t2)−W (t1), · · · ,W (tn)−W (tn−1)).
This shows that the whole process W is Gaussian.

(end of the note)

The process Z ′, defined in terms of a Wiener integral, is Gaussian, and its covariance function
coincides with the covariance function of the Brownian bridge Z. Therefore, the two processes
Z and Z ′ have the same finite–dimensional distributions, hence they have the same distribution.

2

(ii) Show that Z ′ is the unique solution of the SDE

Z ′(t) = −
∫ t

0

Z ′(s)

1− s
ds+B(t) ,

for any 0 ≤ t < 1.

[Hint: write the Itô formula for Z ′ seen as the product of two Itô processes.]

Solution
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Introducing the two processes

u(t) = 1− t and X(t) =

∫ t

0

dB(s)

1− s
,

so that Z ′(t) = u(t)X(t), and writing the Itô formula for the two–dimensional Itô process

(
u(t)

X(t)

)
=

(
1

0

)
+

∫ t

0

(
−1

0

)
ds+

∫ t

0

 0

1

1− s

 dB(s) ,

and for the function f(u, x) = ux, with

f ′(u, x) = (x u) and f ′′(u, x) =

(
0 1

1 0

)
,

yields

u(t)X(t) =

∫ t

0
(X(s) u(s)) [

(
−1

0

)
ds+

 0

1

1− s

 dB(s)]

+ 1
2

∫ t

0
trace[

(
0 1

1 0

)  0

1

1− s

 (
0

1

1− s

)
] ds

= −
∫ t

0
X(s) ds+

∫ t

0

u(s)

1− s
dB(s) .

Indeed (
0 1

1 0

) (
0

∗

) (
0 ∗

)
=

(
∗

0

) (
0 ∗

)
=

(
0 ∗

0 0

)
,

hence

trace[

(
0 1

1 0

) (
0

∗

) (
0 ∗

)
] = 0 .

In other words

Z ′(t) = −
∫ t

0

Z ′(s)

1− s
ds+B(t) .

2
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